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Appendix A: Pseudo Code of the Remeshing Algorithm

Algorithm 1: Remeshing with Intrinsic-Extrinsic Ratio as Guidance

input : Reference mesh MR, point cloud P sampled on MR, IER
threshold τ

1 MN .V = P ;
2 MN .F = ∅;
3 Construct a k-NN graph on P and propose candidate triangle faces;
4 Calculate the intrinsic-extrinsic ratio for each candidate;
5 Filter out the incorrect candidates with IER ≥ τ ;
6 Sort the remaining candidates with respect to their distance to MR and

the length of their longest edges;
7 for each remaining candidate triangle fi do
8 if ∃ fj ∈MN .F intersects with fi or ∃ edge ∈MN has more than

two incident faces after adding fi then
9 continue;

10 end
11 else
12 MN .F = MN .F ∪ {fi};
13 end

14 end
15 return MN ;
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Appendix B: More figures of the Reconstructed Meshes

Fig. 1: Reconstructed meshes of the ShapeNet test set. In each pair, the above one is
the result of our method, and the below one is the result of the traditional ball-pivoting
algorithm.
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Appendix C: Confusion Matrix of the Candidate
Classification

Table 1 shows the confusion matrix of the candidate classification on the ShapeNet
test set. Specifically, category 0 indicates the incorrect triangles filtered out by
the IER. Both category 1 and 2 are the correct candidates. The candidates of cat-
egory 1 are closer to the ground truth surface than candidates of category 2. We
find that the overall performance of the candidate classification is satisfactory.

Table 1: Confusion matrix of the candidate classification on the ShapeNet test set.

category 0 category 1 category 2

category 0 89.8% 3.9 % 6.3%
category 1 1.4% 96.5% 2.1%
category 2 20.2% 8.8% 71.0%

Appendix D: Results of Different Sampling Density

Fig. 2: Qualitative results of different sampling densities. Training on point clouds with
12,800 points (middle), our method can transfer to point clouds with 6,400 (left) and
25,600 points (right).

Table 2: Quantitative results on point clouds with different densities (F-score with two
thresholds, Chamfer distance, and normal consistency score). The results are averaged
across the eight categories.

#points F-score(µ) ↑ F-score(2µ) ↑ CD (×100) ↓ normal ↑
6,400 0.814 0.916 0.091 0.949
12,800 0.872 0.959 0.071 0.962
25,600 0.907 0.983 0.062 0.969

To evaluate the transferability of our method across different sampling density.
We trained our models on point clouds with 12, 800 points and test it on point
clouds with 6, 400 and 25, 600 points respectively. Fig. 2 shows the qualitative
results, from which we find that our method can generalize to different density
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distribution, and as the resolution of the point clouds increases, the details be-
come more accurate. The quantitative results shown in Table 2 further confirm
our arguments.

Appendix E: Results on Virtual Scans

In order to examine the robustness of our method with regard to different dis-
tributions of the input point clouds, we test our method on virtual scans of the
ShapeNet models. Specifically, we utilize the VCG Lib to mimic the Kinect sen-
sors and randomly select 10 camera poses to scan the models. The scanned point
clouds of different views are fused and downsampled to 12,800 points (Poisson-
disk sampling) before feeding into our method.

Fig. 3 shows the point clouds and the reconstructed meshes. Although the
scanned points clouds are unevenly distributed, our method still reconstructs
high-quality meshes, which demonstrates the generalizability of our method.
Please note that due to the limited number of views, the scanned point clouds
may not cover the full area of the shape and the reconstructed meshes are thus
also incomplete.

Fig. 3: Input point clouds with 12,800 points and the reconstructed meshes by our
method.

Appendix F: Hyper-parameters of the Experiments

Some baseline algorithms require the normals of the point clouds as input. How-
ever, meshes in ShapeNet are not perfect manifolds, there are lots of flipped faces
and faces that are visible from multiple views. As a result, it’s not trivial to de-
termine the consistent directions of the normals (point inward or point outward).
We thus employ PCPNet to predict normals for the input point clouds. We then
utilize MeshLab to reconstruct the meshes for the three traditional methods.
We basically follow the default hyper-parameters of MeshLab. Specifically, the
reconstruction depth of PSR is set to be 8, and the grid resolution of Marching
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Cube (APSS) is set to be 200. Since ball-pivoting algorithms are sensitive to the
radius, we tried the auto-guess mode of the MeshLab and also manually selected
3 radii 1%, 2%, and 3% to choose the best radius. For PSR, we also provide
outlier removal as post-processing, which filters out all the vertices that cannot
find a point in the input point cloud within a radius of 0.02.

For all the learning-based methods, we used our training set (point clouds
with 12,800 points) and followed their released hyperparameters to retrain the
model. For DeepSDF, we retrained the network category-by-category. Since both
positive and negative signed distance samples are required by the DeepSDF, we
assume the normal direction is known for each point in order to sample testing
signed distance samples. For AtlasNet, we use the “Autoencoder 25 Squares”
model. For Deep Geometric Prior (DGP), “radius” is set to be 0.05, “local-
epochs” and “global-epochs” is set to be 125, and “upsamples-per-patch” is set
to be 64. Since DGP outputs point clouds of millions of points and reconstructing
meshes on such point clouds is time-consuming, we directly use the generated
points to calculate the F-score and Chamfer distance, and do not report the
normal consistency score.

For the noise experiments, we test on the point clouds of concentric dual
spheres. The diameters of the two spheres are 0.933 and 1 respectively. We add
a Gaussian noise of a standard deviation of 0.001× t to point coordinates, where
t indicates the level of the noise. For the figure of the main paper, t is set to be
0, 0.8, 1.6, and 3.2 respectively.

Appendix G: Geodesic Distance Regression

In our method, we use the ratio of the geodesic distance and Euclidean dis-
tance as guidance to train the network to classify the candidate triangles. An-
other straightforward idea is that regressing the geodesic distances between pairs
of vertices directly with methods such as GeoNet and then use the regressed
geodesic distance to classify the candidates. We tried this ablated version to
estimate its effectiveness. Specifically, since GeoNet didn’t release their source
code, we modify our classification network to regress the geodesic distance di-
rectly. As we only care about the geodesic distance within a small neighborhood,
the training set only contains the pairs between each vertex and its k-nearest
neighbors, and the distances are truncated with a threshold of 0.1.

Table 3: Results of the geodesic distance regression. The first row shows the relative
error of the predicted distance. The second row shows the accuracy of the candidate
classification using the predicted geodesic distance.

category airplane cabinet chair display lamp sofa table vessel average

relative error 137.7% 44.0% 59.8% 47.6% 132.0% 47.5% 49.1% 91.7% 70.7%
accuracy 58.0% 83.2% 61.9% 70.1% 47.4% 71.1% 73.3% 51.6% 65.7%

Table 3 shows the results of our regression version. We find that it’s not easy
for the network to regress the geodesic distances and the predicted distances
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are not accurate. Using the predicted geodesic distance to classify the candidate
triangles (into 2 categories) also produces poor results. The accuracy of 65.7%
is much lower than the accuracy of our original version of 91.8%. In fact, in
our original version, the network does not need to regress the geodesic distance.
The labels inferred by the ratio of the geodesic distance and the Euclidean dis-
tance only serve as the supervision for the network to learn some local priors to
recognize those incorrect triangles, which is a more reasonable and easy task.


