
Improved Adversarial Training via Learned
Optimizer

Yuanhao Xiong1 and Cho-Jui Hsieh1

University of California, Los Angeles, CA 90024, USA
{yhxiong,chohsieh}@cs.ucla.edu

Abstract. Adversarial attack has recently become a tremendous threat
to deep learning models. To improve the robustness of machine learn-
ing models, adversarial training, formulated as a minimax optimization
problem, has been recognized as one of the most effective defense mecha-
nisms. However, the non-convex and non-concave property poses a great
challenge to the minimax training. In this paper, we empirically demon-
strate that the commonly used PGD attack may not be optimal for inner
maximization, and improved inner optimizer can lead to a more robust
model. Then we leverage a learning-to-learn (L2L) framework to train
an optimizer with recurrent neural networks, providing update directions
and steps adaptively for the inner problem. By co-training optimizer’s
parameters and model’s weights, the proposed framework consistently
improves over PGD-based adversarial training and TRADES.

Keywords: Optimization, Adversarial Training, Learning to Learn

1 Introduction

It has been widely acknowledged that deep neural networks (DNN) have made
tremendous breakthroughs benefiting both academia and industry. Despite be-
ing effective, many DNN models trained with benign inputs are vulnerable to
small and undetectable perturbation added to original data and tend to make
wrong predictions under such threats. Those perturbed examples, also known
as adversarial examples, can be easily constructed by algorithms such as Deep-
Fool [23], Fast Gradient Sign Method (FGSM) [11], and Carlini-Wagner (C&W)
attack [4]. Moreover, such adversarial attacks can also be conducted in the black-
box setting [3, 5, 6] and can appear naturally in the physical world [12, 16]. This
phenomenon can bring about serious consequences in domains such as face recog-
nition and autonomous-driving. Therefore, how to train a model resistant to
adversarial inputs has become an important topic.

A variety of defense methods have been proposed to improve the perfor-
mance of DNNs against adversarial attacks [17, 27, 30, 31, 35, 38]. Among them,
adversarial training [17] stands out for its effectiveness. Moreover, [21] shows
that adversarial training can be formulated as a minimax optimization prob-
lem, resembling a game between the attacker and the defender. The formulation
is so intuitive that the inner problem aims at generating adversarial examples

2 Yuanhao Xiong and Cho-Jui Hsieh

by maximizing the training loss while the outer one guides the network in the
direction that minimizes the loss to resist attacks. However, directly obtaining
the optimal value of the inner maximization is infeasible, so one has to run an
iterative optimization algorithm for a fixed number (often 10) iterations to get
an approximate inner maximizer.

Existing adversarial training often uses hand-designed general purpose opti-
mizers, such as PGD attack, to (approximately) solve the inner maximization.
However, there is an essential property of adversarial training that is rarely ex-
plored: the maximization problems associated with each sample share very sim-
ilar structure, and a good inner maximizer for adversarial training only needs to
work well for this set of data-dependent problems. To be specific, there are a fi-
nite of n maximization problems need to be solved (where n is number of training
samples), and those maximization problems share the same objective function
along with identical network structure and weights, and the only difference is
their input x. Based on this observation, can we have a better optimizer that in
particular works well for these very similar and data-dependent problems?

Motivated by this idea, we propose a learned optimizer for improved adver-
sarial training. Instead of using an existing optimizer with a fixed update rule
(such as PGD), we aim at learning the inner maximizer that could be faster
and more effective for this particular set of maximization problems. We have no-
ticed that two works have already put forward algorithms to combine learning to
learn with adversarial training [14, 13]. Both of them adopt a convolutional neu-
ral network (CNN) generator to produce malicious perturbations whereas CNN
structure might complicate the training process and cannot grasp the essence of
the update rule in the long term. In contrast, we propose an L2L-based adversar-
ial training method with recurrent neural networks (RNN). RNN is capable of
capturing long-term dependencies and has shown great potentials in predicting
update directions and steps adaptively [20]. Thus, following the framework in [1],
we leverage RNN as the optimizer to generate perturbations in a coordinate-wise
manner. Based on the properties of the inner problem, we tailor our RNN opti-
mizer with removed bias and weighted loss for further elaborations to ameliorate
issues like short-horizon in L2L [33].

Specifically, our main contributions in this paper are summarized as follows:

{ We first investigate and confirm the improvement in the model robustness
from stronger attacks by searching a suitable step size for PGD.

{ In replacement of hand-designed algorithms like PGD, an RNN-based op-
timizer based on the properties of the inner problem is designed to learn
a better update rule. In addition to standard adversarial training, the pro-
posed algorithm can also be applied to any other minimax defense objectives
such as TRADES [38].

{ Comprehensive experimental results show that the proposed method can
noticeably improve the robust accuracy of both adversarial training [21]
and TRADES [38]. Furthermore, our RNN-based adversarial training sig-
nificantly outperforms previous CNN-based L2L adversarial training and
requires much less number of trainable parameters.

Improved Adversarial Training via Learned Optimizer 3

2 Related Work

2.1 Adversarial Attack and Defense

Model robustness has recently become a great concern for deploying deep learn-
ing models in real-world applications. Goodfellow et al. [11] succeeded in fooling
the model to make wrong predictions by Fast Gradient Sign Method (FGSM).
Subsequently, to produce adversarial examples, IFGSM and Projected Gradient
Descent (PGD) [11, 21] accumulate attack strength through running FGSM iter-
atively, and Carlini-Wagner (C&W) attack [4] designs a specific objective func-
tion to increase classification errors. Besides these conventional optimization-
based methods, there are several algorithms [25, 34] focusing on generating ma-
licious perturbations via neural networks. For instance, Xiao et al. [34] exploit
GAN, which is originally designed for crafting deceptive images, to output corre-
sponding noises added to benign iuput data. The appearance of various attacks
has pushed forward the development of effective defense algorithms to train
neural networks that are resistant to adversarial examples. The seminal work of
adversarial training has significantly improved adversarial robustness [21]. It has
inspired the emergence of various advanced defense algorithms: TRADES [38]
is designed to minimize a theoretically-driven upper bound and GAT [19] takes
generator-based outputs to train the robust classifier. All these methods can be
formulated as a minimax problem [21], where the defender makes efforts to miti-
gate negative effects (outer minimization) brought by adversarial examples from
the attacker (inner maximization). Whereas, performance of such an adversarial
game is usually constrained by the quality of solutions to the inner problem [13,
14]. Intuitively, searching a better maxima for the inner problem can improve
the solution of minimax training, leading to improved defensive models.

2.2 Learning to Learn

Recently, learning to learn emerges as a novel technique to efficiently address a
variety of problems such as automatic optimization [1], few-shot learning [10],
and neural architecture search [8]. In this paper, we emphasize on the subarea
of L2L: how to learn an optimizer for better performance. Rather than using
human-defined update rules, learning to learn makes use of neural networks for
designing optimization algorithms automatically. It is developed originally from
[7] and [36], in which early attempts are made to model adaptive algorithms
on simple convex problems. More recently, [1] proposes an LSTM optimizer for
some complex optimization problems, such as training a convolutional neural
network classifier. Based on this work, elaborations in [20] and [32] further im-
prove the generalization and scalability for learned optimizers. Moreover, [26]
demonstrates that a zeroth order optimizer can also be learned using L2L. Po-
tentials of learning-to-learn motivates a line of L2L-based defense which replaces
hand-designed methods for solving the inner problem with neural network op-
timizers. [14] uses a CNN generator mapping clean images into corresponding
perturbations. Since it only makes one-step and deterministic attack like FGSM,

4 Yuanhao Xiong and Cho-Jui Hsieh

[13] modifies the algorithm and produces stronger and more diverse attacks it-
eratively. Unfortunately, due to the large number of parameters and the lack
of ability to capture the long-term dependencies, the CNN generator adds too
much difficulty in the optimization, especially for the minimax problem in ad-
versarial training. Therefore, we adopt an RNN optimizer in our method for a
more stable training process as well as a better grasp of the update rule.

3 Preliminaries

3.1 Notations

We use bold lower-case letters x and y to represent clean images and their
corresponding labels. An image classification task is considered in this paper with
the classifier f parameterized by �. sign(�) is an elementwise operation to output
the sign of a given input with sign(0) = 1. B(x; �) denotes the neighborhood
of x as well as the set of admissible perturbed images: fx0 : kx0 � xk1 � �g,
where the infinity norm is adopted as the distance metric. We denote by � the
projection operator that maps perturbed data to the feasible set. Specifically,
�B(x;�)(x

0) = max(x��;min(x0;x+�)), which is an elementwise operator. L(�; �)
is a multi-class loss like cross-entropy.

3.2 Adversarial Training

In this part, we present the formulation of adversarial training, together with
some hand-designed optimizers to solve this problem. To obtain a robust classifier
against adversarial attacks, an intuitive idea is to minimize the robust loss,
defined as the worst-case loss within a small neighborhood B(x; �). Adversarial
training, which aims to find the weights that minimize the robust loss, can be
formulated as a minimax optimization problem in the following way [21]:

min
�

E(x;y)�D

�
max

x02B(x;�)
L(f(x0);y)

�
(1)

where D is the empirical distribution of input data. However, (1) only focuses on
accuracy over adversarial examples and might cause severe over-fitting issues on
the training set. To address this problem, TRADES [38] investigates the trade-
off between natural and robust errors and theoretically puts forward a different
objective function for adversarial training:

min
�

E(x;y)�D

�
L(f(x);y) + max

x02B(x;�)
L(f(x); f(x0))=�

�
: (2)

Note that (1) and (2) are both defined as minimax optimization problems,
and to solve such saddle point problems, a commonly used approach is to first
get an approximate solution x0 of inner maximization based on the current �,
and then use x0 to conduct updates on model weights �. The adversarial training

Improved Adversarial Training via Learned Optimizer 5

procedure then iteratively runs this on each batch of samples until convergence.
Clearly, the quality and efficiency of inner maximization is crucial to the perfor-
mance of adversarial training. The most commonly used inner maximizer is the
projected gradient descent algorithm, which conducts a fixed number of updates:

x0t+1 = �B(x;�)(�sign(rx0L(x0t)) + x0t): (3)

Here L(x0t) represents the maximization term in (1) or (2) with abuse of notation.

3.3 E�ects of Adaptive Step Sizes

We found that the performance of adversarial training crucially depends on the
optimization algorithm used for inner maximization, and the current widely used
PGD algorithm may not be the optimal choice. Here we demonstrate that even
a small modification of PGD and without any change to the adversarial train-
ing objective can boost the performance of model robustness. We use the CNN
structure in [38] to train a classifier on MNIST dataset. When 10-step PGD (de-
noted by PGD for simplicity) is used for the inner maximization, a constant step
size is always adopted, which may not be suitable for the subsequent update.
Therefore, we make use of backtracking line search (BLS) to select a step size
adaptively for adversarial training (AdvTrain as abbreviation). Starting with a
maximum candidate step size value �0, we iteratively decrease it by �t = ��t�1
until the following condition is satisfied:

L(x0 + �tp) � L(x0) + c�tp
Tp (4)

where p = rx0L(x0) is a search direction. Based on a selected control param-
eter c 2 (0; 1), the condition tests whether the update with step size �t leads
to sufficient increase in the objective function, and it is guaranteed that a suffi-
ciently small � will satisfy the condition so line search will always stop in finite
steps. This is standard in gradient ascent (descent) optimization, and see more
discussions in [24]. Following the convention, we set � = 0:5 and c = 10�4. As
shown in Table 1, defense with AdvTrain+BLS leads to a more robust model
than solving the inner problem only by PGD (88:71% vs 87:33%). At the same
time the attacker combined with BLS generates stronger adversarial examples:
the robust accuracy of the model trained from vanilla adversarial training drops
over 1:2% with PGD+BLS, compared to merely PGD attack. This experiment
motivates our efforts to find a better inner maximizer for adversarial training.

Table 1. Effects of the inner solution quality on robust accuracy (%)

Defense
Attack

Natural PGD PGD+BLS

AdvTrain 96:43 87:33 86:09
AdvTrain+BLS 96:70 88:71 88:00

6 Yuanhao Xiong and Cho-Jui Hsieh

Fig. 1. Model architecture of our defense method with an RNN optimizer

4 Proposed Algorithm

4.1 Learning to Learn for Adversarial Training

As mentioned in the previous section, it can be clearly seen that the inner max-
imizer plays an important role in the performance of adversarial training. How-
ever, despite the e�ectiveness of BLS introduced in Section 3.3, it is impractical
to combine it with adversarial training as multiple line searches together with
loss calculation in this algorithms increase its computational burden signi�cantly.
Then a question arises naturally: is there any automatic way for determining a
good step size for inner maximization without too much computation overhead?
Moreover, apart from the step size, the question can be extended to whether such
a maximizer can be learned for a particular dataset and model in replacement
of a general optimizer like PGD. Recently, as a subarea of learning-to-learn, re-
searchers have been investigating whether it is possible to use machine learning,
especially neural networks, to learn improved optimizer to replace the hand-
designed optimizer [1, 20, 32]. However, it is commonly believed that those ML-
learned general-purpose optimizers are still not practically useful due to several
unsolved issues. For instance, the exploded gradient [22] in unrolled optimization
impedes generalization of these learned optimizers to longer steps and truncated
optimization on the other hand induces short-horizon bias [33].

In this paper, we show it is possible and practical to learn an optimizer for
inner maximization in adversarial training. Note that in adversarial training, the
maximization problems share very similar form: maxx 02 B(x ;�) L (f (x 0); y), where
they all have the same loss functionL and the same network (structure and
weights) f , and the only di�erence is their input x and label y . Furthermore,
we only need the maximizer to perform well on a �xed set ofn optimization
problems for adversarial training. These properties thus enable us to learn a
better optimizer that outperforms PGD.

To allow a learned inner maximizer, we parameterize the learned optimizer
by an RNN network. This is following the literature of learning-to-learn [1],

Improved Adversarial Training via Learned Optimizer 7

but we propose several designs as shown below that works better for our inner
maximization problem which is a constrained optimization problem instead of a
standard unconstrained training task in [1]. We then jointly optimize the clas-
si�er parameters (�) as well as the parameters of the inner maximizer (�). The
overall framework can be found in Figure 1.

Speci�cally, the inner problem is to maximize vanilla adversarial training loss
in (1) or TRADES loss in (2), with a constraint that x 0 2 B(x ; �). We expand
on adversarial training here and more details about TRADES can be found in
Appendix A. With an RNN optimizer m parameterized by � , we propose the
following parameterized update rule to mimic the PGD update rule in (3):

� t ; h t +1 = m� (gt ; h t); x 0
t +1 = � B(x ;�) (x 0

t + � t) : (5)

Here, gt is the gradient r x 0L (f (x 0); y) and h t is the hidden state representa-
tion. It has to be emphasized that our RNN optimizer generates perturbations
coordinate-wisely, in contrast to other L2L based methods which take as input
the entire image. This property reduces trainable parameters signi�cantly, mak-
ing it much easier and faster for training. In addition, note that the hidden state
of our RNN optimizer plays an important role in the whole optimization. A sep-
arate hidden state for each coordinate guarantees the di�erent update behavior.
And it contains richer information like the trajectory of loss gradients mentioned
in [13] but can produce a recursive update with a simpler structure.

For the RNN design, we mainly follow the structure in [1] but with some
modi�cations to make it more suitable to adversarial training. We can expand
the computation of perturbation for each step as:

� t = tanh(V h t + b1); (6)

h t +1 = tanh(Ug t + W h t + b2) (7)

where h t 2 Rd, V 2 R1� d, U 2 Rd� 1, W 2 Rd� d, b1 2 R and b2 2 Rd in
the coordinate-wise update manner. As the optimization proceeds, the gradient
will become much smaller when approaching the local maxima. At that time,
a stable value of the perturbation is expected without much change between
two consecutive iterations. However, from (6) and (7), we can clearly see that
despite small gt , the update rule will still produce an update with magnitude
proportional to tanh(b1). Imagine the case where the exact optimal value is
found with an all-zero hidden state (b2 needs to be zero as well),� t = tanh(b1)
with a non-zero bias will push the adversarial example away from the optimal
one. Thus, two bias terms b1 and b2 are problematic for optimization close
to the optimal solution. Due to the short horizon of the inner maximization
in adversarial training, it is unlikely for the network to learn zero bias terms.
Therefore, to ensure stable training, we remove the bias terms in the vanilla
RNN in all implementations.

With an L2L framework, we simultaneously train the RNN optimizer param-
eters � and the classi�er weights � together. The joint optimization problem can

8 Yuanhao Xiong and Cho-Jui Hsieh

be formulated as follows:

min
�

E(x ;y) � D fL (f � (x 0
T (� �)) ; y)g (8)

s.t. � � = arg max L (�) (9)

where x 0
T (� �) is computed by running Eq.(5) T times iteratively. Since the

learned optimizer aims at �nding a better solution to the inner maximization
term, the objective function for training it in the horizon T is de�ned as:

L (�) =
TX

t =1

wt L (f � (x 0
t (�)) ; y): (10)

Note that if we set wt = 0 for all t < T and wT = 1, then (10) implies that
our learned maximizerm� will maximize the loss after T iterations. However, in
practice we found that considering intermediate iterations can further improve
the performance since it will make the maximizer converges faster even after con-
ducting one or few iterations. Therefore in the experiments we set an increased
weights wt = t for t = 1 ; : : : ; T . Note that [22] showed that this kind of unrolled
optimization may lead to some issues such as exploded gradients which is still
an unsolved problem in L2L. However, in adversarial training we only need to
set a relative small T (e.g., T = 10) so we do not encounter that issue.

While updating the learned optimizer, corresponding adversarial examples
are produced together. We can then train the classi�er by minimizing the loss
accordingly. The whole algorithm is presented in Algorithm 1.

4.2 Advantages over Other L2L-based Methods

Previous methods have proposed to use a CNN generator [13, 14] to produce per-
turbations in adversarial training. However, CNN-based generator has a larger
number of trainable parameters, which makes it hard to train. In Table 2, the
detailed properties including the number of parameter and training time per
epoch are provided for di�erent learning-to-learn based methods. We can ob-
serve that our proposed RNN approach stands out with the smallest parameters
as well as e�ciency in training. Speci�cally, our RNN optimizer only has 120
parameters, almost 5000 times fewer than L2LDA while the training time per
epoch is 268.50s (RNN-TRADES only consumes 443.52s per training epoch) v.s.
1972.41s. Furthermore, our method also leads to better empirical performance,
as shown in our main comparison in Table 3, 4 and 5. Comparison of our variants
and original adversarial training methods can be found in Appendix B.

5 Experimental Results

In this section, we present experimental results of our proposed RNN-based
adversarial training. We compare our method with various baselines against
both white-box and black-box attack. In addition, di�erent datasets and network
architectures are also evaluated.

Improved Adversarial Training via Learned Optimizer 9

Algorithm 1 RNN-based adversarial training
1: Input : clean data f (x ; y)g, batch size B , step sizes� 1 and � 2 , number of inner

iterations T , classi�er parameterized by � , RNN optimizer parameterized by �
2: Output : Robust classifer f � , learned optimizer m �

3: Randomly initialize f � and m � , or initialize them with pre-trained con�gurations
4: repeat
5: Sample a mini-batch M from clean data.
6: for (x ; y) in B do
7: Initialization: h 0 0, L � 0, L � 0
8: Gaussian augmentation: x 0

0 x + 0 :001� N (0; I)
9: for t = 0 ; : : : ; T � 1 do

10: gt r x 0L (f � (x 0
t); y)

11: � t ; h t +1 m � (gt ; h t), where coordinate-wise update is applied
12: x 0

t +1 � B(x ;�) (x
0
t + � t)

13: L � L � + wt +1 L (f � (x 0
t +1); y), where wt +1 = t + 1

14: end for
15: L � L � + L (f � (x 0

T); y)
16: end for
17: Update � by � � + � 1r � L � =B
18: Update � by � � � � 2r � L � =B
19: until training converged

Table 2. Comparion among di�erent L2L-based methods

Number of parameters Training time per epoch (s)

RNN-Adv 120 268.50

RNN-TRADES 120 443.52

L2LDA 500944 1972.41

5.1 Experimental Settings

{ Datasets and classi�er networks. We mainly use MNIST [18] and
CIFAR-10 [15] datasets for performance evaluation in our experiments. For
MNIST, the CNN architecture with four convolutional layers in [4] is adopted
as the classi�er. For CIFAR-10, we use both the standard VGG-16 [28] and
Wide ResNet [37], which has been used in most of the previous defense pa-
pers including adversarial training [21] and TRADES [38]. We also conduct
an additional experiment on Restricted ImageNet [29] with ResNet-18 and
results are presented in Appendix C.

{ Baselines for Comparison. Note that our method is an optimization
framework which is irrelevant to what minimax objective function is used.
Therefore we choose two most popular minimax formulations, AdvTrain1 [21]

1 https://github.com/xuanqing94/BayesianDefense

10 Yuanhao Xiong and Cho-Jui Hsieh

and TRADES2 [38], and substitute the proposed L2L-based optimization for
their original PGD-based algorithm. Moreover, we also compare with a pre-
vious L2L defense mechanism L2LDA3 [13] which outperforms other L2L-
based methods for thorough comparison. We use the source code provided
by the authors on github with their recommended hyper-parameters for all
these baseline methods.

{ Evaluation and implementation details. Defense algorithms are usu-
ally evaluated by classi�cation accuracy under di�erent attacks. E�ective
attack algorithms including PGD, C&W and the attacker of L2LDA are
used for evaluating the model robustness, with the maximum`1 perturba-
tion strength � = 0 :3 for MNIST and � = 8=255 for CIFAR-10. For PGD,
we run 10 and 100 iterations (PGD-10 and -100) with the step size� = �=4,
as suggested in [13]. C&W is implemented with 100 iterations in the in�nity
norm. For L2LDA attacker, it is learned from L2LDA [13] under di�erent
settings with 10 attack steps. In addition, we also uses the learned optimizer
of RNN-Adv to conduct 10-step attacks.

For our proposed RNN-based defense, we use a one-layer vanilla RNN with
the hidden size of 10 as the optimizer for the inner maximization. Since we test
our method under two di�erent minimax losses, we name them as RNN-Adv
and RNN-TRADES respectively. The classi�er and the optimizer are updated
alternately according to the Algorithm 1. All algorithms are implemented in
PyTorch-1.1.0 with four NVIDIA 1080Ti GPUs. Note that all adversarial train-
ing methods adopt 10-step inner optimization for fair comparison. We run each
defense method �ve times with di�erent random seeds and report the lowest
classi�cation accuracy.

5.2 Performance on White-box Attacks

We demonstrate the robustness of models trained from di�erent defense methods
under the white-box setting in this part. Experimental results are shown in
Table 3, 4 and 5. From these three tables, we can observe that our proposed
L2L-based adversarial training with RNN always outperforms its counterparts.

To be speci�c, our method achieves 95:80% robust accuracy among various
attacks on MNIST dataset. On CIFAR-10, RNN-TRADES reaches 47:23% and
54:11 for VGG-16 and Wide ResNet with 1:28% and 1:43% gain over other base-
lines. It should be stressed that our method surpasses L2LDA (the previous
CNN-based L2L method) noticeably. For conventional defense algorithms, our
L2L-based variant improves the original method by 1%� 2% percents under dif-
ferent attacks from comparison of robust accuracy in AdvTrain and RNN-Adv. A
similar phenomenon can also be observed in TRADES and RNN-TRADES. Since
previous works of L2L-based defense only concentrate on PGD-based adversarial
training, the substantial performance gain indicates that the learned optimizer

2 https://github.com/yaodongyu/TRADES
3 https://github.com/YunseokJANG/l2l-da

Improved Adversarial Training via Learned Optimizer 11

Table 3. Robust accuracy under white-box attacks (MNIST, 4-layer CNN)

Defense
Attack

Natural PGD-10 PGD-100 CW100 L2LDA RNN-Adv Min

Plain 99.46 1.04 0.42 83.63 5.94 0.79 0.42

AdvTrain 99.17 94.89 94.28 98.38 95.83 94.39 94.28
TRADES 99.52 95.77 95.50 98.72 96.03 95.50 95.50

L2LDA 98.76 94.73 93.22 97.69 95.28 93.16 93.16

RNN-Adv 99.20 95.80 95.62 98.75 96.05 95.51 95.51
RNN-TRADES 99.46 96.09 95.83 98.85 96.56 95.80 95.80

Table 4. Robust accuracy under white-box attacks (CIFAR-10, VGG-16)

Defense
Attack

Natural PGD-10 PGD-100 CW100 L2LDA RNN-Adv Min

Plain 93.66 0.74 0.09 0.08 0.89 0.43 0.08

AdvTrain 81.11 42.32 40.75 42.26 43.55 41.07 40.75
TRADES 78.08 48.83 48.30 45.94 49.94 48.38 45.95

L2LDA 77.47 35.49 34.27 35.31 36.27 34.54 34.27

RNN-Adv 81.22 44.98 42.89 43.67 46.20 43.21 42.89
RNN-TRADES 80.76 50.23 49.42 47.23 51.29 49.49 47.23

Table 5. Robust accuracy under white-box attakcs (CIFAR-10, WideResNet)

Defense
Attack

Natural PGD-10 PGD-100 CW100 L2LDA RNN-Adv Min

Plain 95.14 0.01 0.00 0.00 0.02 0.00 0.00

AdvTrain 86.28 46.64 45.13 46.64 48.46 45.41 45.13
TRADES 85.89 54.28 52.68 53.68 56.49 53.00 52.68

L2LDA 85.30 45.47 44.35 44.19 47.16 44.54 44.19

RNN-Adv 85.92 47.62 45.98 47.26 49.40 46.23 45.98
RNN-TRADES 84.21 56.35 55.68 54.11 58.86 55.80 54.11

can contribute to the minimax problem in TRADES as well. Furthermore, apart
from traditional attack algorithms, we leverage our RNN optimizer learned from
adversarial training as the attacker (the column RNN-Adv). Results in three
experiments show that compared with other general attackers when conducting

12 Yuanhao Xiong and Cho-Jui Hsieh

(a) AdvTrain (b) TRADES

(c) RNN-Adv (d) RNN-TRADES
Fig. 2. Comparison of optimization trajectories among various attack algo-
rithms. We evaluate four defense mechanisms, AdvTrain TRADES, RNN-Adv
and RNN-TRADES, under three attackers including PGD, L2LDA and our pro-
posed RNN-Adv. All attackers conduct 10-step perturbing process

10 iterations such as PGD-10 and L2LDA, ours is capable of producing much
stronger perturbations which lead to low robust accuracy.

5.3 Analysis

Learned Optimizer . As mentioned in Section 5.2, the optimizer learned from
PGD-based adversarial training can be regarded as an special attacker. Thus,
we primarily investigate the update trajectories of di�erent attackers to obtain
an in-depth understanding of our RNN optimizer. For VGG-16 models trained
from four defense methods, three attacker are used to generate perturbations in
10 steps respectively and losses are recorded as shown in Figure 2.

We can see clearly from these four �gures that the losses obtained from
RNN-Adv are always larger than others within 10 iterations, re
ecting stronger
attacks produced by our proposed optimizer. Moreover, it should be noted that
the loss gap between RNN-Adv and other attackers is much more prominent at
some very beginning iterations. This in fact demonstrates an advantage of the

Improved Adversarial Training via Learned Optimizer 13

learning-to-learn framework that the optimizer can converge faster than hand-
designed algorithms.
Generalization to more attack steps. Although our learned RNN optimizer
is only trained under 10 steps, we show that it can generalize to more steps
as an attacker. From Table 6, we can observe that the attacker is capable of
producing much stronger adversarial examples by extending its attack steps to
40. Performance of our attacker is even comparable with that of PGD-100, which
further demonstrates the superiority of our proposed method.

5.4 Performance on Black-box Transfer Attacks

We further test the robustness of the proposed defense method under transer
attack. As suggested by [2], this can be served as a sanity check to see whether our
defense leads to obfuscated gradients and gives a false sense of model robustness.
Following procedures in [2], we �rst train a surrogate model with the same
architecture of the target model using a di�erent random seed, and then generate
adversarial examples from the surrogate model to attack the target model.

Table 6. Generalization to more
steps of learned optimizer

Defense
Step

10 40

Plain 0.43 0.03

AdvTrain 41.07 40.70
TRADES 48.38 48.27

L2LDA 34.54 34.19

RNN-Adv 43.21 42.89
RNN-TRADES 49.49 49.28

Table 7. Robust accuracy under black-box at-
tack settings

Defense
Surrogate

Plain-Net PGD-Net

AdvTrain 79.94 62.57
TRADES 77.01 65.41

L2LDA 76.37 60.32

RNN-Adv 80.58 63.17
RNN-TRADES 79.54 67:09

Speci�cally, we choose VGG-16 models obtained from various defense algo-
rithms as our target models. In the meanwhile, we train two surrogate models:
one is Plain-Net with natural training and the other is PGD-Net with 10-step
PGD-based adversarial training. Results are presented in Table 7. We can ob-
serve that our method outperforms all other baselines, with RNN-PGD and
RNN-TRADES standing out in defending attacks from Plain-Net and PGD-Net
respectively. It suggests great resistance of our L2L defense to transfer attacks.

5.5 Loss Landscape Exploration

To further verify the superior performance of the proposed algorithm, we vi-
sualize the loss landscapes of VGG-16 models trained under di�erent defense

