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1 More Comparisons

1.1 Comparisons with Additional Baselines

We show additional comparisons with baseline photorealistic style transfer tech-
niques including the optimization-based Deep Photo Style Transfer (DPST) by
Li et al. [5], Neural Color Transfer (NCT) by He et al. [2], and HDRnet by
Gharbi et al. [1], shown in Figures 1–3 respectively. For completeness, we also
include result from PhotoWCT [4], LST [3], and WCT2 [6].

Note that NCT relies on dense correspondence between the input style and
content images. Occasionally, the matching algorithm can fail and NCT will
generate a bad output, as shown in the second example in Figure 2.

1.2 High-resolution Image Style Transfer

To demonstrate the scalability and generalizability of our method to different
resolutions, in Figures 4–12, we show additional high-resolution results. Notice
how fine details are preserved. All results were generated with an affine bilateral
grid prediction network at a fixed 256 × 256 input resolution, while rendering
scales linearly with the resolution of the full-resolution input.

1.3 Comparisons on an Additional Test Set

From Figure 13–20, we show more qualitative comparisons on the test set we
used for the user study described in the main paper.

* Work done while working at Google Research.
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2 Video Photorealistic Style Transfer

We also evaluated our stylization network on video input, by processing each
frame independently. Although our network is trained exclusively on images, it
generalizes well to video input. Our method produces an output with a tempo-
rally consistent style despite no explicit temporal filtering or data augmentation.
Please refer to *.mp4 files in the video mp4 folder for those results.

3 Mobile Runtime

To achieve real-time performance at 4K on a mobile device, we implement a
custom inference library in OpenCL and benchmark it on a Google Pixel 4
smartphone’s Qualcomm Adreno 640 GPU. At 256 × 256 coefficient prediction
resolution, 4032 × 3032 rendering resolution, and using 16-bit floating point,
end-to-end runtime is a disappointing 4.4 seconds, which is dominated by com-
puting VGG features. By reducing coefficient prediction resolution to 128× 128
and using only 2 splatting blocks (removing conv4 1 from VGG-19), runtime
improves to 290 ms. Computational cost is still dominated by VGG features,
taking 140 ms each, while coefficient prediction and rendering take 1.5 ms and
8.5 ms, respectively. Since we typically pick a single style and repeatedly use
it over multiple content images (e.g., the camera viewfinder), we can compute
style VGG features only once, further reducing runtime to 150 ms. Finally, by
quantizing the content VGG network to use 8-bit integers and using the Pixel
Neural Core, we are able to run that subgraph in only 1.4 ms. With significant
engineering effort, we are able to achieve an end-to-end runtime of 12 ms per
frame.

4 User Study

The included eccv main.m is a MATLAB script that processes all the rating
scores given by our 20 raters. In the ”ratings” matrix, there are 240 rows and 20
columns. Each column represents one content/style combination. The rows are
lexically ordered by [rater’s ID, category, algorithm], where there are 20
raters, 3 categories (Photorealism, Stylization, Overall quality), and 4 algorithms
(PhotoWCT, WCT2, LST, and Ours).

For example, the first 12 rows represent scores for:

– Rater0 Photorealism PhotoWCT,
– Rater0 Photorealism WCT2,
– Rater0 Photorealism LST,
– Rater0 Photorealism Ours,
– Rater0 Stylization PhotoWCT,
– Rater0 Stylization WCT2,
– Rater0 Stylization LST,
– Rater0 Stylization Ours,
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– Rater0 Overall PhotoWCT,
– Rater0 Overall WCT2,
– Rater0 Overall LST,
– Rater0 Overall Ours.

The script generates mean rating scores for each algorithm under each cat-
egory, the same as we show in the user study table (Figure 8(c) in the main
paper).
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Inputs PhotoWCT [4] LST [3] WCT2 [6]

DPST [5] NCT [2] HDRnet [1] Ours

Inputs PhotoWCT [4] LST [3] WCT2 [6]

DPST [5] NCT [2] HDRnet [1] Ours

Inputs PhotoWCT [4] LST [3] WCT2 [6]

DPST [5] NCT [2] HDRnet [1] Ours

Inputs PhotoWCT [4] LST [3] WCT2 [6]

DPST [5] NCT [2] HDRnet [1] Ours

Fig. 1. Qualitative comparison of our method against six baselines on some chal-
lenging examples.
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Inputs PhotoWCT [4] LST [3] WCT2 [6]

DPST [5] NCT [2] HDRnet [1] Ours

Inputs PhotoWCT [4] LST [3] WCT2 [6]

DPST [5] NCT [2] HDRnet [1] Ours

Inputs PhotoWCT [4] LST [3] WCT2 [6]

DPST [5] NCT [2] HDRnet [1] Ours

Inputs PhotoWCT [4] LST [3] WCT2 [6]

DPST [5] NCT [2] HDRnet [1] Ours

Fig. 2. Qualitative comparison of our method against six baselines on some chal-
lenging examples.
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Inputs PhotoWCT [4] LST [3] WCT2 [6]

DPST [5] NCT [2] HDRnet [1] Ours

Inputs PhotoWCT [4] LST [3] WCT2 [6]

DPST [5] NCT [2] HDRnet [1] Ours

Fig. 3. Qualitative comparison of our method against six baselines on some chal-
lenging examples.
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Inputs

Output

Fig. 4. High-resolution example.
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Fig. 5. High-resolution example.
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Inputs Output

Fig. 6. High-resolution example.
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Fig. 7. High-resolution example.
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Fig. 8. High-resolution example.
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Fig. 9. High-resolution example.
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Fig. 10. High-resolution example.
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Inputs Output

Fig. 11. High-resolution example.
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Output

Fig. 12. High-resolution example.
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Content Style PhotoWCT [4]

WCT2 [6] LST [3] Ours

Content Style PhotoWCT [4]

WCT2 [6] LST [3] Ours

Content Style PhotoWCT [4]

WCT2 [6] LST [3] Ours

Content Style PhotoWCT [4]

WCT2 [6] LST [3] Ours

Fig. 13. Additional Qualitative Comparisons on Test Set.
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Content Style PhotoWCT [4]

WCT2 [6] LST [3] Ours

Content Style PhotoWCT [4]

WCT2 [6] LST [3] Ours

Content Style PhotoWCT [4]

WCT2 [6] LST [3] Ours

Content Style PhotoWCT [4]

WCT2 [6] LST [3] Ours

Fig. 14. Additional Qualitative Comparisons on Test Set.
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Content Style PhotoWCT [4]

WCT2 [6] LST [3] Ours

Content Style PhotoWCT [4]

WCT2 [6] LST [3] Ours

Content Style PhotoWCT [4]

WCT2 [6] LST [3] Ours

Content Style PhotoWCT [4]

WCT2 [6] LST [3] Ours

Fig. 15. Additional Qualitative Comparisons on Test Set.
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Content Style PhotoWCT [4]
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Content Style PhotoWCT [4]
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Content Style PhotoWCT [4]
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Content Style PhotoWCT [4]
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Fig. 16. Additional Qualitative Comparisons on Test Set.
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Content Style PhotoWCT [4]

WCT2 [6] LST [3] Ours

Content Style PhotoWCT [4]

WCT2 [6] LST [3] Ours

Content Style PhotoWCT [4]

WCT2 [6] LST [3] Ours

Content Style PhotoWCT [4]

WCT2 [6] LST [3] Ours

Fig. 17. Additional Qualitative Comparisons on Test Set.
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Content Style PhotoWCT [4]
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Content Style PhotoWCT [4]

WCT2 [6] LST [3] Ours

Content Style PhotoWCT [4]

WCT2 [6] LST [3] Ours

Content Style PhotoWCT [4]

WCT2 [6] LST [3] Ours

Fig. 18. Additional Qualitative Comparisons on Test Set.
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Content Style PhotoWCT [4]

WCT2 [6] LST [3] Ours

Content Style PhotoWCT [4]

WCT2 [6] LST [3] Ours

Content Style PhotoWCT [4]

WCT2 [6] LST [3] Ours

Content Style PhotoWCT [4]

WCT2 [6] LST [3] Ours

Fig. 19. Additional Qualitative Comparisons on Test Set.
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Content Style PhotoWCT [4]

WCT2 [6] LST [3] Ours

Content Style PhotoWCT [4]

WCT2 [6] LST [3] Ours

Content Style PhotoWCT [4]

WCT2 [6] LST [3] Ours

Content Style PhotoWCT [4]

WCT2 [6] LST [3] Ours

Fig. 20. Additional Qualitative Comparisons on Test Set.
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