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Abstract. Partially supervised instance segmentation aims to perform
learning on limited mask-annotated categories of data thus eliminating
expensive and exhaustive mask annotation. The learned models are ex-
pected to be generalizable to novel categories. Existing methods either
learn a transfer function from detection to segmentation, or cluster shape
priors for segmenting novel categories. We propose to learn the under-
lying class-agnostic commonalities that can be generalized from mask-
annotated categories to novel categories. Specifically, we parse two types
of commonalities: 1) shape commonalities which are learned by perform-
ing supervised learning on instance boundary prediction; and 2) appear-
ance commonalities which are captured by modeling pairwise affinities
among pixels of feature maps to optimize the separability between in-
stance and the background. Incorporating both the shape and appear-
ance commonalities, our model significantly outperforms the state-of-
the-art methods on both partially supervised setting and few-shot set-
ting for instance segmentation on COCO dataset. The code is available
at https://github.com/fanq15/FewX.
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1 Introduction

Instance segmentation is a fundamental research topic in computer vision due to
its extensive applications ranging from object selection [32], image editing [45,47]
to scene understanding [31]. Typical methods [8,21,24,33,37] for instance segmen-
tation have achieved remarkable progress, relying on the fully supervised learning
on the precise mask-annotated data. However, this kind of pixel-level mask an-
notation is extremely labor-consuming and thus expensive to be performed on
large amount of data which is typically required for deep learning methods. On
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Fig. 1. Given an input image, our model captures shape commonalities by predicting
instance boundaries and learns the appearance commonalities by modeling pairwise
affinities among all pixels. The learned class-agnostic commonalities in both shape and
appearance enable our model to segment more accurate mask than other models.

the other hand, it is less expensive and more feasible to perform annotation of
bounding box for instances, which motivates the newly proposed task: partially
supervised instance segmentation [23,29]. It aims to learn instance segmentation
models on limited mask-annotated categories of data, which can be generalized
to new (novel) categories with only bounding-box annotations available. The
partially supervised instance segmentation is much more challenging than the
typical instance segmentation in full supervision. The major difficulty lies in
how to learn the class-agnostic features for instance segmentation that can be
generalized from the mask-annotated categories to novel categories.

A straightforward way for partially supervised instance segmentation is to
directly extend existing fully supervised algorithms to segmentation of novel cat-
egories by class-agnostic training [40,41], which treats all mask-annotated cat-
egories of instances involved in training as one foreground category and forces
the model to learn to distinguish between foreground and background regions for
segmentation. This brute-force way of class-agnostic training expects the model
to learn all the generalized features between annotated and novel categories by
itself, which is hardly achieved. As the initiator of the partially supervised in-
stance segmentation, MaskX R-CNN [23] transfers the visual information from
the modeling of bounding box to the mask head through a parameterized trans-
fer function. Subsequently, ShapeMask [29] seeks to extract the generic class-
agnostic shape features across different categories by summarizing a collection
of shape priors as reference for segmenting new categories.

Whilst both MaskX R-CNN and ShapeMask have distinctly advanced the
performance of partially supervised instance segmentation, there are two im-
portant features have not been fully exploited. First, the generalized appear-
ance features that shared across different categories, e.g., similar hairy body
surface between dogs and cats or similar textures on the furniture surface, are
not explicitly explored. These class-agnostic appearance features can be poten-
tially generalized from mask-annotated categories of data to novel categories
for segmentation. Second, the common shape features that can be generalized
across different categories are not explicitly learned in a supervised way, though
ShapeMask refines the shape priors by simply clustering the annotated masks
and adapts them to a given novel object. In this work we intend to tackle the
partially supervised instance segmentation by fully exploiting these two features.
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We propose to capture the underlying commonalities which can be general-
ized across different categories by supervised learning for partially supervised in-
stance segmentation. In particular, we aim to learn two types of generalized com-
monalities: 1) the shape commonalities that can be generalized between different
categories like similar instance contour or similar instance boundary features; 2)
the appearance commonalities that shared among categories of instances owning
similar appearance features such as similar texture or similar color distribution.
The resulting model, Commonality-Parsing Network (denoted as CPMask), can
be trained in an end-to-end manner. Consider the example in Fig. 1, to segment
the giraffe in the red bounding box, our model extracts its shape information
by predicting the boundaries of giraffe and captures the appearance information
by modeling the pairwise affinities among pixels. Taking into account both the
shape and appearance information, our model is able to predict more accurate
segmentation mask than other models. It is worth noting that although giraffe is
a novel category whose mask-annotation is not provided in the training data, our
model is able to accurately predict its boundary and affinity due to the learned
class-agnostic commonalities w.r.t. both shape and appearance information.

We evaluate our model on two settings on COCO dataset: 1) partially-
supervised instance segmentation, in which partial categories are provided with
the ground-truth for both bounding boxes and segmentation masks while the
other (novel) categories are only provided with the annotated bounding boxes
during training; 2) few-shot instance segmentation, in which each of the novel
categories only contain a small number of training samples (with both annotated
bounding boxes and masks). Our model outperforms the state-of-the-art models
significantly on both settings. We further qualitatively demonstrate the gener-
alization ability of our model by directly applying our trained model on COCO
dataset to other 9 datasets with various scenes. It is worth mentioning that our
model is more effective given fewer mask-annotated categories of training data
compared to methods for fully supervised (routine) instance segmentation. To
conclude, our contributions includes:

– We design a supervised learning mechanism for predicting instance bound-
aries to learn the class-agnostic shape commonalities that can be generalized
from mask-annotated categories to novel categories.

– We propose to model the affinities among pixels of feature maps in a super-
vised way to optimize the separability between the instance region and the
background and learn the class-agnostic appearance commonalities that can
be generalized to novel objects.

– Incorporating both learned shape and appearance commonalities, our model
substantially outperforms state-of-the-art methods on COCO dataset for
instance segmentation in both partially supervised and few-shot setting.

2 Related Works

Conventional Instance Segmentation. is fully supervised by numerous high-
quality pixel-level annotations [9,10,17,18,19,20,40,41]. Lots of methods have



4 Q. Fan, L. Ke, W. Pei, C.K. Tang and Y.W. Tai

made great progress on this task by embracing the classical “detect then seg-
ment” paradigm, which first generates detection results using the powerful two-
stage detector and then segments each object in the bounding box. Mask R-
CNN [21] attaches one simple mask predictor on Faster R-CNN [44] to segment
each object in the box. PANet [37] merges multi-level features to enhance the per-
formance. FCIS [33] and MaskLab [8] use position-sensitive score maps to encode
the segmentation information. Kong and Fowlkes [28] propose to use pairwise
pixel affinity for instance segmentation. Mask Scoring R-CNN [24] introduces a
mask IoU branch to predict the mask quality and then selects good mask re-
sults accordingly. HTC [6] fully leverages the relationship between detection and
segmentation to build a successful instance segmentation cascade network. Most
recently, some works attempt to build instance segmentation network on the
one-stage detector [35,46] for its simplicity and efficiency. In YOLACT [5], a set
of prototype masks and coefficients are used to assemble masks for each instance.
CenterMask [30] builds an attention-based mask branch on FCOS [46] for fast
mask prediction. Compared to these previous works, our model mainly targets
for novel objects segmentation, although it also achieves superior performance
in the fully supervised task.
Instance Segmentation for Novel Objects. Generalizing instance segmen-
tation model to novel categories with limited annotations is meaningful and
challenging, which mainly has three different settings: Weakly supervised
instance segmentation methods are developed to use weak labels to segment
novel categories where the training samples are only annotated with bounding
boxes [27,43] or image-level labels [1,59] without pixel-level annotations. Few-
shot supervised instance segmentation [54] is proposed to solve this problem
by imitating the human visual systems to learn new visual concepts with only
a few well-annotated samples. Partially supervised instance segmentation is
formulated in a mixture of strongly and weakly annotated scenario where only
a small subset of base categories are well-annotated with both box and mask
annotations while the novel categories only have box annotations. In MaskX R-
CNN [23], a parameterized weight transfer function is designed to transfer the
visual information from detection to segmentation while ShapeMask [29] learns
the intermediate concept of object shape as the prior knowledge. Different from
the above two works, which solve the partially supervised segmentation task ei-
ther from transfer learning perspective or utilizing additional shape priors, our
model focuses on learning class-agnostic features with great generalization abil-
ity by parsing the shape and appearance commonalities and clearly outperforms
the existing methods by a large margin.

3 Commonality-Parsing Network

The crux of performing novel instance segmentation is to learn the underlying
commonalities that can be generalized from the mask-annotated categories to
novel categories. To surmount this crux, our Commonality-Parsing Network per-
forms class-agnostic learning for partially supervised instance segmentation by
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Fig. 2. Architecture of our Commonality-Parsing Network.

two proposed modules: 1) Boundary-Parsing Module for learning shape com-
monalities and 2) Non-local Affinity-Parsing Module for learning appearance
commonalities. We will first present the overall framework of the proposed
Commonality-Parsing Network, then we will elaborate on the aforementioned
two modules specifically designed for class-agnostic learning.

3.1 Class-Agnostic Learning Framework

Fig. 2 presents the architecture of our Commonality-Parsing Network. Follow-
ing typical models [8,21,37] for instance segmentation, our model contains two
branches: 1) the object detection branch in charge of predicting bounding boxes
as instance proposals, and 2) the mask branch for predicting segmented masks
for the instance proposals obtained from the object detection branch.

We adopt FCOS [46], which is an excellent one-stage detection model, as our
object detection backbone. As illustrated in Fig. 2, a backbone network equipped
with FPN [34] is first employed to extract intermediate convolutional features for
downstream processing. The object detection branch is then utilized to predict
bounding boxes with positions as well as categories for potential instances. In
the training phrase, supervision on both the position prediction and the category
classification is performed to guide the optimization of the backbone network and
FPN as in [46]:

LDetect = Lregression + Lcenterness + Lclassification. (1)

The mask branch is responsible for segmenting each of target instances pre-
dicted by the object detection branch. It is composed of two core modules de-
signed specifically for class-agnostic learning by parsing the commonalities across
both the shape and appearance features: Boundary-Parsing Module and Non-
local Affinity-Parsing Module. These two modules are trained on a small set of
mask-annotated categories of data (termed as base categories) and the learned
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inter-category commonality of both shape and appearance information enables
our model to perform instance segmentation on novel categories of image data.

3.2 Boundary-Parsing Module for Learning Shape Commonality

Boundary-Parsing Module is designed to learn the underlying commonalities
with respect to the shape information that can be generalized from the mask-
annotated categories to mask-unseen novel categories of data. Specifically, the
Boundary-Parsing Module focuses on learning to predict the boundaries be-
tween the instance (foreground) and the background. The rationale behind this
design is that there are common shape features shared among different cat-
egories on discrimination of the instance-background boundaries, which can
be leveraged during class-agnostic learning for instance segmentation of novel
categories. Besides, accurate boundary localization is able to explicitly con-
tribute to the mask prediction for segmentation, which has been proved by many
works [2,3,4,7,11,38,42,48,56,58]. Hence, we perform supervised learning for the
prediction of boundaries to learn the shape commonalities among different cat-
egories.

There are several ways to design the structure of Boundary-Parsing Module
and we just investigate a straightforward yet effective way: four 3 × 3 convolu-
tional layers with ReLU as the activation functions, followed by one upsampling
layer and one 1× 1 convolutional layer to output one channel of feature map as
boundary predictions. The Boundary-Parsing Module is trained with the bound-
ary loss:

Lboundary = LBCE(FB(X),GT B), (2)

where LBCE denotes the binary cross-entropy loss, FB denotes the nonlinear
transformation functions by Boundary-Parsing Module, X is the RoI feature
cropped by the RoIAlign operation corresponding to a target instance predicted
by the object detection branch and GT B is the off-the-shelf boundary ground-
truth that can be readily obtained from mask annotations.

3.3 Non-local Affinity-Parsing Module for Learning Appearance
Commonality

Similar categories tend to share similar appearance commonality, e.g., similar
hairy body surface between dogs and cats, or similar texture on the furniture sur-
face. This kind of appearance commonalities can be leveraged for class-agnostic
learning to generalize the instance segmentation to novel categories. Therefore,
we propose Non-local Affinity-Parsing Module to learn the appearance common-
alities across different categories by parsing the affinities among pixels of feature
maps in a non-local way. The pixels belonging to an instance (in the foreground
region) are expected to have much closer affinities than the affinities between
foreground and background pixels.
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Fig. 3. Architecture of our Non-local Affinity-Parsing Module.

Formally, given the RoI feature X after RoIAlign operation for an instance
proposal, we first fuse it with the output feature maps FB(X) from Boundary-
Parsing Module by a simple attention module which incorporates the shape
commonality information by weighted element-wise additions. Then the non-
linear transformation G by four convolutional layers is performed on the fused
features as a basic mask head of operations:

C = G(X⊕ FB(X))). (3)

The obtained feature maps C ∈ Rc×h×w, with c feature maps of size h × w, is
then fed into the non-local affinity-parsing unit for modeling affinity. Specifically,
we model the affinity between the pixel at (i, j) and the pixel at (m,n) in a latent
embedding space by:

A(<i,j>,<m,n>) = f
 (θ(Ci,j)− µi,j)

σi,j
,
(φ(Cm,n)− µm,n)

σm,n


, (4)

where Ci,j ∈ Rc corresponds to the vectorial representation (in channel dimen-
sion) for the pixel at (i, j) and the same goes forCm,n. Herein, θ,φ are embedding
functions and f is a kernel function for encoding affinity. In practice, we opt for
the dot-product operator for f , which is a typical way of modeling similarity.
µ and σ are the mean value and the standard deviation respectively. Note that
here we apply the z-score normalization for both θ(Ci,j) and φ(Cm,n) to ease
the convergence during optimization.

Larger affinity value indicates closer relationship while smaller affinity value
implies larger difference. We expect that the affinities between pixels belonging
to an instance (foreground) region are much higher than that between foreground
and background pixels. To this end, we introduce a supervision signal to guide the
optimization to achieve the desired affinity distribution. In particular, we impose
an affinity constraint to maximize the affinities among pixels in the foreground
region Fg and minimize the affinities between foreground Fg and background
Bg pixels:

A = softmax(A),

LAffinity = L1(1,


<i,j>∈Fg
<m,n>∈Fg

A<i,j>,<m,n>) + L1(0,


<i,j>∈Fg
<m,n>∈Bg

A<i,j>,<m,n>). (5)
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Here we first normalize A using a softmax operator and then impose the loss
function that encourages the sum of affinities among foreground pixels to be
close to 1 for more appearance affinities while pushing the affinities between
foreground and background pixels to be 0 for larger appearance separation.

The supervised learning on the affinity distribution enables our model to per-
ceive the appearance separability between the foreground (instance) and back-
ground regions. To further increase this appearance separation, we propose to
coordinate feature maps by explicitly incorporating the learned affinities in a
non-local attention manner [49,57]:

Ci,j =


∀<m,n>

A<i,j>,<m,n> · g(Cm,n), (6)

where g is a embedding function. Here we coordinate the vectorial representa-
tion for the pixel at (i, j) in the feature maps by attending each pixel with the
corresponding affinity. Such coordination on feature maps enables our model to
perceive the context of whole image region with affinity-based attention, thus
resulting in more separation of appearance between foreground and background
and closer affinities among pixels in foreground (instance) region, which is ben-
eficial for learning appearance commonalities and instance segmentation.

Together with original feature maps C, the output coordinated feature maps
C̃ from the Non-local Affinity-Parsing Module is subsequently fed into one up-
sampling layer and one 1× 1 convolutional layer for the final prediction of seg-
mented mask:

LSegment = LBCE(F1×1conv(C̃⊕C),GT S), (7)

where F1×1conv denotes the nonlinear transformation functions by 1× 1 convo-
lutional layer and GT S is the ground-truth mask annotations.

3.4 End-to-End Parameter Learning

The whole model of our Commonality-Parsing Network can be trained in an
end-to-end manner on two different types of training data:

– For the mask-annotated training data in base categories, the model is opti-
mized by integrating all the aforementioned loss functions:

L = λ1LDetect + λ2LBoundary + λ3LAffinity + λ4LSegment, (8)

where λ1, λ2, λ3, and λ4 are hyper-parameter weights to balance the loss
functions. In our implementation, they are tuned to be {1, 0.5, 0.5, 1} respec-
tively on a validation set.

– For the training data without mask-annotation in novel categories, we train
the model with only detection loss, i.e., only the parameters in backbone
network, FPN and detection branch are optimized:

L = LDetect. (9)
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4 Experiments

We conduct experiments on MS COCO dataset [36] to evaluate our model. We
first perform ablation study to investigate the effect of Boundary-Parsing Mod-
ule and Non-local Affinity-Parsing Module, then we compare our model with
state-of-the-art methods in three different settings for instance segmentation: 1)
partially supervised setting, 2) few-shot setting and 3) fully supervised setting.

4.1 Experimental Setup

Evaluation Protocol. We follow the typical data split on COCO in our exper-
iment: train2017 for training and val2017 for test. In both of our experiments
on partially supervised setting and few-shot setting, we split the 80 COCO cat-
egories into “voc” and “non-voc” category subsets where the voc categories are
those in PASCAL VOC [12] dataset while the remaining categories are included
in the non-voc categories. Each time we select classes in one subset as base cat-
egories with annotations of both bounding boxes and masks, and those in the
other subset as novel categories. Note that the training samples of novel cat-
egories have only bounding box annotation (no mask annotation) for partially
supervised setting. For few-shot setting [13,26,54], each novel category in the
training data only contains a small amount of samples with annotations of both
bounding boxes and masks.

Implementation Details. SGD with Momentum is employed for training our
model, starting with 1 K constant warm-up iterations. The batch size is set to
16 and initial learning rate is set to 0.01. For efficiency, ResNet-50 [22] is used
as backbone network for ablation study and the input images are resized in such
a way that the short side and long side are no more than 600 and 1000 pixels
respectively (denoted as (600, 1000)). For other experiments on comparison with
other methods, ResNet-101 [22] backbone with multi-scale training is employed.

4.2 Ablation Study

We investigate the effectiveness of our Boundary-Parsing Module and Non-local
Affinity-Parsing Module by carrying out ablation experiments for partially su-
pervised instance segmentation in this section. The voc classes is used as base
categories and the non-voc as novel categories. We refer to the variant of our
model without Boundary-Parsing Module and Non-local Affinity-Parsing Mod-
ule as Baseline model. The class-agnostic version of Mask R-CNN [23] is com-
pared for reference in this section.

Quantitative Evaluation. Table 1 presents the experimental results. The base-
line model obtains 20.7 AP on the novel categories. Boundary-Parsing Module
improves the performance by 6.7 AP and explicitly adopting the boundary fea-
ture to guide the mask prediction is crucial for the overall performance. Non-local
Affinity-Parsing Module promotes the performance by 6.2 AP and the better



10 Q. Fan, L. Ke, W. Pei, C.K. Tang and Y.W. Tai

voc → non-voc
model AP AP50 AP75 APS APM APL

Baseline 20.7 37.9 20.4 10.6 24.7 27.3
Baseline + BM w/o FF 21.6 38.8 21.1 11.6 26.5 28.8
Baseline + BM 27.4 45.1 28.7 12.4 32.3 39.5
Baseline + AM w/o AL 26.9 45.0 27.8 11.6 31.3 39.2
Baseline + AM 27.2 45.2 28.3 11.7 31.5 40.3

Baseline + BM + AM 28.8 46.1 30.6 12.4 33.1 43.4

Table 1. Experimental results of ablation studies on the COCO val set. The models
are trained on the voc base categories and evaluated on the non-voc novel categories.
The “BM” denotes the Boundary-Parsing Module, the “AM” denotes the Non-local
Affinity-Parsing Module, the “FF” denotes fusing boundary feature to the mask head
and the “AL” denotes the affinity loss.

Fig. 4. Visualization of boundary heatmaps and affinity heatmaps learned by our model
for four novel categories of cases. The red dash lines indicate the ground-truth mask.

pixel relationship introduced by the affinity loss further boosts the performance
to 27.2 AP. Both the shape and appearance commonalities learned by these two
modules from the base categories generalize well to the novel categories. After
integrating both modules, our model achieves 28.8 AP which is distinctly better
than the performance by each individual module. It implies that the learned
shape and appearance commonalities contribute in their own way for instance
segmentation.

Qualitative Evaluation. To further reveal the mechanism of these two mod-
ules, we visualize boundary and affinity heatmaps on novel categories in Fig. 4.
The affinity heatmap is obtained by calculating the mean of the affinity maps
for each instance pixel in the Non-local Affinity-Parsing Module. We observe
that our model is able to accurately estimate instance boundaries to capture
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Fig. 5. The segmentation performance of different models on a fixed set of novel cat-
egories as a function of number of mask-annotated (base) categories. The novel cate-
gories are randomly selected from COCO dataset.

the shape commonalities. Meanwhile, the affinities between instance pixels are
evidently higher (closer) than affinities between instance and background pix-
els, which indicates that appearance commonalities are well learned via affinity
modeling for these novel categories. Both of the shape and appearance common-
alities can help our model to segment novel instances from background, because
the commonalities learned from these modules are successfully generalized from
base categories to novel categories. By contrast, the baseline model without these
two modules and the Mask R-CNN for fully supervised instance segmentation
performs quite poorly on these cases.

Evaluation of Generalization. To further evaluate the ability of generaliza-
tion from base (mask-annotated) categories to novel categories for our model,
we conduct experiments to investigate the effect of varying the number of mask-
annotated categories in Fig. 5. The performances of the both baseline model
and Mask R-CNN decay much faster than our model as the number of base
categories for training decreases, which indicates that our method is particularly
more effective given fewer annotated categories of training data compared to
fully supervised methods and benefits from the class-agnostic learning of our
model by Boundary-Parsing Module and Non-local Affinity-Parsing Module.

4.3 Partially Supervised Instance Segmentation

In this section we compare our model to other state-of-the-art methods for par-
tially supervised instance segmentation.

Table 2 presents the quantitative results on COCO dataset with two sets
of experiments: use voc or non-voc classes as the base categories and treat the
remaining classes as novel categories. Our model outperforms the state-of-the-
art ShapeMask by a large margin: 3.8 AP on the non-voc novel categories and
3.5 AP on the voc novel categories respectively. Even compared to its stronger
version equipped with NAS-FPN [16] backbone which boosts the performance
of both detection and segmentation, our model still performs better than Shape-
Mask. Besides, we also provide the oracle performance which corresponds to the
performance under full supervision and can be considered as the performance
upper bound for partially supervised learning. We observe that the performance
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Fig. 6. Qualitative results on novel COCO categories. We use voc classes as the base
(mask-annotated) categories for training.

voc → non-voc non-voc → voc
method AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

Mask R-CNN [21] 18.5 34.8 18.1 11.3 23.4 21.7 24.7 43.5 24.9 11.4 25.7 35.1
Mask GrabCut [23] 19.7 39.7 17.0 6.4 21.2 35.8 19.6 46.1 14.3 5.1 16.0 32.4
MaskX R-CNN [23] 23.8 42.9 23.5 12.7 28.1 33.5 29.5 52.4 29.7 13.4 30.2 41.0
ShapeMask [29] 30.2 49.3 31.5 16.1 38.2 38.4 33.3 56.9 34.3 17.1 38.1 45.4

ShapeMask (NAS-FPN) [29] 33.2 53.1 35.0 18.3 40.2 43.3 35.7 60.3 36.6 18.3 40.5 47.3
CPMask (Ours) 34.0 53.7 36.5 18.5 38.9 47.4 36.8 60.5 38.6 17.6 37.1 51.5

Oracle MaskX R-CNN [23] 34.4 55.2 36.3 15.5 39.0 52.6 39.1 64.5 41.4 16.3 38.1 55.1
Oracle ShapeMask [29] 35.0 53.9 37.5 17.3 41.0 49.0 40.9 65.1 43.4 18.5 41.9 56.6

Oracle ShapeMask (NAS-FPN) [29] 37.6 57.7 40.2 20.1 44.4 51.1 43.1 67.9 45.8 20.1 44.3 57.8
Oracle CPMask (Ours) 37.6 58.2 40.2 19.9 42.6 54.2 42.9 67.6 46.6 21.6 42.1 58.9

Table 2. Experimental results of partially supervised instance segmentation on the
COCO val set. The “voc → non-voc” means that we use the voc classes as base cate-
gories and the non-voc as novel categories, and vice versa.

gap between our model and its oracle version is narrowed to 3.6/6.1 AP com-
pared to 4.8/7.6 (4.4/7.4) AP by ShapeMask (ShapeMask with NAS-FPN) and
10.6/9.6 AP by MaskX R-CNN, indicating the advantages of agnostic learning
by our specifically designed modules. Fig. 6 shows qualitative results on multiple
samples that randomly selected from COCO dataset including various scenes.
Application on other datasets. We further qualitatively demonstrate our
model on other 9 datasets across various styles and domains [50]: Clipart [25],
Comic [25], Watercolor [25], DeepLesions [53], DOTA [51], KITTI [14], LISA [39],
Kitchen [15], and WiderFace [55]. It is worth noticing that this is a much harder
task due to the cross-dataset generalization. Specifically, we train our model
on COCO dataset and feed it ground-truth boxes to obtain the segmentation
results on these datasets. As shown in Fig. 7, our model successfully segments
novel objects from various domains.
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Fig. 7. Qualitative results of generalization by our model to 9 different datasets. The
model is only trained on COCO and directly applied on these datasets.

4.4 Few-shot Instance Segmentation

In this section, we directly apply our model to the challenging few-shot instance
segmentation without any network adaption. Few-shot instance segmentation
is another challenging task for novel categories. In this task, the model is first
trained on base categories with numerous training samples and then generalizes
to novel categories with only a few (10 or 20 shots) training samples by direct
fine-tuning. Following Meta R-CNN [54], the non-voc classes is used as base
categories with full samples per category and the voc as the novel categories
with only 10/20 training samples per category. For fair comparison, we follow
Meta R-CNN [54] and use ResNet-50 as backbone and input image size is resized
to (600, 1000). Note that the annotations of both bounding box and mask are
provided for training samples in novel categories in the few-shot setting.

As shown in Table 3, our model outperforms Meta R-CNN (the state-of-the-
art method) by 2.7/3.9 AP in the 10/20-shot settings. Even equipped with the
Faster R-CNN detector like Meta R-CNN, our model still performs much better.
Although not specifically designed for few-shot learning, our model still obtains
the state-of-the-art performance, demonstrating that our proposed model is not
limited to the partially supervised learning, and is general for other novel in-
stance segmentation tasks.

4.5 Fully Supervised Instance Segmentation

In this section we investigate the performance of our model for fully supervised
instance segmentation, namely the routine task for instance segmentation. Ta-
ble 4 compares our model with other methods on COCO using COCO train2017
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10-shot 20-shot
method AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

Mask R-CNN-ft [54] 1.9 4.7 1.3 0.2 1.4 3.2 3.7 8.5 2.9 0.3 2.5 5.8
Meta R-CNN [54] 4.4 10.6 3.3 0.5 3.6 7.2 6.4 14.8 4.4 0.7 4.9 9.3
CPMask∗ (Ours) 6.5 11.6 6.3 0.3 4.1 11.9 9.3 16.0 9.4 0.3 5.8 17.2
CPMask (Ours) 7.1 12.0 7.2 0.3 5.5 12.2 10.3 16.6 10.7 0.7 8.0 17.5

Table 3. Experimental results of few-shot instance segmentation on COCO val set.
The models are trained on the voc base categories and fine-tuned on the non-voc novel
categories with 10/20 instances per category. The evaluation is performed on the held-
out non-voc novel categories. ∗ denotes using the Faster R-CNN detector.

method backbone AP AP50 AP75 APS APM APL

Two-stage

Mask R-CNN [21] ResNet-101 35.7 58.0 37.8 15.5 38.1 52.4
MaskLab [8] ResNet-101 37.3 59.8 39.6 19.1 40.5 50.6
HTC [6] ResNet-101 39.7 61.8 43.1 21.0 42.2 53.5

PANet [37] ResNeXt-101 42.0 65.1 45.7 22.4 44.7 58.1

One-stage

YOLACT [5] ResNet-101 31.2 50.6 32.8 12.1 33.3 47.1
PolarMask [52] ResNet-101 32.1 53.7 33.1 14.7 33.8 45.3
ShapeMask [29] ResNet-101 37.4 58.1 40.0 16.1 40.1 53.8
CenterMask [30] ResNet-101 38.3 - - 17.7 40.8 54.5
CPMask (Ours) ResNet-101 39.2 60.8 42.2 22.2 41.8 50.1

Table 4. Experimental results of fully supervised instance segmentation on COCO
test-dev set. The mask AP is reported and all entries are single-model results.

as train set and test-dev2017 as test set. The experimental results indicate that
our model achieves best performance among one-stage methods, although our
method focuses on segmenting novel categories. Particularly, our model outper-
forms the best one-stage model CenterMask [30] by 0.9 AP which is also built
on FCOS detection backbone like ours. These encouraging results proves the
effectiveness of model on fully supervised instance segmentation.

5 Conclusion

In this paper we present a novel “Commonality-Parsing Network” for partially
supervised instance segmentation. Our model learns the class-agnostic common-
ality knowledge that can be generalized from mask-annotated categories to novel
categories without mask annotations. Specifically, we design Boundary-Parsing
Module to capture shape commonalities by performing supervised learning on
boundary estimation. Further, we propose Non-local Affinity-Parsing Module
to model pairwise affinities among pixels in intermediate feature maps to learn
appearance commonalities across different categories. Benefiting from these two
modules, our model outperforms state-of-the-art methods significantly for in-
stance segmentation in both partially-supervised setting and few-shot setting.
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