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Supplemental Material

S1 Parameter Settings

Table S1. Training parameter settings for REMIND and Offline models.

Parameters ImageNet CORe50 TDIUC CLEVR

Optimizer SGD SGD Adamax Adamax
Learning Rate 0.1 0.01 2e-3 3e-4
Momentum 0.9 0.9 - -
Weight Decay 1e-4 1e-4 - -
Streaming Batch Size 51 21 51 51
Offline Batch Size 128 256 512 64
Offline Epochs 90 40 20 20
Offline LR Decay [30,60] [15,30] - -

We provide parameter settings for REMIND and the offline models in Ta-
ble S1. For the image classification experiments, we use the ResNet-18 implemen-
tation from the PyTorch Torchvision package. For the offline ImageNet model,
we use standard data augmentation of random resized crops and random flips
at 224×224 pixels. We employ per-class learning rate decay for REMIND on
ImageNet, using 0.1 as the starting learning rate and decaying it such that the
learning rate becomes 0.001 after seeing all new samples for a class, at a step
size of 100 new instances. For the k-means variant of REMIND, we use a code-
book size of 10000 for ImageNet, and we found that increasing the codebook
size yielded only marginal performance improvements. For CORe50, we do not
use data augmentation with REMIND, as it harms performance. Unlike batch
methods, REMIND learns one class at a time instance-by-instance.

To train REMIND on ImageNet in the incremental batch setting, we follow
a paradigm similar to the incremental batch paradigm used by [64, 77]. The base
initialization stage for REMIND remains the same, where it trains offline on 100
classes and then subsequently trains the product quantizer and stores indices for
previous examples in its memory buffer. We subject REMIND to the same buffer
size during incremental batch learning as we do for streaming learning, which
equates to 1.51 GB or compressed representations for 959665 examples. After
base initialization, REMIND receives the next batch of 100 classes of data and
mixes in all of the data from its replay buffer. It then loops over this data for 40
epochs, where the learning rate starts at 0.1 and is decayed by a factor of 10 at
epochs 15 and 30. After looping over a batch, REMIND updates its replay buffer
by storing new samples until it is full, and then randomly replacing samples from
the class with the most examples. Consistent with our streaming experiments,
the incremental batch version of REMIND uses random resized crops and mixup
augmentation.

For ExStream on the image classification experiments, we use 20 prototype
vectors per class and the same parameters as the offline models. For SLDA on all
experiments, we use shrinkage regularization of 10−4. Both ExStream and SLDA
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Fig. S1. Auxiliary storage required to store quantized CNN features for the entire
dataset as a function of the percentage of ResNet-18 parameters used in the top of
the CNN, F (·), which are updated during streaming learning in REMIND. Storage
requirements are shown for CORe50 (left) and ImageNet (right). The star denotes
parameters used for our main experiments.

learn classes one at a time, instance-by-instance. For ImageNet, the parameters
of iCaRL are kept the same as [64]. Similarly, the parameters for Unified and
BiC on ImageNet are from [27] and [77], respectively. For the batch versions of
CORe50 with iCaRL, Unified, and BiC, we train each batch for 60 epochs with
a batch size of 64, weight decay of 1e-4, and a learning rate of 0.01 that we
lower at epochs 20 and 40 by a factor of 5. For the streaming versions of iCaRL,
Unified, and BiC, we set the number of epochs to 1 and the batch size to 51 and
21 for ImageNet and CORe50, respectively.

For MAC, we use the publicly available PyTorch implementation
(https://github.com/IBM/mi-prometheus). For SAN, we use our own PyTorch
implementation. For ExStream on TDIUC, we use an MLP with layer sizes [4096,
1024, 1480], lr = 2e-3, dropout with probability 0.5, Adamax optimizer, batch
size of 512, and store 2500 exemplars per class. For ExStream on CLEVR, we
use an MLP with layer sizes [3072, 1024, 28], lr = 2e-3, dropout with probability
0.5, Adamax optimizer, batch size of 512, and store 65 exemplars per class. For
TDIUC and CLEVR, we chose the number of exemplars to consist of roughly
10% of the dataset size.

S2 Where Should ResNet-18 be Quantized?

Following others, we used ResNet-18 for our incremental learning image classifi-
cation experiments. This constrained the layers we could choose for quantization.
If we quantized earlier in the network, the spatial dimensions of the feature ten-
sor would be too large, resulting in much greater auxiliary storage requirements
(see Fig. S1). For example, in our ImageNet experiments, if we chose layer 3
of ResNet-18 for quantization, it would require 129 GB to store a representa-
tion of the entire training dataset; in contrast, the layer we used in our main
experiments would require only 2 GB to store the entire training set. It is also
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a more biologically sensible layer to choose based on the connectivity of the
hippocampus to visual processing areas.

If the architecture of ResNet-18 was altered to decrease the spatial dimensions
earlier in the network, with a corresponding increase in the feature dimensions,
this would allow us to quantize earlier in the network. However, this would
prevent us from comparing directly to prior work and may require a considerable
amount of architectural search to find a good compromise.

S3 Additional Image Classification Experiments

S3.1 Buffer Size Comparisons

Since REMIND and several other comparison models use replay as their main
mechanism for mitigating forgetting, we were interested in examining how changes
to the replay buffer size affected model performance on both ImageNet and
CORe50. In Fig. S2, we compare the performance of the incremental batch ver-
sions of iCaRL, Unified, and BiC on ImageNet at buffer sizes of 5K exemplars =
0.75 GB, 10K exemplars = 1.51 GB, and 20K exemplars = 3.01 GB, which are
equivalent to REMIND storing 479665 compressed samples = 0.75 GB, 959665
compressed samples = 1.51 GB, and 1281167 compressed samples (full dataset)
= 2.01 GB respectively. Note that this plot shows the performance of iCaRL,
Unified, and BiC in the batch setting, but shows REMIND in the streaming
setting, which is consistent with our main experiments.

Fig. S2. Performance as a function of
buffer size for various batch comparison
models on ImageNet.

These results demonstrate that RE-
MIND and BiC are the top performers
when a memory buffer of 0.75 GB is used,
but BiC is the top performer when a mem-
ory buffer of 1.51 GB or 3.01 GB is used.
However, REMIND rivals BiC’s perfor-
mance at both of these larger buffer sizes,
only underperforming by 4% and 6.6%
at 1.51 GB and 3.01 GB, respectively. It
should be noted that BiC requires nearly
65 hours to train in incremental batch
mode on ImageNet with a buffer size of
1.51 GB, whereas REMIND requires less
than 12 hours with the same buffer size.
Additionally, REMIND’s performance is
less dependent on the size of the buffer than BiC. That is, the difference be-
tween REMIND’s performance at 0.75 GB and 3.01 GB is only 1.3% in terms of
Ωall, whereas the difference between BiC’s performance is 7.9%, indicating that
BiC is highly sensitive to the amount of storage allotted for replay. Additionally,
while comparison models require 3.01 GB for the largest buffer size, REMIND’s
buffer size never exceeds 2.01 GB. Regardless, REMIND still achieves remarkable
performance and rivals the state-of-the-art BiC model, even in the incremental
batch setting.
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Fig. S3. Performance as a function of buffer size for various streaming (left) and batch
(right) comparison models on CORe50. Each bar is the average over 10 permutations.

In Fig. S3, we study the performance of the same models in both streaming
and incremental batch mode on the CORe50 dataset. We study the performance
of iCaRL, Unified, and BiC with buffer sizes of 50 exemplars = 7.53 MB, 100
exemplars = 15.05 MB, and 200 exemplars = 30.11 MB, which are equivalent to
storing 4465 compressed samples = 7.53 MB and 6000 compressed samples (full
dataset) = 9.93 MB respectively for REMIND. Our model is run in the streaming
paradigm for both plots and outperforms all comparison models, regardless of
the training paradigm, across all buffer sizes. This is remarkable since REMIND
uses only 1⁄3 the amount of memory as compared to comparison models at 200
exemplars. Moreover, all of these comparison models use large amounts of addi-
tional memory to cache the information needed for distillation before learning a
batch, which REMIND does not require.

S3.2 Updating Only θF

Since REMIND only updates θF , it begs the question: is REMIND’s superior
performance a result of keeping θG fixed during incremental training? To an-
swer this, we explore how other models perform when only θF is updated. On
ImageNet, iCaRL, Unified, and BiC experience an absolute drop in Ωall per-
formance by 10.6%, 2.7%, and 2.8%, respectively when only θF is plastic. This
performance degradation indicates that this architectural choice actually harms
competitors and does not provide REMIND with an unfair advantage.

S3.3 Changing F (·) and G(·)

One of the novelties of REMIND is the use of mid-level CNN features for train-
ing θF . However, choosing where to extract features to train the PQ is an open
question. In Fig, S4, we find that adding more trainable layers to θF improves ac-
curacy on CORe50, but it has diminishing returns and there is a greater memory
burden since features earlier in the network have larger spatial dimensions.
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Fig. S4. Additional experiments with REMIND on CORe50. From left to right, top
to bottom, performance as a function of: 1) trainable parameters, 2) codebook size, 3)
number of codebooks, and 4) number of replay samples (r). The values used for our
main experiments are denoted with a yellow star and each dashed line is the average
of 10 runs.

S3.4 Varying PQ Settings

REMIND’s performance is dependent on the quality of tensor reconstructions
used for training F (·). Since we use PQ to reconstruct samples from the replay
buffer for REMIND, the performance is dependent on: 1) the number of code-
books used and 2) the size of the codebooks. We study performance on CORe50
as a function of the number of codebooks and codebook size in Fig. S4. We find
that the performance improves as the number of codebooks and codebook size
increase. However, memory efficiency decreases when these values are increased,
so, we choose the number of codebooks to be 32 and codebook size to be 256
for our main experiments, making a trade-off between accuracy and memory ef-
ficiency. Since REMIND’s performance is nearly unaffected by storing only 4465
samples compared to 6000, i.e., the entire CORe50 dataset, (see Fig. S3), we
store the entire training set in the replay buffer for these additional studies.

S3.5 Altering Replay

In our main experiments, each replay set contained 20 and 50 reconstructed sam-
ples for CORe50 and ImageNet, respectively. In Fig. S4, we study performance
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Table S2. Average accuracy (µall) results for each dataset and ordering. For CORe50,
we report the average over 10 runs. The best streaming model for each dataset and
ordering is highlighted in bold.

ImageNet CORe50

Model Type Model cls iid iid cls iid inst cls inst

Streaming

Fine-Tune (θF ) 26.80 88.72 11.95 76.27 11.95
ExStream 52.65 87.97 48.01 83.72 46.91
SLDA 69.28 90.16 53.87 86.52 53.99
iCaRL 28.61 - 37.88 - 35.46
Unified 56.77 - 23.18 - 24.00
BiC 40.64 - 16.08 - 16.68
REMIND 78.68 91.00 55.35 88.08 55.42

Incremental Batch
iCaRL 63.59 - 41.94 - 42.10
Unified 76.56 - 40.03 - 41.19
BiC 82.38 - 35.08 - 39.24
REMIND 80.55 - - - -

Upper Bounds
Offline (θF ) 85.52 91.32 55.80 88.56 55.88
Offline 91.95 92.35 56.99 89.93 56.94

on CORe50 as a function of the number of replay samples. We found that per-
formance degrades on CORe50 when we use more than 20 samples for replay.
We hypothesize that since CORe50 has fewer samples, larger replay sizes cause
overfitting, thereby degrading the performance. However, performance increases
by 0.6% for ImageNet (in terms of Ωall), when the number of replay samples is
increased from 20 to 50, which is the reason for using 50 samples in our main Im-
ageNet experiments. Similar to the study of various PQ settings with REMIND
on CORe50, we again store the entire training set in the replay buffer for this
study on CORe50 due to the negligible performance difference (see Fig. S3).

S3.6 Average Accuracy for ImageNet and CORe50

In the main paper, we present Ωall, which makes it easy to compare across
datasets, orderings, and paradigms. However, it can hide the raw performance
of the models. Following others [13, 27, 64, 77], we provide the average accuracy
metric over all testing intervals, i.e.,

µall =
1

T

T∑
t=1

αt , (2)

where T is the total number of testing events and αt is the accuracy of the model
for test t. We provide µall results in Table S2, which shows the top-5 accuracy for
ImageNet and top-1 accuracy for CORe50. When using these metrics, REMIND
is still the top streaming performer and competitive in the incremental batch
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Table S3. Average accuracy (µall) results for CORe50 with their associated standard
deviations over 10 runs with different permutations of the data. The streaming models
are at the top of the table, while the upper bounds are at the bottom. The best model
for each ordering is highlighted in bold.

Model iid cls iid inst cls inst

Fine-Tune (θF ) 88.72±1.57 11.95±0.02 76.27±4.44 11.95±0.03
ExStream 87.97±0.83 48.01±2.17 83.72±1.78 46.91±2.35
SLDA 90.16±0.63 53.87±0.79 86.52±1.12 53.99±0.82
iCaRL - 37.88±3.41 - 35.46±2.89
Unified - 23.18±5.47 - 24.00±5.69
BiC - 16.08±1.93 - 16.68±2.00
REMIND 91.00±0.58 55.35±0.95 88.08±1.33 55.42±0.86

Offline (θF ) 91.32±0.42 55.80±0.61 88.56±1.04 55.88±0.60
Offline 92.35±0.40 56.99±0.48 89.93±0.78 56.94±0.46

setting on ImageNet. CORe50 results for the class orderings are lower because
we test on all test data at every interval, which includes classes that are yet to
be seen. This leads to low accuracies for the unseen classes, which affects µall.

On CORe50 we also report the average accuracy and associated standard
deviation values over 10 runs with different permutations of the dataset in Ta-
ble S3. Overall, the iid and instance orderings yielded the highest model perfor-
mances, making them easiest, while the class orderings resulted in much worse
performance, making them hardest. REMIND’s results are statistically signifi-
cantly different from each of the comparison models for all four data orderings
according to a Student’s t-test at a 99% confidence interval.

S4 Additional VQA Experiments

S4.1 REMIND Performance for Various Buffer Sizes

Table S4. Ωall results for REMIND with various buffer sizes on streaming VQA.

TDIUC CLEVR

Buf. Size iid q-type iid q-type

25% 0.914 0.936 0.724 0.960
50% 0.917 0.919 0.720 0.979
75% 0.919 0.914 0.722 0.984
100% 0.914 0.931 0.723 0.985

Offline 1.000 1.000 1.000 1.000

In Table S4, we provide additional results for REMIND on TDIUC and
CLEVR with buffer sizes that consist of 25%, 50%, 75%, and 100% of the samples
from the entire training set. Overall, we see that REMIND performs remarkably
well with a limited buffer size. For example, the model trained with only a 25%
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Fig. S5. Learning curves for each ordering of the TDIUC (top row) and CLEVR (bot-
tom row) datasets. We provide curves from the REMIND model trained with 50%
buffer size.

buffer size rivals, and in some cases outperforms, the model with a 100% buffer
size.

S4.2 Learning Curves and Qualitative Examples

We provide learning curves for each of the main VQA experiments in Fig. S5
and qualitative examples in Fig. S6. REMIND’s learning curve closely follows the
offline curve for the q-type ordering of both the TDIUC and CLEVR datasets.
This indicates that our model is able to learn new q-types without forgetting old
q-types. For the iid ordering of TDIUC, the accuracy remains more or less con-
stant after the first increment and for the iid ordering of CLEVR, the accuracy
increases at a slower rate than the offline model. We believe that training with
samples ordered by q-type may have acted as a natural curriculum for REMIND,
providing more benefits to the VQA model.
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Q: What color is the in bounds 
area of the tennis court? 
GT: Blue REMIND: Green
Q.Type: Color Recognition

Q: How many people are 
shown on the tv show? 
GT: 1  REMIND: 1
Q.Type: Counting

Q: Is there a dining table in the 
picture?
GT: yes REMIND: yes
Q.Type: Object Presence

Q: What number of tiny things 
are both on the left side of the 
gray shiny sphere and to the 
right of the brown rubber cube? 
GT: 1 REMIND: 1
Q.Type: Counting

Q: Are the big brown ball that is 
on the right side of the big metal 
cylinder and the sphere on the 
left side of the small metallic ball 
made of the same material? 
GT: yes  REMIND: no
Q.Type: Material Comparison

Q: Is the number of tiny yellow 
matte things on the left side of 
the small yellow matte object 
less than the number of cyan 
metal cylinders that are left of 
the cyan shiny thing?
GT: no  REMIND: no
Q.Type: Integer Comparison

Fig. S6. Qualitative VQA examples on the TDIUC (top row) and CLEVR (bottom
row) datasets. We provide examples from the REMIND model trained with 50% buffer
size on the q-type ordering for both datasets.


