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Abstract. State-of-the-art image classifiers are trained and tested using
well-illuminated images. These images are typically captured by CMOS
image sensors with at least tens of photons per pixel. However, in dark
environments when the photon flux is low, image classification becomes
difficult because the measured signal is suppressed by noise. In this pa-
per, we present a new low-light image classification solution using Quanta
Image Sensors (QIS). QIS are a new type of image sensors that possess
photon-counting ability without compromising on pixel size and spatial
resolution. Numerous studies over the past decade have demonstrated
the feasibility of QIS for low-light imaging, but their usage for image
classification has not been studied. This paper fills the gap by present-
ing a student-teacher learning scheme which allows us to classify the
noisy QIS raw data. We show that with student-teacher learning, we can
achieve image classification at a photon level of one photon per pixel
or lower. Experimental results verify the effectiveness of the proposed
method compared to existing solutions.
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1 Introduction

Quanta Image Sensors (QIS) are a type of single-photon image sensors originally
proposed by E. Fossum as a candidate solution for the shrinking full-well capacity
problem of the CMOS image sensors (CIS) [18,19]. Compared to the CIS which
accumulate photons to generate signals, QIS have a different design principle
which partitions a pixel into many tiny cells called the jots with each jot being
a single-photon detector. By oversampling the space and time, and by using a
carefully designed image reconstruction algorithm, QIS can capture very low-
light images with signal-to-noise ratio much higher than existing CMOS image
sensors of the same pixel pitch [3]. Over the past few years, prototype QIS have
been built by researchers at Dartmouth and Gigajot Technology Inc. [48, 49],
with a number of theoretical and algorithmic contributions by researchers at
EPFL [6, 64], Harvard [4], and Purdue [11, 16, 17, 27, 28]. Today, the latest QIS
prototype can perform color imaging with a read noise of 0.25e−/pix (compared
to at least several electrons in CIS [22]) and dark current of 0.068e−/pix/s at
room temperature (compared to > 1e−/pix/s in CIS) [27,49].
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Fig. 1. [Top] Traditional image classification methods are based on CMOS image sen-
sors (CIS), followed by a denoiser-classifier pipeline. [Bottom] The proposed classifica-
tion method comprises a novel image sensor QIS and a novel student-teacher learning
protocol. QIS generates significantly stronger signals, and student-teacher learning im-
proves the robustness against noise.

While prior works have demonstrated the effectiveness of using QIS for low-
light image formation, there is no systematic study of how QIS can be utilized
to perform better image classification in the dark. The goal of this paper is to fill
the gap by proposing the first QIS image classification solution. Our proposed
method is summarized in Figure 1. Compared to the traditional CIS-based low-
light image classification framework, our solution leverages the unique single-
photon sensing capability of QIS to acquire very low-light photon count images.
We do not use any image processing, and directly feed the raw Bayer QIS data
into our classifier. Our classifier is trained using a novel student-teacher learn-
ing protocol, which allows us to transfer knowledge from a teacher classifier to
a student classifier. We show that the student-teacher protocol can effectively
alleviate the need for a deep image denoiser as in the traditional frameworks.
Our experiments demonstrate that the proposed method performs better than
the existing solutions. The overall system – QIS combined with student-teacher
learning – can achieve image classification on real data at 1 photon per pixel or
lower. To summarize, the two contributions of this paper are:

(i) The introduction of student-teaching learning for low-light image classifica-
tion problems. The experiments show that the proposed method outperforms
existing approaches.

(ii) The first demonstration of image classification at a photon level of 1 photon
per pixel or lower, on real images. This is a very low photon level compared
to other results reported in the image classification literature.

2 Background

2.1 Quanta Image Sensor

Quanta Image Sensors are considered as one of the candidates for the third gen-
eration image sensors after CCD and CMOS. Fabricated using the commercial
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QIS 0.25 ppp QIS 1 ppp QIS 4 ppp i.i.d. Gaussian
σ = 100/255

Fig. 2. How Dark is One Photon Per Pixel? The first three sub-images in this
figure are the real captures by a prototype QIS at various photon levels. The last sub-
image is a simulation using additive i.i.d. Gaussian noise of a level of σ = 100/255,
which is often considered as heavy degradation in the denoising literature. Additional
examples can be found in Figure 10.

3D stacking technology, the current sensor has a pixel pitch of 1.1µm, with even
smaller sensors being developed. The advantage of QIS over the conventional
CMOS image sensors is that at 1.1µm, the read noise of QIS is as low as 0.25e−

whereas a typical 1µm CMOS image sensor is at least several electrons. This
low read noise (and also the low dark current) is made possible by the unique
non-avalanche design [49] so that pixels can be packed together without causing
strong stray capacitance. The non-avalanche design also differentiates QIS from
single photon avalanche diodes (SPAD). SPADs are typically bigger > 5µm,
have lower fill factor < 70%, have lower quantum efficiency < 50%, and have
significantly higher dark count > 10e−. See [27] for a detailed comparison be-
tween CIS, SPAD, and QIS. In general, SPADs are useful for applications such
as time-of-flight imaging because of their speed [2, 24, 42, 55], although new re-
sults in HDR imaging has been reported [31,50]. QIS have better resolution and
works well for passive imaging.

2.2 How Dark is One Photon Per Pixel?

When we say low-light imaging, it is important to clarify the photon level. The
photon level is usually measured in terms of lux. However, a more precise defi-
nition is the unit of photons per pixel (ppp). “Photons per pixel” is the average
number of photons a pixel sees during the exposure period. We use photons per
pixel as the metric because the amount of photons detected by a sensor depends
on the exposure time and sensor size — A large sensor inherently detects more
photons, so does long exposure. For example, under the same low-light condition,
images formed by the Keck telescope (aperture diameter = 10m) certainly has
better signal-to-noise than an iPhone camera (aperture diameter = 4.5mm). A
high-end 3.5µm camera today has a read noise greater than 2e− [59]. Thus, our
benchmark choice of 1 ppp is approximately half of the read noise of a high-end
sensor today. To give readers an idea of the amount of noise we should expect
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to see at 1 ppp, we show a set of real QIS images in Figure 2. Signals at 1 ppp
is significantly worse than the so-called “heavy noise” images we observe in the
denoising literature and the low-light classification literature.

2.3 Prior Work

Quanta Image Sensors. QIS were proposed in 2005, and since then significant
progress has been made over the past 15 years. Readers interested in the sensor
development can consult recent keynote reports, e.g., [21]. On the algorithmic
side, several theoretical signal processing results and reconstruction algorithms
have been proposed [3,5,27], including some very recent methods based on deep
learning [6, 11]. However, since the sensor is relatively new, computer vision
applications of the sensor are not yet common. To the best of our knowledge,
the only available method for tracking applications is [32].
Low-light Classification. The majority of the existing work in classification
is based on well-illuminated CMOS images. The first systematic study of the
feasibility of low-light classification was presented by Chen and Perona [7], who
observed that low-light classification is achievable by using a few photons. In the
same year, Diamond et al. [14] proposed the “Dirty Pixels” method by training
a denoiser and a classifier simultaneously. They observed that less aggressive
denoisers are better for classification because the features are preserved. Other
methods adopt similar strategies, e.g., using discrete cosine transform [35], train-
ing a classifier to help denoising [61] or using an ensemble method [15], or training
a denoiser that are better suited for pre-trained classifiers [44,45].
Low-light Reconstruction. A closely related area of low-light classification is
low-light reconstruction, e.g., denoising. Classical low-light reconstruction usu-
ally follows the line of Poisson-based inverse problems [52] and contrast enhance-
ment [23,30,37,53]. Deep neural network methods have recently become the main
driving force [47, 56, 57, 62, 67, 68], including the recent series on “seeing in the
dark” by Chen et al. [8, 9]. Burst photography [12, 33, 41, 54] (with some older
work in [39,43,46]) is related but not directly applicable to us since the methods
are developed for multi-frame problems.

3 Method

The proposed method comprises QIS and a novel student-teacher learning scheme.
In this section, we first discuss how images are formed by QIS. We will then
present the proposed student-teacher learning scheme which allows us to over-
come the noise in QIS measurements.

3.1 QIS Image Formation Model

The image formation model is shown in Figure 3. Given an object in the scene
(xrgb), we use a color filter array (CFA) to bandpass the light to subsample the
color. Depending on the exposure time and the size of the jots, a sensor gain α
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Fig. 3. QIS Image Formation Model. The basic image formation of QIS consists
of a color filter array, a Poisson process, read noise, and an analog-to-digital converter
(ADC). Additional factors are summarized in (1).

is applied to scale the sub-sampled color pixels. The photon arrival is simulated
using a Poisson model. Gaussian noise is added to simulate the read noise arising
from the circuit. Finally, an analog-to-digital converter (ADC) is used to truncate
the real numbers to integers depending on the number of bits allocated by the
sensor. For example, a single-bit QIS will output two levels, whereas multi-bit
QIS will output several levels. In either case, the signal is clipped to take value in
{0, 1, . . . L}, where L represents the maximum signal level. The image formation
process can be summarized using the following equation

xQIS︸︷︷︸
RM×N

= ADC[0,L]

{
Poisson︸ ︷︷ ︸

photon arrival

(
α︸︷︷︸

sensor gain

· CFA
(
xrgb︸︷︷︸

RM×N×3

))
+ η︸︷︷︸

read noise

}
, (1)

In addition to the basic image formation model described in (1), two other
components are included in the simulations. First, we include the dark current
which is an additive noise term to α · CFA(xrgb). The typical dark current of
the QIS is 0.068e−/pix/s. Second, we model the pixel response non-uniformity
(PRNU). PRNU is a pixel-wise multiplication applied to xrgb, and is unique for
every sensor. Readers interested in details on the image formation model and
statistics can consult previous works such as [3, 16,20,65].

3.2 Student-Teacher Learning

Inspecting (1), we notice that even if the read noise η is zero, the random
Poisson process will still create a fundamental limit due to the shot noise in
xQIS. Therefore, when applying a classification method to the raw QIS data,
some capability of removing the shot noise becomes necessary. The traditional
solution to this problem (in the context of CIS) is to denoise the images as shown
in the top of Figure 1. The objective of this section is to introduce an alternative
approach using the concept of student-teacher learning.
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Fig. 4. Student-Teacher Learning. Student-teacher learning comprises two net-
works: A teacher network and a student network. The teacher network is pre-trained
using clean samples whereas the student is trained using noisy samples. To transfer
knowledge from the teacher to the student, we compare the features extracted by the
teacher and the student at different stages of the network. The difference between the
features is measured as the perceptual loss.

The idea of student-teacher learning can be understood from Figure 4. There
are two networks in this figure: A teacher network and a student network. The
teacher network is trained using clean samples, and is pre-trained, i.e., its net-
work parameters are fixed during training of the student network. The student
network is trained using noisy samples with the assistance from the teacher.
Because the teacher is trained using clean samples, the features extracted are in
principle “good”, in contrast to the features of the student which are likely to be
“corrupted”. Therefore, in order to transfer knowledge from the teacher to the
student, we propose minimizing a perceptual loss as defined below. We define
the j-th layer’s feature of the student network as φj(xQIS), where φj(·) maps

xQIS to a feature vector, and we define φ̂j(xrgb) as the feature vector extracted
by the teacher network. The perceptual loss is

Lp(xQIS,xrgb) =

J∑
j=1

1

Nj

∥∥∥φ̂j(xrgb)− φj(xQIS)
∥∥∥2︸ ︷︷ ︸

j-th layer’s perceptual loss

, (2)

where Nj is the dimension of the j-th feature vector. Since the perceptual loss
measures the distance between the student and the teacher, minimizing the
perceptual loss forces them to be close. This, in turn, forces the network to
“denoise” the shot noise and read noise in xQIS before predicting the label.

We conduct a simple experiment to demonstrate the impact of input noise
on perceptual loss and classification accuracy. We first consider a pre-trained
teacher network by sending QIS data at different photon levels. As photon level
drops, the quality of the features also drops, and hence the perceptual loss in-
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(a) Perceptual loss vs Photon level (b) Accuracy vs Perceptual loss

Fig. 5. Effectiveness of Student-Teacher Learning. (a) Perceptual loss as a func-
tion of photon level. (b) Classification accuracy as a function of the perceptual loss
Lp(xQIS,xrgb). The accuracy is measured by repeating the synthetic experiment de-
scribed in the Experiment Section. The negative correlation suggests that perceptual
loss is indeed an influential factor.

creases. This is illustrated in Figure 5(a). Then in Figure 5(b), we evaluate the
classification accuracy by using the synthetic testing data outlined in the Ex-
periment Section. As the perceptual loss increases, the classification accuracy
drops. This result suggests that if we minimize the perceptual loss then the
classification accuracy can be improved.

Our proposed student-teacher learning is inspired by the knowledge distil-
lation work of Hinton et al. [34] which proposed an effective way to compress
networks. Several follow up ideas have been proposed, e.g., [1, 29, 63, 69], in-
cluding the MobileNet [36]. The concept of perceptual loss has been used in
various computer vision applications such as the texture-synthesis and style-
transfer by Johnson et al. [38] and Gatys et al. [25, 26], among many oth-
ers [10,44,48,51,58,60,66]. The method we propose here is different because we
are not compressing the network. We are not asking the student to mimic the
teacher because the teacher and the student are performing two different tasks:
The teacher classifies clean data, whereas the student classifies noisy data. In the
context of low-light classification, student-teacher learning has not been applied.

3.3 Overall Method

The overall loss function comprises the perceptual loss and the conventional
prediction loss using cross-entropy. The cross-entropy loss Lc, measures the dif-
ference between true label y and the predicted label fΘ(xQIS) generated by the
student network, where fΘ is the student network. The overall loss is mathe-
matically described as

L(Θ) =

N∑
n=1

{
Lc

(
yn, fΘ(xn

QIS)
)

+ λLp

(
xn
rgb,x

n
QIS

)}
, (3)
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Fig. 6. Proposed Method. The proposed method trains a classification network with
two training losses: (1) cross-entropy loss to measure the prediction quality, and (2)
perceptual loss to transfer knowledge from teacher to student. During testing, only the
student is used. We introduce a 2-layer entrance (colored in orange) for the student
network so that the classifier can handle the Bayer image.

where xn denotes the n-th training sample with the ground truth label yn.
During the training, we optimize the weights of the student network by solving

Θ̂ = argmin
Θ

L(Θ). (4)

During testing, we feed a testing sample xQIS to the student network and eval-
uate the output:

ŷ = fΘ̂(xQIS). (5)

Figure 6 illustrates the overall network architecture. In this figure, we em-
phasize that training is done on the student only. The teacher is fixed and is
not trainable. In this particular example, we introduce a very shallow network
consisting of 2 convolution layers with 32 and 3 filters respectively. This shal-
low network is used to perform the necessary demosaicking by converting the
raw Bayer pattern to the full RGB before feeding into a standard classification
network.

4 Experiments

4.1 Dataset

Dataset. We consider two datasets. The first dataset (Animal) contains visually
distinctive images where the class labels are far apart. The second dataset (Dog)
contains visually similar images where the class labels are fine-grained. The
two different datasets can help to differentiate the performance regime of the
proposed method and its benefits over other state-of-the-art networks.



Image Classification in the Dark using QIS 9

(a) Animal Dataset (Easier) (b) Dog Dataset (Harder)

Fig. 7. The two datasets for our experiments.

The construction of the two datasets is as follows. For the Animal dataset,
we randomly select 10 classes of animals from ImageNet [13], as shown in Fig-
ure 7(a). Each class contains 1300 images, giving a total of 13K images. Among
these, 9K are used for training, 1K for validation, and 3K for testing. For the Dog
dataset, we randomly select 10 classes of dogs from the Stanford Dog dataset [40],
as shown in Figure 7(b). Each class has approximately 150 images, giving a total
of 1919 images. We use 1148 for training, 292 for validation, and 479 for testing.

4.2 Competing Methods and Our Network

We compare our method with three existing low-light classification methods as
shown in Figure 8. The three competing methods are (a) Vanilla denoiser +
classifier, an “off-the-shelf” solution using pre-trained models. The denoiser is
pre-trained on the QIS data and the classifier is pre-trained on clean images. (b)
Dirty Pixels [14], same as Vanilla denoiser + classifier, but trained end-to-end
using the QIS data. (c) Restoration Network [44,45], which trains a denoiser but
uses a classifier pre-trained on clean images. This can be viewed as a middle-
ground solution between Vanilla and Dirty Pixels.

(a) Vanilla Network (b) Dirty Pixels [14]

(c) Restoration Network [44] (d) Proposed Method

Fig. 8. Competing Methods. The major difference between the networks are the
trainable modules and the loss functions. For Dirty Pixels and our proposed method,
we further split it into two versions: Using a deep denoiser or using a shallow entrance
network.
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Fig. 9. Synthetic Data on Dog Dataset. (a) Comparing different classification
methods with QIS images. (b) Comparing QIS and CIS using proposed classifier.

To ensure that the comparison is fair w.r.t. the training protocol and not
the architecture, all classifiers in this experiment (including ours) use the same
VGG-16 architecture. For methods that use a denoiser, the denoiser is fixed
as a UNet. This particular combination of denoiser and classifier will certainly
affect the final performance, but the effectiveness of the training protocol can
still be observed. Combinations beyond the ones we report here can be found in
the ablation study. For Dirty Pixels and our proposed method, we further split
them into two versions: (i) Using a deep denoiser as the entrance, i.e., a 20-layer
UNet, and (ii) using a shallow two-layer network as the entrance to handle the
Bayer pattern, as we described in the proposed method section. We will analyze
the influence of this component in the ablation study.

4.3 Synthetic Experiment

The first experiment is based on synthetic data. The training data are created
by the QIS model. To simulate the QIS data, we follow Equation (1) by using
the Poisson-Gaussian process. the read noise is σ = 0.25e− according to [49].
The analog-to-digital converter is set to 5 bits so that the number of photons
seen by the sensors is between 0 and 31. We use a similar simulation procedure
for CIS with the difference being the read noise, which we set to σ = 2.0e− [59].

The experiments are conducted for 5 different photon levels corresponding
to 0.25, 0.5, 1, 2, and 4 photons per pixel (ppp). The photon level is controlled
by adjusting the value of the multiplier α in Equation (1). The loss function
weights λ in Equation (3) is tuned for optimal performance.

The results of the synthetic data experiment are shown in Figure 9. In Fig-
ure 9(a), we observe that our proposed classification is consistently better than
competing methods the photon levels we tested. Moreover, since all methods
reported in Figure 9(a) are using QIS as the sensor, the curves in Figure 9(a)
reveal the effectiveness of just the classification method. In Figure 9(b), we com-
pare the difference between using QIS and CIS. As we expect, CIS has worse
performance compared to QIS.
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Fig. 10. Real Image Results. This figure shows raw Bayer data obtained from a
prototype QIS and a commercially available CIS, and how they are classified using our
proposed classifier. The inset images show the denoised images (by [9]) for visualization.
Notice the heavy noise at 0.25 and 0.5 ppp, only QIS plus our proposed classification
method can produce the correct prediction.

4.4 Real experiment

We conduct an experiment using real QIS and CIS data. The real QIS data
are collected by a prototype QIS camera Gigajot PathFinder [27], whereas the
real CIS data are collected by using a commercially available camera. To set up
the experiment, we display the images on a Dell P2314H LED screen (60Hz).
The cameras are positioned 1m from the display so that the field of view covers
256×256 pixels of the image. The integration time of the CIS is set to 250µs and
that of QIS is 75µs. Since the CIS and QIS have different lenses, we control their
aperture sizes and the brightness of the screen such that the average number of
photons per pixel is equal for both sensors.
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Fig. 11. Real data on Animal Dataset. (a) Comparing different classification meth-
ods using QIS as the sensor. (b) Comparing QIS and CIS using our proposed classifier.

The training of the network in this real experiment is still done using the
synthetic dataset, with the image formation model parameters matched with the
actual sensor parameters. However, since the real image sensors have pixel non-
uniformity, during the training we multiply a random PRNU mask to each of the
generated images to mimic the process of PRNU. For testing, we collect 30 real
images at each photon level, across 5 different photon levels. This corresponds
to a total of 150 real testing images.

In Figure 11 we make two pairs of comparisons: Proposed (shallow) versus
Dirty Pixels (shallow), and QIS versus CIS. In Figure 11(a), where we observe
that the proposed method has a consistent improvement over Dirty Pixels. The
comparison between QIS and CIS is shown in Figure 11(b). It is evident that QIS
has better performance compared to CIS. Figure 10 shows the visualizations. The
ground truth images were displayed on the screen, and the background images in
QIS and CIS column are actual measurements from the corresponding cameras,
cropped to 256×256. The thumbnail images in the front are the denoised images
for reference. They are not used during the actual classification. The color bars at
the bottom report the confidence level of the predicted class. Note the significant
visual difference between QIS and CIS, and the classification results.

4.5 Ablation Study

In this section, we report several ablation study results and highlight the most
influencing factors to the design.
Sensor. Our first ablation study is to fix the classifier but change the sensor
from QIS to CIS. This experiment will underline the impact of QIS in the overall
pipeline. The result of this ablation study can be seen in Figure 9(b). At 4 ppp
of the Dogs dataset, QIS + proposed has a classification accuracy of 72.9%
while CIS has 69.8%. The difference is 3.1%. As the photon level drops, the gap
between QIS and CIS widens to 23.1% at 0.25 ppp. A similar trend is found in
the Animals dataset. Thus at low light QIS has a clear advantage, although CIS
can catch up when there are a sufficient number of photons.
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Classification Pipeline. We fix the sensor but change the entire classification
pipeline to understand how important the classifier is, and which classifier is
more effective. The results in Figure 9(a) show that among the competing meth-
ods, Dirty Pixels is the most promising one because it is end-to-end trained.
However, comparing Dirty Pixels with our proposed method, at 1 ppp Dirty
Pixels (shallow) achieves an accuracy of 53.9% whereas the proposed (shallow)
achieves 62.7%. The trend continues as the photon level increases. This ablation
analysis shows that a good sensor (QIS) does not automatically translate to
better performance.

Student-Teacher Learning. Let us fix the sensor and the network, but change
the training protocol. This will reveal the significance of the proposed student-
teacher learning. To conduct this ablation study, we recognize that Dirty Pixels
network structure (shallow and deep) is exactly the same as Ours (shallow and
deep) since both use the same UNet and VGG-16. The only difference is the
training protocol, where ours uses student-teacher learning and Dirty Pixels is
a simple end-to-end. The result of this study is summarized in Figure 9(a). It is
evident that our training protocol offers advantages over Dirty Pixels.

We can further analyze the situation by plotting the training and valida-
tion error. Figure 12 [Left] shows the comparison between the proposed method
(shallow) and Dirty Pixels (shallow). It is evident from the plot that without
student-teacher learning (Dirty Pixels), the network overfits. The validation loss
drops and then rises whereas the training loss keeps dropping. In contrast, the
proposed method appears to mitigate the overfitting issue. One possible reason
is that the student-teacher learning is providing some kind of regularization in
an implicit form so that the validation loss is maintained at a low level.

Choice of Classification Network. All experiments reported in this paper use
VGG-16 as the classifier. In this ablation study, we replace the VGG-16 classifier
by other popular classifiers, namely ResNet50 and InceptionV3. These networks
are fine-tuned using QIS data. Figure 12 [Right] shows the comparisons. Using
the baseline training scheme, i.e., simple fine-tuning as in Dirty Pixels, it is
observed that there is a minor gap between the different classifiers. However, by
using the proposed student-teacher training protocol, we observe a substantial
improvement for all the classifiers. This ablation study confirms that student-
teacher learning is not limited to a particular network architecture.

Using a pre-trained classifier. This ablation study analyzes the effect of using
a pre-trained classifier (trained on clean images). If we do this, then the over-
all system is exactly the same as the Restoration network [44] in Figure 8(c).
Restoration network has three training losses: (i) MSE to measure the image
quality, (ii) Perceptual loss to measure feature quality, and (iii) the cross-entropy
loss. These three losses are used to just train the denoiser and not the classifier.
Since the classifier is fixed, it becomes necessary for the denoiser to produce
high-quality images or otherwise the classifier will not work. The results in Fig-
ure 9(a) suggest that when the photon level is low, the denoiser fails to produce
high-quality images and so the classification fails. For example, at 0.25 ppp
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Restoration Network achieves 35.6% but our proposed method achieves 52.1%.
Thus it is imperative that we re-train the classifier for low-light images.
Deep or Shallow Denoisers? This ablation study analyzes the impact of using
a deep denoiser compared to a shallow entrance layer. The result of this study
can be found by comparing Ours (deep) and Ours (shallow) in Figure 9(a), as
well as Dirty (deep) and Dirty (shallow). The deep versions use a 20-layer UNet,
whereas the shallow versions use a 2-layer network. The result in Figure 9(a)
suggests that while the deep denoiser has a significant impact on Dirty Pixels,
its influence is quite small to the proposed method with the QIS images. Since
we are using student-teacher learning, the features are already properly handled.
The benefit from a deep denoiser for QIS is therefore marginal. However, for
CIS data at low light, the deep denoiser helps in getting better classification
performance, especially when the signal level is much below the read noise.

5 Conclusion

We proposed a new low-light image classification method by integrating Quanta
Image Sensors (QIS) and a novel student-teacher training protocol. Experimental
results confirmed that such combination is effective for low-light image classifica-
tion, and the student-teacher protocol is a better alternative than the traditional
denoise-then-classify framework. This paper also made the first demonstration
of low-light image classification at a photon level of 1 photon per pixel or lower.
The student-teacher training protocol is transferable to conventional CIS data,
however, to achieve the desired performance at low light, QIS must be a part of
the overall pipeline. Using multiple frames for image classification would be a
fruitful direction for future work.
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