
Supplementary Material for
“DHP: Differentiable Meta Pruning via

HyperNetworks”

Yawei Li1, Shuhang Gu1,2, Kai Zhang1, Luc Van Gool1,3, Radu Timofte1

1Computer Vision Lab, ETH Zürich, 2The University of Sydney, 3KU Leuven
{yawei.li, kai.zhang, vangool, radu.timofte}@vision.ee.ethz.ch

shuhanggu@gmail.com

In this supplementary material, we first detail the training and testing pro-
tocol of the networks for different tasks in Sec. 1. Then the latent vector sharing
strategy is shown in Sec. 2. More results are shown in Sec. 3.

1 Training and Testing Protocol

As explained in the main paper, the proposed DHP method does not rely on
the pretrained model. Thus, all of the networks are trained and pruned from
scratch. The hypernetworks are first randomly initialized. Proximal gradient
is used to sparsify the latent vectors. When the difference between the target
and the actual FLOPs compression ratio is below 2%, the pruning procedure
stops. Then the pruned latent vectors as well as the pruned outputs of the
hypernetworks are derived. After that, the outputs of hypernetworks are used as
the weight parameters of the backbone network and updated by SGD or Adam
algorithm directly. After the pruning procedure, the hypernetworks are removed.
The training continues and the training protocol are the same as that utilized
for training the original network. The number of pruning epochs is much smaller
than that used for training the original network. The following of the section
describes the training protocols of different tasks.

1.1 Image Classification

CIFAR10 CIFAR10 [6] contains 10 different classes. The training and testing
subsets contain 50,000 and 10,000 images with resolution 32 × 32, respectively.
As done by prior works [3, 4], we normalize all images using channel-wise mean
and standard deviation of the the training set. Standard data augmentation is
also applied. The networks are trained for 300 epochs with SGD optimizer and
an initial learning rate of 0.1. The learning rate is decayed by 10 after 50% and
75% of the epochs. The momentum of SGD is 0.9. Weight decay factor is set to
0.0001. The batch size is 64.

Tiny-ImageNet For image classification, the pruning method is also compared
on Tiny-Imagenet. It has 200 classes. Each class has 500 training images and



2 Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, Radu Timofte

50 validation images. The resolution of the images is 64 × 64. The images are
normalized with channel-wise mean and standard deviation. Horizontal flip is
used to augment the dataset. The networks are trained for 220 epochs with
SGD. The initial learning rate is 0.1. The learning rate is decayed by a factor
of 10 at Epoch 200, Epoch 205, Epoch 210, and Epoch 215. The momentum of
SGD is 0.9. Weight decay factor is set to 0.0001. The batch size is 64.

1.2 Super-Resolution

Training protocol For image super-resolution, the networks are trained on
DIV2K [1] dataset. It contains 800 training images, 100 validation images, and
100 test images. Image patches are extracted from the training images. For
EDSR, the patch size of the low-resolution input patch is 48 × 48 while for
SRResNet the patch size is 24 × 24. The batch size is 16. The networks are
optimized with Adam optimizer. The default hyper-parameter is used for Adam
optimizer. The weight decay factor is 0.0001. The networks are trained for 300
epochs. The learning rate starts from 0.0001 and decays by 10 after 200 epochs.
The networks are tested on Set5 [2], Set14 [8], B100 [7], Urban100 [5], and DIV2K
validation set.

Simplified EDSR architecture In order to speed up the training of EDSR, a
simplified version of EDSR is adopted. The original EDSR contains 32 residual
blocks and each convolutional layer in the residual blocks has 256 channels. The
simplified version has 8 residual blocks and each has two convolutional layers
with 128 channels.

1.3 Denoising

For image denoising, the networks were trained on the gray version of DIV2K
dataset and tested on BSD68 and DIV2K validation set. As done for image super-
resolution, image patches are extracted from the training images. For DnCNN,
the patch size of the input image is 64× 64 and the batch size is 64. For UNet,
the patch size is 128 × 128 and the batch size 16. Gaussian noise is added to
degrade the input patches on the fly with noise level σ = 70. Adam optimizer is
used to train the network. The weight decay factor is 0.0001. The networks are
trained for 60 epochs and each epoch contains 10,000 iterations. So in total, the
training continues for 600k iterations. The learning rate starts with 0.0001 and
decays by 10 at Epoch 40.

2 Latent Vector Sharing Strategy for Different Networks

2.1 Basic criteria

To construct the hypernetworks, all of convolutional layers including standard
convolution, depth-wise convolution, point-wise convolution, group convolution,



DHP: Differentiable Meta Pruning via HyperNetworks 3

and transposed convolution are attached a latent vector. The latent vectors act
as the handle for network pruning. Thus, by dealing with only the latent vec-
tor, we can control how the convolutional layers are pruned. But there could be
complicated cases in the modern network architecture where the latent vectors
have to be shared among different layers. Thus, during the development of the
algorithm, we summarize some basic rules for latent vector sharing. In the fol-
lowing, we first describe the general rules for latent vectors and then detail the
specific rules for special network blocks.

I Every convolutional layer is attached a latent vector.
II The channel that the latent vector controls and the dimension of the latent

vector vary with the types of convolutional layers.
(a) For standard convolution, point-wise convolution and transposed con-

volution, the latent vector controls the output channel of the layer and
the dimension of the latent vector is the same as the number of output
channels.

(b) For depth-wise convolution and group convolution, the latent vector con-
trols the input channels per group. The dimension of the latent vector is
the same as the number of input channels per group. That is, the latent
vector of depth-wise convolution contains only one element.

III The latent vectors are shared among consecutive layers. This is because
the output and input channels of consecutive layers are correlated. Thus,
the hypernetworks receive the latent vectors of the previous layer and the
current layer as input.

IV Not every latent vector needs to be sparsified. The latent vectors free from
sparsification are list as follows.
(a) The latent vector that controls the input channel of the first convolu-

tional layer. This latent vector has the same dimension with the input
image channels, e.g. 3 for RGB images and 1 for gray images. Of course,
the input images do not need to be pruned.

(b) The latent vector attached to depth-wise convolution and group con-
volution. This latent vector controls the input channels per group. To
compress depth-wise and group convolution, the number of groups is
reduced, which is controlled by the latent vectors of the previous layer.

2.2 Residual block

The residual networks including ResNet, SRResNet, and EDSR are constructed
by stacking a number of residual blocks. Depending on the dimension of the
feature maps, the residual networks contain several stages with progressively
reducing feature map dimension and increasing number of feature maps. (Note
that the feature map dimension of EDSR and SRResNet does not change for all
of the residual blocks. So there is only one stage for those networks.) For the
residual blocks within the same stage, their output channels are correlated due
to the existence of the skip connections. In order to prune the second convolution
of the residual blocks within the same stage, we use a shared latent vector for



4 Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, Radu Timofte

them. Thus, by only dealing with this shared latent vector, all of the second con-
volutions of the residual blocks can be pruned together. Please refer to Table S1
for the ablation study on latent vector sharing and non-sharing strategies.

2.3 Dense block

Similar to residual networks, DenseNet also contains several stages with different
feature map configurations. But different from residual networks, each dense
block concatenates its input and output to form the final output of the block.
As a result, each dense block receives as input the outputs of all of the previous
dense blocks within the same stage. Thus, the hypernetwork of a dense block
also has to receive the latent vectors of the corresponding dense blocks as input.

2.4 Inverted residual block

The inverted residual blocks are just a special case of residual blocks. So how
the latent vectors are shared across different blocks is the same with the normal
residual blocks. Here we specifically address the sharing strategy within the block
due to the existence of depth-wise convolution. The inverted residual block has
the architecture of “point-wise conv + depth-wise conv + point-wise conv”. As
explained earlier, the latent vector of depth-wise convolution controls the input
channels per group. Thus, the latent vector of the first point-wise convolution
controls not only its output channels but also the input channels of the depth-
wise convolution and the input channels of the second point-wise convolution.
Thus, this latent vector has to be passed to the hypernetworks of the those
convolutional layers.

2.5 Upsampler of super-resolution networks

The image super-resolution networks are attached with upsampler blocks at the
tail of the networks to increase the spatial resolution of the feature map. For the
scaling factor of ×4, two upsamplers are attached and each doubles the spatial
resolution. Each of the upsampler block contains a standard convolutional layer
that increases the number of feature maps by a factor of 4 and a pixel shuffler
that shuffles every 4 consecutive feature maps into the spatial dimension. Thus,
the output channel of the convolutional layer in the upsmapler is correlated
to its input channel. If one input channel is pruned, then four corresponding
consecutive output channels should also be pruned. To achieve this control of
pruning, a common latent vector is used for the input and output channels.
The dimension of this latent vector is the same with the input channel size.
This vector is repeated and interleaved to form the one controlling the output
channel.



DHP: Differentiable Meta Pruning via HyperNetworks 5

Table S1. Ablation study on ResNet56 for CIFAR10 image classification: exploring
latent vector sharing strategy among correlated convolutional layers. “Share” denotes
whether the latent vector sharing strategy described in Subsec. 2.2 is adopted. The `2,1
regularizer means that when the latent vectors are not shared among the correlated
layers, the group sparsity regularizer `2,1 is enforced on their latent vectors. Otherwise,
the normal `1 sparsity regularizer is used. λ and τ are the regularization factor and
mask threshold introduced in the main paper. As shown in this table, the latent vector
sharing strategy consistently outperforms the non-sharing counterparts

Share Regularizer λ τ
Target Actual Actual Top-1

FLOPs Ratio (%) FLOPs Ratio (%) Parameter Ratio (%) Error (%)

Yes `1 2−4 5−3 38 39.96 52.49 7.41

No `1 2−4 5−3 38 39.75 55.43 7.32

No `2,1 2−4 5−3 38 39.40 54.24 7.91

Yes `1 3−4 5−3 38 39.60 49.00 6.86

No `1 3−4 5−3 38 39.30 58.35 7.98

No `2,1 3−4 5−3 38 39.54 54.04 7.03

Yes `1 2−4 5−3 50 51.27 56.84 7.13

No `1 2−4 5−3 50 51.44 65.47 6.85

No `2,1 2−4 5−3 50 50.96 64.05 6.85

Yes `1 3−4 5−3 50 51.68 57.74 6.52

No `1 3−4 5−3 50 50.23 62.83 7.11

No `2,1 3−4 5−3 50 50.18 59.15 6.74

3 More Results

The ablation study on the latent vector sharing strategy is shown in Table S1.
As shown in the table, the latent vector sharing strategy outperforms the non-
sharing strategy consistently except for case λ = 2−4, τ = 5−3 and 50% target
FLOPs compression ratio. The inconsistency is largely due to the gap between
the actual parameter compression ratio of different strategies. Due to this fact,
various latent vector sharing rules are developed for easier and better automatic
network pruning.

The main paper utilizes `1 regularizer to sparsify the the latent vectors. We
tried to replace `1 regularizer with `2 regularizer and kept the same pruning
strategy. The experiments are conducted on ResNet. The comparison results are
shown in Table S2. Compared with `1 regularizer, slightly worse results can be
observed for `2 regularizer. For ResNet-110 and ResNet-164, `2 regularizer leads
to results comparable with `1 regularization but at a larger parameter budget.
When the regularizer is changed to `2, the proximal operator becomes

z[k + 1] =

(
1− λµ

max {‖z[k +∆]‖, λµ}

)
z[k +∆]. (S1)

By the formulation and experiments, `1 norm leads to faster convergence. To
have a reasonable convergence speed, the λ used for `2 regularizer is 20 times
larger than that for `1 regularizer.

More results on ResNet-110 and ResNet-164 are shown in Fig. S1. When the
compression ratio is not too severe (above 50%), the accuracy does not drop too



6 Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, Radu Timofte

Table S2. Comparison between `1 norm and `2 norm regularization. The experiments
are done on ResNet

Layer Regularizer Top1 Error FLOPs Params
20 `1 8.46 51.8 56.13

`2 8.66 51.59 54.19
110 `1 5.73 51.62 54.13

`2 5.77 51.37 72.37
164 `1 5.22 51.67 50.97

`2 5.18 50.87 60.66

20 40 60
FLOP Ratio (%)

5

6

7

8

9

T
op

-1
 E

rr
or

 R
at

e 
(%

)

ResNet-164 by DHP
ResNet-110 by DHP

(a) FLOP compression ratio.

20 40 60
Parameter Ratio (%)

5

6

7

8

9

T
op

-1
 E

rr
or

 R
at

e 
(%

)

ResNet-164 by DHP
ResNet-110 by DHP

(b) Parameter compression ratio.

Fig. S1. Top-1 error vs. FLOP and parameter compression ratio on ResNet-164 and
ResNet-110

much. The extreme compression prunes about 90% FLOPs and parameters of
the original network. For ResNet-164, the extreme compression only keeps 8.04%
parameters. Thus, the drop in the accuracy is reasonable.

References

1. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution:
Dataset and study. In: Proc. CVPRW (July 2017)

2. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity
single-image super-resolution based on nonnegative neighbor embedding. In: Proc.
BMVC (2012)

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proc. CVPR. pp. 770–778 (2016)

4. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected con-
volutional networks. In: Proc. CVPR. pp. 2261–2269 (2017)

5. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed
self-exemplars. In: Proc. CVPR. pp. 5197–5206 (2015)

6. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Tech. rep., Citeseer (2009)

7. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring
ecological statistics. In: Proc. ICCV. vol. 2, pp. 416–423 (July 2001)



DHP: Differentiable Meta Pruning via HyperNetworks 7

8. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-
representations. In: International Conference on Curves and Surfaces. pp. 711–730.
Springer (2010)


