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Abstract. This paper investigates the task of 2D human whole-body
pose estimation, which aims to localize dense landmarks on the entire
human body including face, hands, body, and feet. As existing datasets
do not have whole-body annotations, previous methods have to assemble
different deep models trained independently on different datasets of the
human face, hand, and body, struggling with dataset biases and large
model complexity. To fill in this blank, we introduce COCO-WholeBody
which extends COCO dataset with whole-body annotations. To our best
knowledge, it is the first benchmark that has manual annotations on
the entire human body, including 133 dense landmarks with 68 on the
face, 42 on hands and 23 on the body and feet. A single-network model,
named ZoomNet, is devised to take into account the hierarchical struc-
ture of the full human body to solve the scale variation of different body
parts of the same person. ZoomNet is able to significantly outperform
existing methods on the proposed COCO-WholeBody dataset. Extensive
experiments show that COCO-WholeBody not only can be used to train
deep models from scratch for whole-body pose estimation but also can
serve as a powerful pre-training dataset for many different tasks such as
facial landmark detection and hand keypoint estimation. The dataset is
publicly available at https://github.com/jin-s13/COCO-WholeBody.

Keywords: Whole-body human pose estimation, facial landmark de-
tection, hand keypoint estimation

1 Introduction

Human pose estimation has significant progress in the past few years. Recently,
a more challenging task called whole-body pose estimation is proposed and at-
tracts much attention. As shown in Fig. 1a., whole-body pose estimation aims
at localizing keypoints of body, face, hand, and foot simultaneously. This task
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Fig. 1: The proposed COCO-WholeBody dataset provides manual annotations
of dense landmarks on the entire human body including body, face, hands, and
feet. (a) visualizes an image as an example. The whole-body human pose esti-
mation is challenging because different body parts have different variations such
as scale. (b) shows that ZoomNet significantly outperforms the prior arts on this
challenging task. (c) and (d) show that existing facial/hand landmark estimation
algorithms can be improved by pretraining on COCO-WholeBody.

is important for the development of downstream applications, such as virtual
reality, augmented reality, human mesh recovery, and action recognition.

In recent years, deep neural networks (DNNs) become popular for keypoint
estimation. However, to our knowledge, existing datasets of human pose esti-
mation do not have manual annotations of the entire human body. Therefore,
previous works trained their models separately on different datasets of face, hand
and human body. For example, OpenPose [8] combines multiple DNNs trained
independently on different datasets, including one DNN for body pose estimation
on COCO [30], one DNN for face keypoint detection by combining many datasets
(i.e. Multi-PIE [14], FRGC [43] and i-bug [48]), and another DNN for hand key-
point detection on Panoptic [50]. These methods may have several drawbacks.
First, the data size of the current in-the-wild datasets of 2D hand keypoints is
limited. Most approaches of hand pose estimation have to use lab-recorded [55,
13] or synthetic datasets [33, 34, 49], hampering the performance of the existing
methods in real-world scenarios. Second, the variations such as illumination, pose
and scales in the existing human face [4, 25, 28, 32, 48, 67], hand [55, 13, 13, 33],
and body datasets [3, 2, 60, 30] are different, inevitably introducing dataset bi-
ases to the learned deep networks, thus hindering the development of algorithms
to comprehensively consider the task as a whole.
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To address the above issues, we propose a novel large-scale dataset for whole-
body pose estimation, named COCO-WholeBody, which fully annotates the
bounding boxes of face and hand, as well as the keypoints of face, hand, and
foot for the images from COCO [30]. To our knowledge, this is the first dataset
that has whole-body annotations. COCO-WholeBody enables us to take into ac-
count the hierarchical structure of the human body and the correlations between
different body parts to estimate the entire body pose. Therefore, it enables the
development of a more reliable human body pose estimator. In addition, it will
also stimulate productive research on related areas such as face and hand detec-
tion, face alignment and 2D hand pose estimation. The effectiveness of COCO-
WholeBody is validated by using cross-dataset evaluation, which demonstrates
that COCO-WholeBody can be used as a powerful pre-training dataset for var-
ious tasks, such as facial landmark localization and hand keypoint estimation.
We overview the cross-dataset evaluations as shown in Fig.1c., d.

The task of whole-body pose estimation has not been fully exploited in the
literature because of missing a representative benchmark. Previous works [7,
17] are mainly the bottom-up approaches, which simultaneously detect the key-
points for all persons in an image at once. They are generally efficient, however,
they might suffer from scale variance of persons, causing inferior performance for
small persons. Recent works [52, 63] found that the top-down alternatives would
have higher accuracy, because top-down methods normalize the human instances
to roughly the same scale and are less sensitive to the scale variance of different
human instances. However, to our knowledge, there is no existing top-down ap-
proach for whole-body pose estimation. With COCO-WholeBody, we are able to
fill in this blank by designing a top-down whole-body pose estimator. However,
predicting all the keypoints for whole-body pose estimation will lead to inferior
performance, because the scales of human body, face and hand are different. For
example, human body pose estimation requires a large receptive field to handle
occlusion and complex poses, while face and hand keypoint estimation requires
higher image resolution for accurate localization. If all the keypoints are treated
equally and directly predicted at once, the performance is suboptimal.

To solve this technical problem, we propose ZoomNet to effectively handle
the scale variance in whole-body pose estimation. ZoomNet follows the top-down
paradigm. Given a human bounding box of each person, ZoomNet first localizes
the easy-to-detect body keypoints and estimates the rough position of hands and
face. Then it zooms in to focus on the hand/face areas and predicts keypoints
using features with higher resolution for accurate localization. Unlike previous
approaches [7] which usually assemble multiple networks, ZoomNet has a single
network that is end-to-end trainable. It unifies five network heads including
the human body pose estimator, hand and face detectors, and hand and face
pose estimators into a single network with shared low-level features. Extensive
experiments show that ZoomNet outperforms the state-of-the-arts [7, 17] by a
large margin, i.e. 0.541 vs 0.338 [7] for whole-body mAP on COCO-WholeBody.

Our major contributions can be summarized as follows. (1) We propose the
first benchmark dataset for whole-body human pose estimation, termed COCO-
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Table 1: Overview of some popular public datasets for 2D keypoint estimation in
RGB images. Kpt stands for keypoints, and #Kpt means the annotated number.
“Wild” denotes whether the dataset is collected in-the-wild. * means head box.

DataSet Images #Kpt Wild Body Hand Face Body Hand Face Total
Box Box Box Kpt Kpt Kpt Instances

MPII [3] 25K 16 X X * X 40K
MPII-TRB [10] 25K 40 X X * X 40K
CrowdPose [29] 20K 14 X X X 80K
PoseTrack [2] 23K 15 X X X 150K

AI Challenger [60] 300K 14 X X X 700K
COCO [30] 200K 17 X X * X 250K

OneHand10K [59] 10K 21 X X X -
SynthHand [34] 63K 21 X X -

RHD [68] 41K 21 X X -
FreiHand [69] 130K 21 X -

MHP [13] 80K 21 X X -
GANerated [33] 330K 21 X -
Panoptic [50] 15K 21 X X -
WFLW [61] 10K 98 X X X -
AFLW [25] 25K 19 X X X -
COFW [5] 1852 29 X X X -
300W [48] 3837 68 X X X -

COCO-WholeBody 200K 133 X X X X X X X 250K

WholeBody, which encourages more exploration of this task. To evaluate the
effectiveness of COCO-WholeBody, we extensively examine the performance of
several representative approaches on this dataset. Also, the generalization abil-
ity of COCO-WholeBody is validated by cross-dataset evaluations, showing that
COCO-WholeBody can serve as a powerful pre-training dataset for many tasks,
such as facial landmark localization and hand keypoint estimation. (2) We pro-
pose a top-down single-network model, ZoomNet to solve the scale variance of
different body parts in a single person. Extensive experiments show that the
proposed method significantly outperforms previous state-of-the-arts.

2 Related Work

2.1 2D Keypoint Localization Dataset

As shown in Table 1, there are many datasets separately annotated for localizing
the keypoints of body [2, 3, 11, 30, 60], hand [13, 33, 50, 55, 65] or face [4, 25, 28,
32, 48, 67]. These datasets are briefly discussed in this section.

Body Pose Dataset. There have been several body pose datasets [2, 3, 10,
29, 30, 60]. COCO [30] is one of the most popular, which offers 17-keypoint an-
notations in uncontrolled conditions. Our COCO-WholeBody is an extension of
COCO, with densely annotated 133 face/hand/foot keypoints. The task of whole-
body pose estimation is more challenging, due to 1) higher localization accuracy
required for face/hands and 2) scale variance between body and face/hands.

Hand Keypoint Dataset. Most existing 2D RGB-based hand keypoint
datasets are either synthetic [33, 68] or captured in the lab environment [13, 50,
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69]. For example, Panoptic [50] is a well-known hand pose estimation dataset,
recorded in the CMU’s Panoptic studio with multiview dome settings. However,
it is limited to a controlled laboratory environment with a simple background.
OneHand10K [59] is a recent in-the-wild 2d hand pose dataset. However, the size
is still limited. Our COCO-WholeBody is complementary to these RGB-based
hand keypoint datasets. It contains about 100K 21-keypoint labeled hands and
hand boxes that are captured in unconstrained environment. To the best of our
knowledge, it is the largest in-the-wild dataset for 2D RGB-based hand keypoint
estimation. It is very challenging, due to occlusion, hand-hand interaction, hand-
object interaction, motion blur, and small scales.

Face Keypoint Dataset. Face keypoint datasets [5, 25, 48, 61] play a cru-
cial role for the development of facial landmark detection a.k.a. face alignment.
Among them, 300W [48] is the most popular. It is a combination of LFPW [4],
AFW [67], HELEN [28], XM2VTS [32] with 68 landmarks annotated for each
face image. Our proposed COCO-WholeBody follows the same annotation set-
tings as 300W and 68 keypoints for each face are annotated. Compared to 300W,
COCO-WholeBody is much larger and is more challenging as it contains more
blurry and small-scale facial images (see Fig 5a.).

DensePose Dataset. Our work is also related to DensePose [1] which pro-
vides a dense 3D surface-based representation for human shape. However, since
the keypoints in DensePose are uniformly sampled, they lack specific joint artic-
ulation information and details of face/hands are missing.

2.2 Keypoints Localization Method

Body Pose Estimation. Recent multi-person body pose estimation approaches
can be divided into bottom-up and top-down approaches. Bottom-up approaches [8,
19–23, 36, 38, 40, 44] first detect all the keypoints of every person in images and
then group them into individuals. Top-down methods [9, 12, 16, 31, 37, 41, 52, 63]
first detect the bounding boxes and then predict the human body keypoints in
each box. By resizing and cropping, top-down approaches normalize the poses to
approximately the same scale. Therefore, they are more robust to human-level
scale variance and recent state-of-the-arts are obtained by top-down approaches.
However, direct usage of the top-down methods for whole-body pose estima-
tion will encounter the problem of scale variance of different body parts (body
vs face/hand). To tackle this problem, we propose ZoomNet, a single-network
top-down approach that zooms in to the hand/face regions and predicts the
hand/face keypoints using higher image resolution for accurate localization.

Face/Hand/Foot Keypoint Localization. Previous works mostly treat
the tasks of face/hand/foot keypoint localization independently and solve by
different models. For facial keypoint localization, cascaded networks [6, 54, 57,
64] and multi-task learning [56, 66] are widely adopted. For hand keypoint esti-
mation, most work rely on auxiliary information such as depth information [39,
49, 51] or multi-view [15, 35] information. For foot keypoint estimation, Cao et
al. [7] proposed a generic bottom-up method. In this paper, we propose ZoomNet
to solve the tasks of face/hand/foot keypoint localization as a whole. It takes
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Fig. 2: Annotation examples for face/hand keypoints in COCO-WholeBody.

into account the inherent hierarchical structure of the full human body to solve
the scale variation of different parts in the same person.

Whole-Body Pose Estimation. Whole-body pose estimation has not been
well studied in the literature due to the lack of a representative benchmark.
OpenPose [7, 8, 50] applies multiple models (body keypoint estimator) to han-
dle different kinds of keypoints. It first detects body and foot keypoints, and
estimates the hand and face position. Then it applies extra models for face and
hand pose estimation. Since OpenPose relies on multiple networks, it is hard to
train and suffers from increased runtime and computational complexity. Unlike
OpenPose, our proposed ZoomNet is a “single-network” method as it integrates
five previously separated models (human body pose estimator, hand/face de-
tectors, and hand/face pose estimators) into a single network with shared low-
level features. Recently, Hidalgo et al. proposes an elegant method SN [17] for
bottom-up whole-body keypoint estimation. SN is based on PAF [8] which pre-
dicts the keypoint heatmaps for detection and part affinity maps for grouping.
Since there exists no such dataset with whole-body annotations, they used a
set of different datasets and carefully designed the sampling rules to train the
model. However, bottom-up approaches cannot handle scale variation problem
well and would have difficulty in detecting face and hand keypoints accurately. In
comparison, our ZoomNet is a top-down approach that well handles the extreme
scale variance problem. Recent works [24, 46, 62] also explore the task of monoc-
ular 3D whole-body capture. Romero et al. proposes a generative 3D model [46]
to express body and hands. Xiang et al. introduces a 3D deformable human
model [62] to reconstruct whole-body pose and Joo et al. presents Adam [24]
which encompasses the expressive power for body, hands, and facial expression.
Their methods still rely on OpenPose [7] to localize 2d body keypoints in images.

3 COCO-WholeBody Dataset

COCO-WholeBody is the first large-scale dataset with the whole-body pose an-
notation available, to the best of our knowledge. In this section, we will describe
the annotation protocols and some informative statistics.

3.1 Data Annotation

We annotate the face, hand and foot keypoints on the whole train/val set of
COCO [30] dataset and form the whole-body annotations with the original
body keypoint labels together (see Fig. 2). For each person, we annotate 4 types
of bounding boxes (person box, face box, left-hand box, and right-hand box)
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(a) (b)

Fig. 3: (a) COCO-WholeBody annotation for 133 keypoints. (b)Statistics of
COCO-WholeBody. The number of annotated keypoints and boxes of left hand
(lhand), right hand (rhand), face and body are reported.

and 133 keypoints (17 for body, 6 for feet, 68 for face and 42 for hands). The
face/hand box is defined as the minimal bounding rectangle of the keypoints. The
keypoint annotations are illustrated in Fig. 3a. The face/hand boxes are labeled
as valid, only if the face/hand images are clear enough for keypoint labeling. In-
valid boxes may be blurry or severely occluded. We only label keypoints for valid
boxes. Manual annotation for whole-body poses in an uncontrolled environment,
especially for massive and dense hand and face keypoints, requires trained ex-
perts and enormous workload. As a rough estimate, the manual labeling cost of
a professional annotator is up to: 10 min/face, 1.5 min/hand, and 10 sec/box.
To speed up the annotation process, we follow the semi-automatic methodology
to use a set of pre-trained models (for face and hand separately) to pre-annotate
and then conduct manual correction. Foot keypoints are directly manually la-
beled, since its labeling cost is relatively low. Specifically, the annotation process
contains the following steps:

1. For each individual person, we manually label the face box, the left-hand
box, and the right-hand box. The validity of the boxes is also labeled.

2. Quality control. The annotation quality of the boxes is guaranteed through
the strict quality inspection performed by another group of the annotators.

3. For each valid face/hand box, we use pre-trained face/hand keypoint detec-
tors to produce pseudo keypoint labels. We use a combination of the publicly
available datasets to train a robust face keypoint detector and a hand key-
point detector based on HRNetV2 [52].

4. Manual correction of pseudo labels and further quality control. About 28%
of the hand keypoints and 6% of the face keypoints are labeled as invalid
and manually corrected by human annotators. By using the semi-automatic
annotation, we saw about 89% reduction in the time required for annotation.
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Fig. 4: (a) The normalized standard deviation of manual annotation for each
keypoint. Body keypoints have larger manual annotation variance than face and
hand keypoints. (b) An example of error diagnosis results of ZoomNet for whole-
body pose estimation: jitter, inversion, swap and missing.

To measure the annotation quality, we also had 3 annotators to label the same
batch of 500 images for face/hand/foot keypoints. The standard deviation of the
human annotation is calculated for each keypoint (see Fig. 4a.), which is used to
calculate the normalized factor of whole-body keypoint for evaluation. For “body
keypoints”, we directly use the standard deviation reported in COCO [30].

3.2 Evaluation Protocol and Evaluation Metrics

The evaluation protocol of whole-body pose estimation follows the current prac-
tices in the literature [30, 60]. All algorithms are trained on COCO-WholeBody
training set and evaluated on COCO-WholeBody validation set. We use mean
Average Precision (mAP) and Average Recall (mAR) for evaluation, where Ob-
ject Keypoint Similarity (OKS) is used to measure the similarity between the
prediction and the ground truth poses. Invalid boxes and keypoints are masked
out during both training and evaluation, thus not affecting the results. The ig-
nored regions are masked out, and only visible keypoints are considered during
evaluation. As shown in Fig. 4b., we also develop a tool for deeper performance
analysis based on [47] which will be provided to facilitate offline evaluation.

3.3 Dataset Statistics

Dataset Size. COCO-WholeBody is a large-scale dataset with keypoint and
bounding box annotations. The number of annotated keypoints as well as boxes
of left hand (lhand), right hand (rhand), face and body are shown in Fig. 3b.
About 130K face and left/right hand boxes are labeled, resulting in more than
800K hand keyponits and 4M face keypoints in total.

Scale Difference. Distribution of the average keypoint distance of different
parts in WholeBody Dataset is summarized in Fig. 5a. We calculate the dis-
tance between keypoint pairs in the tree-structured skeleton. Hand/face have
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Fig. 5: COCO-WholeBody is challenging as it contains (a) large “scale variance”
of body/face/hand, measured by the average keypoint distance, (b) more blurry
face images than 300W and (c) more complex hand poses than Panoptic.

obviously much smaller scales than body. The various scale distribution makes
it challenging to localize keypoints of different human parts simultaneously.

Facial Image “Blurriness”. Face image “blurriness” is a key factor for
facial landmark localization. We choose a variation of the Laplacian method [42]
to measure it. Specifically, an image is first converted into a grayscale image
and resized into 112× 112. The log10 of the Laplacian of the converted image is
used as the “blurriness” measurement (the higher the better). The distribution
of the blurriness is shown in Fig. 5b. We find that most facial images fall in the
interval between 1 and 3 and are clear enough for accurate keypoint localization.
Compared with 300W [48], WholeBody has a larger variance of blurriness and
contains more challenging images (blurriness < 1).

Gesture Variances for Hands. We first normalize the 2D hand poses by
rotating and scaling and then cluster them into three main categories: “fist”,
“palm” and “others”. Unlike most previous hand datasets that are collected in
constrained environments, our WholeBody-Hand is collected in-the-wild. Com-
pared with Panoptic [13], WholeBody-Hand is more challenging as it contains a
larger proportion of hand images grasping or holding objects.

Overall, COCO-WholeBody is a large-scale dataset with great diversity, which
will not only promote researches on the whole-body pose estimation but also
contribute to other related areas, such as face and hand keypoint estimation.

4 ZoomNet: Whole-Body Pose Estimation

In this section, we will introduce our whole-body pose estimation pipeline. Given
an RGB image, we follow [63, 52] to use an off-the-shelf FasterRCNN [45] hu-
man detector to generate human body candidates. For each human body candi-
date, ZoomNet localizes the whole-body keypoints. As shown in Fig. 6, ZoomNet
predicts body/foot keypoints and face/hand keypoints successively in a single
network, consisting of the following submodules:

FeatureNet: the input image is processed by FeatureNet to extract shared
features (F1 and F2). It consists of two convolutional layers, each of which
downsamples the corresponding input to 1/2 resolution, and a bottleneck block
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Fig. 6: ZoomNet is a single-network model, which consists of FeatureNet, Bo-
dyNet and Face/HandHead. FeatureNet extracts low-level shared features for
BodyNet and Face/HandHead. BodyNet predicts body/foot keypoints and the
approximate regions of face/hands, while Face/HandHead zooms in to these
regions and predict face/hand keypoints with features of higher resolution.

for effective feature learning. The input image size is 384× 288 and the output
feature map sizes for F1 and F2 are 192× 144 and 96× 72, respectively.

BodyNet: using the features extracted from FeatureNet, BodyNet predicts
body/foot keypoints and face/hand bounding boxes at the same time. Each
bounding box is represented by four corner points and one center point. In total,
38 keypoints are generated for each person simultaneously. BodyNet is a multi-
resolution network with 38 output channels.

HandHead and FaceHead: Using face and hand bounding boxes predicted
by BodyNet, we crop the features in the corresponding areas from F1 and F2.
The features from F1 are resized to 64 × 64 and those from F2 are resized to
32× 32. Then HandHead and FaceHead are applied to predict the heatmaps of
face/hand keypoints with the output resolution of 64× 64 in parallel.

ZoomNet can be based on any state-of-the-art network architecture. In our
implementation, we choose HRNet-W32 [52] as the backbone of BodyNet and
HRNetV2p-W18 [53] as the backbone of FaceHead/HandHead. Please refer to
Supplementary for more implementation details.

4.1 Localizing body keypoints and face/hand boxes with BodyNet

Our face/hand box localization is inspired by CornerNet [27], which represents
the object with keypoint pairs and designs a one-stage keypoint-based detector.
In our case, each person has three types of bounding boxes to predict: the face
box, the left-hand box, and the right-hand box. Four corner points and one center
point are used to represent a box. We use 2D confidence heatmaps to encode
both the human body keypoints and the corner keypoints. During inference, the
bounding box is obtained by the closest bounding box of the 4 corner points.

4.2 Face/hand keypoint estimation with HandHead and FaceHead

Given the face/hand bounding boxes predicted by BodyNet, RoIAlign [16] is
applied to extract the features of the face/hand areas from the feature maps
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F1 and F2 of FeatureNet. The corresponding visual features are cropped and
up-scaled to a higher resolution. With the extracted features, HandHead and
FaceHead are used for face and hand keypoint estimation. HandHead and Face-
Head use the same network architecture (HRNet-W18). The features extracted
by RoIAlign are processed by the HandHead and FaceHead separately. In this
way, we are able to preserve the high-resolution for the hand/face regions, and
larger receptive fields for body keypoint estimation at the same time.

5 Experiments

5.1 Evaluation on COCO-WholeBody Dataset

To the best of our knowledge, there are only two existing approaches that target
at the 2D whole-body pose estimation task, i.e. OpenPose [7] and SN [17]. To
extensively evaluate the performance of the existing methods on the proposed
COCO-WholeBody Dataset, we also build upon the existing multi-person human
body pose estimation approaches, including both bottom-up (i.e. Partial Affinity
Field (PAF) [8] and Associate Embedding (AE) [36]) and top-down methods
(i.e. HRNet [52]), and adapt them to the more challenging whole-body pose
estimation task using official codes (see Supplementary for more details). For
fair comparisons, we retrain all methods on COCO-WholeBody and evaluate
their performance with single-scale testing as shown in Table 2. We show that
our proposed ZoomNet outperforms them by a large margin.

Among these methods, SN [17], PAF [8], AE [36] and HRNet [52] follow a one-
stage paradigm and predict all the keypoints simultaneously. Interestingly, we
find that in the task of whole-body pose estimation, directly learning to predict
all 133 keypoints simultaneously, including body, face, hand keypoints, may harm
the original body keypoint estimation accuracy. In Table 2, “-body” means that
we only train the model on the original COCO-body keypoint (17 keypoints).
We compare the body keypoint estimation results of the model learning the
whole-body keypoints versus the model learning the body keypoints only. We
observe considerable accuracy decrease by comparing PAF vs PAF-body (-14.3%
mAP and -14.2% mAR), AE vs AE-body(-17.7% mAP and -17.0% mAR) and
HRNet vs HRNet-body(-9.9% mAP and -10.0% mAR). In comparison, our pro-
posed ZoomNet uses a two-stage framework, which decouples the body keypoint
estimation and face/hand keypoint estimation. The accuracy of body keypoint
estimation is less affected (-1.5% mAP and -0.7% mAR).

HRNet [52] can be viewed as the one-stage alternative of ZoomNet, since they
share the same network backbone (HRNet-W32). ZoomNet significantly outper-
forms HRNet by 10.9% mAP and 13.8% mAR, demonstrating the effectiveness
of the “zoom-in” design for solving the scale variation.

OpenPose [7] is a multi-model approach, where the hand/face model and the
body model are not jointly trained, leading to sub-optimal results. In addition,
the hand/face boxes of OpenPose are roughly estimated by hand-crafted rules
from the estimated body keypoints. Therefore, the accuracy of the hand/face
boxes is limited, which will hinder hand/face pose estimation.
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Table 2: Whole-body pose estimation results on COCO-WholeBody dataset. For
fair comparisons, results are obtained using single-scale testing.

Method body foot face hand whole-body
AP AR AP AR AP AR AP AR AP AR

OpenPose [7] 0.563 0.612 0.532 0.645 0.482 0.626 0.198 0.342 0.338 0.449
SN [17] 0.280 0.336 0.121 0.277 0.382 0.440 0.138 0.336 0.161 0.209
PAF [8] 0.266 0.328 0.100 0.257 0.309 0.362 0.133 0.321 0.141 0.185
PAF-body [8] 0.409 0.470 - - - - - - - -
AE [36] 0.405 0.464 0.077 0.160 0.477 0.580 0.341 0.435 0.274 0.350
AE-body [36] 0.582 0.634 - - - - - - - -
HRNet [52] 0.659 0.709 0.314 0.424 0.523 0.582 0.300 0.363 0.432 0.520
HRNet-body [52] 0.758 0.809 - - - - - - - -
ZoomNet 0.743 0.802 0.798 0.869 0.623 0.701 0.401 0.498 0.541 0.658

Model complexity analysis. The model complexity of ZoomNet is 27.36G
Flops. By contrast, the model complexity of OpenPose [7] is 451.09G Flops in
total (137.52G for BodyNet, 106.77G for FaceNet and 103.40 × 2 = 206.80G
for HandNet), and that of SN [17] is 272.30G Flops. We also report the aver-
age runtime cost on COCO-WholeBody on one GTX-1080 GPU. SN is about
215.5ms/image, while ZoomNet is about 174.7ms/image on average (including
a Faster RCNN human detector which takes about 106ms/image).

5.2 Cross-dataset Evaluation

In this section, we show that the proposed COCO-WholeBody is complementary
to other separately labeled benchmarks by evaluating its generalization ability.

WholeBody-Face (WBF) Dataset. We build WholeBody-Face (WBF)
by extracting cropped face images/annotations from COCO-WholeBody. We
conduct experiments on 300W [48] benchmark. We follow the common set-
tings [53] to train models on 3,148 training images, validate on the “common”
set and evaluate on the “challenging”, “full” and “test” sets. We use the nor-
malized mean error (NME) for evaluation and inter-ocular distance as normal-
ization. The results are shown in Table 3a. HR-Ours is our implementation of
HRNetV2-W18 [53] (HR). ∗HR-Ours is obtained by training HR on WBF only
and directly testing on 300W, which already outperforms RCN [18]. After fine-
tuning on 300W, it gets significantly better performance on “challenging” (4.73
vs 5.15), “full” (3.21 vs 3.33) and “test” (3.68 vs 3.91) than the prior arts.

WholeBody-Hand (WBH) Dataset. For hand pose estimation, we ex-
periment with HRNetV2-W18 (HR) on CMU Panoptic [50] (Pano.), which is a
standard benchmark for hand keypoint localization. We randomly split Pano [50]
by a rule of 70%-30% for training and validation. We report both the end-point-
error (EPE) and the normalized mean error (NME) for evaluation. In NME, the
hand bounding box is used as normalization. As shown in Table 3b, we analyze
the generalization ability of WholeBody-Hand (WBH) by comparing the (1) HR
trained on Pano., (2) HR pretrained on WBH and then finetuned on Pano.,
(3) HR trained on WBH, and (4) HR pretrained on Pano. and then finetuned
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Table 3: (a) Facial landmark localization (NME) on 300W: “common” (for val),
“challenging”, “full” and “test”. ∗ means only training on WBF. ↓ means lower is
better. (b) Cross-dataset evaluation results of HR. Different training and testing
settings are evaluated on two datasets: WBH and Panoptic (Pano.) [50].

extra. comm. ↓ chall. ↓ full ↓ test ↓

RCN [18] - 4.67 8.44 5.41 -

DAN [26] - 3.19 5.24 3.59 4.30

DCFE [58] w/3D 2.76 5.22 3.24 3.88

LAB [61] w/B 2.98 5.19 3.49 -

HR [53] - 2.87 5.15 3.32 3.85
∗HR-Ours - 4.61 7.50 5.17 5.66

HR-Ours - 2.89 5.15 3.33 3.91

HR-Ours WBF 2.84 4.73 3.21 3.68

(a)

# Train-set Test-set EPE ↓ NME ↓

1 Pano. Pano. 7.49 0.68

2 WBH ⇒ Pano. Pano. 7.00 0.63

3 WBH WBH 2.76 6.66

4 Pano. ⇒ WBH WBH 2.70 6.49

(b)

on WBH. Comparing #1 and #2, we observe that pretraining on WBH brings
about 6.5% improvement (from 7.49 to 7.00) in EPE on Pano. Comparing #1
and #3, we find that WBH vs Pano. is (6.66 vs 0.68) NME and (2.76 vs 7.49)
EPE, when training/testing on its own dataset. This implies that the proposed
WBH is much more challenging and that hand scales in WBH are smaller.

5.3 Analysis

Effect of the bounding box accuracy on the keypoint estimation. We ex-
periment by replacing our predicted face/hand bounding boxes with the ground-
truth bounding boxes and re-run our FaceHead/HandHead of ZoomNet to ob-
tain the final face/hand keypoint detection result. As shown in table 4a, us-
ing ground truth bounding boxes (Oracle) significantly improves the mAP of
face/hand/whole-body by 19.6%, 8.4% and 23.6% respectively.

Effect of the person scale on whole-body pose estimation. As shown
in Table 4b, we investigate the effect of person scales. Interestingly, for bottom-
up whole-body methods (PAF, SN and AE), the mAP for medium scale is worse
than that of large scale, since they are more sensitive to the scale variance and
are difficult in detecting smaller-scale people. For top-down approaches such as
HRNet and ZoomNet, mAP for medium scale is better, since larger-scale person
requires relatively more accurate keypoint localization. For ZoomNet, the gap
between the medium and large person scale is about 7.5% mAP and 4.2% mAR.

Effect of blurriness and poses on facial landmark detection. In Ta-
ble. 5, we evaluate the performance on different levels of image blurriness and
facial poses (yaw angles) on WBF. The model is significantly affected by image
blur (2.51 vs 19.13), while more robust to different face poses (9.02 vs 13.77).

Effect of hand poses on hand keypoint estimation. As shown in Ta-
ble. 5, we evaluate the performance on different hand poses (fist, palm or others)
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Table 4: Effect of bounding box accuracy on keypoint estimation, where Oracle
means using gt boxes. (b) Effect of person scales on whole-body pose estimation.

Method face hand whole-body

AP AR AP AR AP AR

Oracle 0.819 0.854 0.485 0.578 0.777 0.856

Ours 0.623 0.701 0.401 0.498 0.541 0.658

(a)

Method mAP mAR

medium large medium large

PAF [8] 0.100 0.220 0.113 0.284

SN [17] 0.117 0.252 0.132 0.315

AE [36] 0.190 0.401 0.241 0.499

OpenPose [7] 0.398 0.302 0.425 0.484

HRNet [52] 0.471 0.410 0.538 0.497

Ours 0.594 0.519 0.677 0.635

(b)

Table 5: left: Effect of blurriness/poses on facial landmark detection (NME) on
WholeBody-Face (WBF). right: Effect of hand poses on hand keypoint estima-
tion (NME) on WholeBody-Hand (WBH).

WBF (NME ↓) WBH (NME ↓)
Blurriness Yaw Angles Pose

< 1 1− 2 2− 3 > 3 ALL < 15◦ 15◦ − 30◦ 30◦ − 45◦ > 45◦ ALL fist palm others ALL

19.13 10.85 4.91 2.51 10.17 9.02 10.56 12.10 13.77 10.17 6.09 7.10 6.33 6.66

on WBH (NME). We show that estimating the poses of “palm” or “others” (with
various gestures) is more challenging than that of “fist” (with similar patterns).

6 Conclusion

In this paper, we proposed the first large-scale benchmark for whole-body human
pose estimation. We extensively evaluate the performance of the existing ap-
proaches on our proposed COCO-WholeBody Dataset. Cross-dataset evaluation
also demonstrates the generalization ability of the proposed dataset. Moreover,
to solve the problem of extreme scale difference among body parts, ZoomNet
is proposed to pay more attention to the hard-to-detect face/hand keypoints.
Experiments show that ZoomNet significantly outperforms the prior arts.
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