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Abstract. In recent years, Deep Neural Networks (DNN) have empow-
ered Compressed Sensing (CS) substantially and have achieved high re-
construction quality and speed far exceeding traditional CS methods.
However, there are still lots of issues to be further explored before it
can be practical enough. There are mainly two challenging problems in
CS, one is to achieve efficient data sampling, and the other is to re-
construct images with high-quality. To address the two challenges, this
paper proposes a novel Runge-Kutta Convolutional Compressed Sens-
ing Network (RK-CCSNet). In the sensing stage, RK-CCSNet applies
Sequential Convolutional Module (SCM) to gradually compact measure-
ments through a series of convolution filters. In the reconstruction stage,
RK-CCSNet establishes a novel Learned Runge-Kutta Block (LRKB)
based on the famous Runge-Kutta methods, reformulating the process
of image reconstruction as a discrete dynamical system. Finally, the im-
plementation of RK-CCSNet achieves state-of-the-art performance on
influential benchmarks with respect to prestigious baselines, and all the
codes are available at https://github.com/rkteddy/RK-CCSNet.

Keywords: Compressed Sensing; Convolutional Sensing; Runge-Kutta
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1 Introduction

Compressed Sensing (CS) [5] is a prominent technique that combines sensing
and compression together at the hardware level, and can ensure high-fidelity
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1.5625 % 6.2500 % 12.5000 % Ground Truth

Fig. 1. This figure shows the test results of the proposed RK-CCSNet on BSDS100 [1]
in different sampling ratios. Note that almost perfect visual effect is achieved when the
sampling ratio is 6.2500%, which implies that our model is capable of reconstructing
high-quality images even in low sampling ratios

reconstruction from limited observations received. In the CS framework, signals
are acquired by linear projection, which is proved to have the ability to preserve
most of the features in a few measurements if the sensing matrices satisfy the
Restricted Isometry Property (RIP) [3]. Compared with Nyquist’s theory, this
method uses the sparse nature of the signal to restore the almost perfect original
one from a much smaller number of measurements, leading to large reduction
in the cost of sensing, storing and transmitting. Several applications such as
Single Pixel Camera (SPC) [7], Hyperspectral Compressive Imaging (HCI) [2],
Compressive Spectral Imaging System [9], High-Speed Video Camera [13], and
CS Magnetic Resonance Imaging (MRI) system [21] have been introduced and
implemented. Taking SPC as an example, it uses only a number of single-pixel
signals in each shot, and merely a few shots are integrated to reconstruct the
original image in the receiving end. Therefore, before decompressing images, the
amount of signals needed is much smaller and thus is conducive to long-distance
transmission.

Over the years, a great deal of CS algorithms have been proposed such as
Orthogonal Matching Pursuit (OMP) [31], Basis Pursuit (BP) [4] and Total
Variance minimization by Augmented Lagrangian and ALternating direction
ALgorithms (TVAL3) [19]. For instance, Zhang et al. [34] proposed a Group
Sparse Representation (GSR) method to enhance both image sparseness and
non-local self-similarity. But the common weaknesses of them are that they all
demand high computational overhead and perform poorly at low sampling ratios
(especially when the measurement is lower than 10%). With the rapid develop-
ment of deep learning, researchers were inspired to use new end-to-end models
to develop algorithms in CS, called Deep Compressed Sensing (DCS). These
algorithms do not use the prior knowledge of any signal, but are fed a large
number of training data for neural networks instead. The linear sensing module
and reconstruction module form an Auto-Encoder structure [25]. Through end-
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to-end training, both sensing module and reconstruction module can be jointly
optimized. Pure data-driven optimization learns how to make the best of the
data structure to speed up the reconstruction process.

There are two challenges in DCS: the linear encoding and the non-linear re-
construction, respectively. For the former one, traditional CS algorithms usually
apply hand-designed models according to the nature of the data. However, gen-
eral DCS models treat the sparse transformation with a fully connected layer,
which contains no priors and thus is hard to learn a concise embedding. Since
convolution can be an efficient prior that can well describe the structural fea-
tures of images, and can be easily combined with DCS, we replace the fully
connected layer with continuous convolutions (for linear observations, there are
no activation after every convolutional layer), named Sequential Convolutional
Module (SCM). For the latter one, the main approaches are to develop a pow-
erful reconstruction module with elaborate structures. According to the recent
studies on the relationship between ODE [26] and ResNet [11], the conventional
residual architecture with simple skip connections can be seen as an approxima-
tion of the forward Euler method [26], a simple numerical method. Accordingly,
we introduce a novel architecture called Learned Runge-Kutta Block (LRKB)
originating from Runge-Kutta methods [26], the higher-order numerical schemes
than the forward Euler method.

The main contributions of the paper are summarized as follows:

1. We propose a SCM for image CS, which applies local connectivity priors
during the sensing stage. SCM is empirically proved to have the ability to
preserve spatial features and thus avoid block artifacts and high frequency
noise in the final reconstruction.

2. We further develop a novel LRKB to achieve higher reconstruction quality,
by reformulating the process of image reconstruction as a discrete dynamical
system. Hence we can adopt highly efficient algorithms from ODE such as
Runge-Kutta methods [26], which can offer higher order of accuracy for
numerical solutions.

3. An end-to-end Runge-Kutta Convolutional Compressed Sensing Network
(RK-CCSNet) is introduced to encapsulate the two modules above, resulting
in a novel end-to-end structure. And the implementation of RK-CCSNet are
extensively evaluated on influential benchmarks, achieving state-of-the-art
performance with respect to prestigious baselines.

The paper is structured as follows. We will present preliminaries in the next
section, followed by the section to detail the proposed RK-CCSNet, and then
comes the section for empirical and comparative studies on different benchmarks
compared with influential models. And we will conclude the paper in the last
section.
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2 Preliminaries

2.1 Compressed Sensing

CS [5] is a signal acquisition and manipulation paradigm consisting of sensing
and compressing simultaneously, which leads to significant reduction in compu-
tational cost. Given a high-dimensional signal x ∈ RN , the compressive measure-
ment y ∈ RM about x can be obtained by y = Φx, where Φ ∈ RM×N (M � N)
denotes the sensing matrix. The aim of CS is to reconstruct the original signal
x from a much lower dimensional measurement y.

2.2 Data-driven Methods for Image Compressed Sensing

Inspired by the great success of DNN in representation learning, Mousavi et al.
[24] designed a new measurement and signal reconstruction framework. Stacked
Denoising Autoencoders (SDA) is used as an self-supervised feature learner in
the reconstruction network to obtain the statistical correlation between differ-
ent elements of signals and improve the performance of signal reconstruction.
And Kulkarni et al. introduced ReconNet [17], which takes image reconstruc-
tion as a task similar to super-resolution, with Convolutional Neural Networks
(CNN) to carry out pixel-wise mapping. Later, Mousavi et al. [22] argued that
the real-world data is not completely sparse on a fixed basis, and moreover the
traditional reconstruction algorithms take a lot of time to converge. And they
proposed DeepInverse that utilizes Fully Convolutional Networks (FCN) [27] to
recover the original image, which is able to learn a structured representation
from training data. And Yao et al. [33] presented DR2Net that applied resid-
ual architecture to further improve the reconstruction quality. And Xu et al.
[32] used multiple stages of reconstructive adversarial networks through Lapla-
cian pyramid architecture to achieve high-quality image reconstruction. And Shi
et al. put forward CSNet [30] and CSNet+ [29] to further improve the recon-
struction quality. Most recently, Shi et al. [28] tried to solve the problem that
different models should be trained in different sampling ratios by introducing
a Scalable Convolutional Neural Network (SCSNet). Parallel convolutions were
applied in sensing stage [23] to avoid block-based sensing for better adaptability
to different signals like Fourier signals. However, these methods do not make any
assumptions about the data (i.e., the natural images), which is very essential to
obtain low dimensional embeddings for a specific type of data. And recently it
was proposed to use convolution as measurement matrix in [6], in which there is
only one convolutional layer, not enough to capture the hierarchical structures.

2.3 Residual Neural Network

The Residual Neural Network (ResNet) was first presented in [11], which intro-
duced the identity skip connection that allows data to flow directly to subsequent
layers, bypassing residual layers. Generally, a residual block can be written as:
yn+1 = yn +F (yn). Skip connection brings shortcut into neural networks, which
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propagates the gradients in a more efficient way, making it possible to build a
much deeper neural network without gradient vanishing, and thus can obtain
impressive performance in many image tasks. ResNet and its variants [15] have
been widely used in different applications besides computer vision.

2.4 ResNet and ODEs

Taking x as the time variable, a first-order dynamical system has the form [18]:
y′(x) = F (x, y(x)) and y′(x) = y′ = dy

dx where y is a dependent variable of the
changing system state. This ODE describes the process of a system change, in
which the rate of change is a function of current time x and system state y.
When the initial value satisfies: y(x0) = y0, this is called the Initial Value Prob-
lem (IVP) [18]. Euler method [18] is a first-order numerical method for IVP,
including forward Euler method, backward Euler method and improved Euler
method. Forward Euler method approximates the system change by truncating
Taylor series and integral as: yn+1 = yn + hF (xn, yn) and h = xn+1− xn, which
has the similar form to a basic block of ResNet. Over the past few years, this
link between residual connection and ODEs has been widely discussed by some
literature [8, 20]. It leads to a novel perspective that the neural network can be
reformulated as a discrete sequence of a time-dependent dynamical system, pro-
viding good theoretical guidance for the design of neural network architectures.
And conventional residual architectures have been used in many DCS models
and have gained substantial effects [33, 29, 28].

As forward Euler method is just the first-order numerical solution of ODEs,
we can naturally think of building a more accurate neural network with higher-
order numerical approaches such as Runge-Kutta methods [26]. This motivates
us to build a residual architecture with LRKB, to achieve higher precision for
image reconstruction.

3 The Proposed Model

3.1 Sequential Convolutional Module

C H W

Block

c h w

Measurements

Depth-wise Convolution

C H W

Initial Reconstruction

Pixel ShuffleSequential Convolutional Module

Fig. 2. Sequential Convolutional Module (SCM)



6 R. Zheng et al.

Conventional sensing modules consist of a single fully connected layer to
replace the sensing matrix which projects the original image into a measurement
of much lower dimension linearly. Here, instead of standard sensing strategies,
we propose the SCM, which is also a valid linear operation for CS because
convolution can be represented by matrix-matrix multiplication. For a given
single channel image I ∈ R1×H×W , the convolution operations squeeze the image
into the shape of c2 × H

cr ×
W
cr , where r2 is the compression ratio and c2 is the

hyperparameter, both of which depend on the configuration of convolution filters.
Then a depth-wise convolution layer expanding the feature channels follows and
the shape becomes c2r2 × H

cr ×
W
cr . Finally, the pixel-shuffle layer will rearrange

the elements of c2r2 × H
cr ×

W
cr tensor to form a 1×H ×W tensor, illustrated in

Fig. 2.

SCM senses the original image by gradually compacting the image size through
a sequence of filters. Compared with conventional sensing strategies, which sense
the image block by block through a single shared weight matrix multiplication,
our method has the advantage to preserve the spatial features thanks to the
sparse local connectivity nature of convolution operations. Moreover, continu-
ous convolution can effectively capture the hierarchical structures in the image.
And it can be seen in the following section for experimental studies that SCM
is justified to have the ability to eliminate noises introduced by long distance
high-frequency component in the block and avoid block artifacts.

Simplified Model

Equivalence Transform

Over-parameterized Model

Fig. 3. Simplifying Linear Over-parameterized Model.

The number of feature channels of intermediate layers of SCM during training
can be relatively large, as long as the final output shape can meet the required
measurements. Since there are no activation functions and no biases, no matter
how wide the SCM is, these linear combinations can be finally squeezed into one
matrix multiplication as shown in Fig. 3.

To be more specific, we take the feed forward network as an example. Assume
that the network input is an n0-elements vector x, the lth layer contains nl hidden
cells and the ith hidden cell in lth layer is denoted as hl,i, the weight in lth layer
connecting hl−1,i and hl,j is wl,i,j . Then the feed forward network can be modeled
by hl,i =

∑nl
j=0 wl,i,jhl,j .
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Every subsequent hidden cell can be represented as a linear combination of
x as follows:

hl,i =

nl∑
jl=0

wl,i,j

nl−1∑
jl−1=0

wl−1,i,j · · ·
n0∑

j0=0

w0,i,jxj

=

nl∑
jl=0

nl−1∑
jl−1=0

· · ·
n0∑

j0=0

w0,i,jw1,i,j . . . wl,i,jxj

=

n0∑
j=0

Wi,jxj .

This indicates that the final output of the network y can also be represented as
a linear combination of the input x. Thus we can utilize the learning ability of
an over-parameterized model to converge to a better optimal point. However,
wider model is more likely to cause unstable gradient problems during training.
So it is a trade-off to choose a proper width.

Note that SCM still pertains to block-based sensing, but it applies local
connectivity priors during training time. It is the same in deployment as block-
based methods since all the convolution kernels can be transformed into one
matrix during test time. So, SCM just changes the training behavior, leading to
better performance on natural images.

3.2 Learned Runge-Kutta Block

1) Residual Block 2) 2
nd

  Order LRKB

F × a2121 F

× b1

× b2
F

Fig. 4. Comparison of a Residual Block and a Learned Runge-Kutta Block.

The gradual reconstruction of the image can be reformulated as a dynamical
system, where the initial condition is the measurements and the ideal termination
condition is the original image. In such a dynamical system, each CNN block is a
state transition, training data are fed to learn the mapping from low dimension
measurements to the original image. Thus, we are able to see the residual block
with a single skip connection as a forward Euler method [26], which is just a
first-order scheme. So by mimicking higher order numerical methods, we can
expect higher accuracy. Hence, we consider Runge-Kutta methods, which is a
family of high-precision single step algorithms for numerical solution of ODE, to
build a novel residual architecture with better performance.

Specifically, second order Runge-Kutta method takes the following form:

yn+1 = yn + b1K1 + b2K2, (1)
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K1 = hF (xn, yn), (2)

K2 = hF (xn + c2h, yn + a21K1), (3)

where a21, b1, b2 and c2 are the coefficients. To specify the exact values of the
coefficients, we expand K2 at (xn, yn) according to Taylor’s formula:

hF (xn + c2h, yn + a21K1)

= h
[
F (xn, yn) + c2hF

′
x + a21K1F

′
y +O(h2)

]
= h

[
F (xn, yn) + c2hF

′
x + a21hFF

′
y +O(h3)

]
,

(4)

where F denotes F (xn, yn) and F ′x, F ′y are the partial derivatives of F with
respect to x and y, respectively. Then we get:

yn+1 = yn + (b1K1 + b2K2)

= y(xn) + b1hF (xn, yn) + b2h [F (xn, yn) + c2hF
′
x + a21hFF

′
y] +O(h3)

= y(xn) + (b1 + b2)hF (xn, yn) + c2b2h
2F ′x + a21b2h

2FF ′y +O(h3).
(5)

And we expand y(xn+1) at xn:

y(xn+1) = y(xn) + hy′(xn) +
h2

2!
y′′(xn) +O(h3)

= y(xn) + hF (xn, yn) +
h2

2!
[F ′x + FF ′y] +O(h3).

(6)

Let y(xn+1) = yn+1, we get:

b2 + b1 = 1, b2c2 =
1

2
, b2a21 =

1

2
, (7)

which is an under-determined system of equation, all methods satisfying the
above forms are collectively referred to as Second-Order Runge-Kutta Method.
As we can see, b2 can be the only free variable, and can be jointly optimized
during training time.

Actually the neural network can be trained to predict the auxiliary variable
of α = log(− log(b2)), to avoid division by zero. Also, when regressing the un-
constrained value of α, b2 is resolved to the value between 0 and 1. Hence we

can have: b2 = e−e
α

, b1 = 1− e−eα , and a21 = ee
α

2 .
Regarding each non-linear state transition function F as an independent CNN

block, we build a residual block as shown in Fig. 4, where the state transition
functions F is illustrated in Fig. 5. Moreover, we use PReLU [10] as the activa-
tion function and adopt pre-activation structure [12], where the two convolution
filters share the same weights.

3.3 The Overall Structure

The overall structure of our model is an end-to-end auto-encoder structure as
shown in Fig. 6, where the encoder is a sequence of sub-sampling convolutional
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PReLU

Conv

PReLU

Conv

Fig. 5. The State Transition Function F .

sensing filters without activation functions, producing measurements. A followed
depth-wise convolution layer expands the feature channels and the resulting
feature map is to be rearranged to match the original size by a pixel shuffle
layer, whose product is called initial reconstruction. Then the output of encoder
is to be fed to the subsequent reconstruction network consisting of a head, body
and tail. The head first converts the initial reconstruction to image features by
convolution block, followed by a ReLU function. Afterwards the feature maps
are further processed by the body consisting of several LRKBs. Then the tail
will turn the resulting feature maps back to the final reconstructed image.

Sub-sampling

Convolution

Sub-sampling

Convolution

Depth-wise

Convolution

Pixel Shuffle

LRKB

Feature 

extracting

Convolution

LRKB

LRKB

Reconstructing

Convolution

Final 

Reconstrution

Input

Sub-sampling

Convolution

Sub-sampling

Convolution

Feature 

extracting

Convolution

LRKB

LRKB

LRKB

Reconstructing

Convolution

Initial 

Reconstruction

Compressed Sensing Head Body Tail

Depth-wise

Convolution

Pixel Shuffle

Initial

Fig. 6. The Overall Structure of RK-CCSNet.
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4 Experimental Studies

4.1 Weights Initialization

Because of the introduction of sequential convolution filters without activation
functions, it was observed that the gradient is unstable during training process.
By comparative empirical studies, we have identified the source of the problem
in weights initialization.

To be more specific, in each convolution step, we define X ∈ RC×H×W to be
the input matrix convoluted with a filter F ∈ RO×C×Hf×Wf , and Y ∈ RO×H×W

to be the output matrix, then each element Yij in the output matrix Y is defined
as:

Yk,i,j =

C∑
n=0

Hf∑
h=0

Wf∑
w=0

X
n,i+h−

(Hf−1)

2 ,j+w−
(Wf−1)

2

Fk,n,h,w (8)

where we simply assume that stride equals 1 with the same padding strategy,
and the height and width of the filter to be odd number, which can be extended
to more general situations. As we can see, each output element is the summation
of CHfWf products of X and F . We assume that X is normalized such that X ∼
N(0, 1) and we initialize the weight matrix of F with normal distribution without
considering the shape of filter, let’s say F ∼ N(0, 1), then after convolution we
will get Y ∼ N(0,

√
CHfWf ). If CHfWf is greater than 1 (which is surely the

case), after a sequence of convolution steps, the elements in the resulting matrix
will grow dramatically, leading to gradient explosion. The similar situation will
cause gradient vanishing when we initialize the weights with normal distribution
of which standard deviation is too small. To address this problem, we simply
initialize the weight matrix with scaled normal distribution as:

F ∼ N(0,
1√

CHfWf

). (9)

To illustrate the effect of our initialization method, we build a toy example
which took a tensor of shape (8, 64, 96, 96) as the input, and is sequentially con-
voluted by 10 filters of shape (64, 64, 3, 3) with stride of 1 and some padding
strategy to keep the shape of the input tensor and the output tensor remain un-
changed. We initialize the weights with three different distribution: F1 ∼ N(0, 1),
F2 ∼ N(0, 0.01) and F3 ∼ N(0, 1√

CHfWf

). And Fig. 7 shows the changing stan-

dard deviation of the output tensor in each convolution stage.

The figure clearly shows that the general weights initialization method is
not suitable for continuous convolution operations without activation functions,
which will lead to either gradient explosion or gradient vanishing. And this ex-
ample verifies that the scaled version of F remains very stable and thus can have
better performance and generalization.
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Fig. 7. The comparison of weights initialization with different standard deviations.

4.2 Datasets and Implementation Details

To compare with state-of-the-art deep learning based models, we trained the
models on the training set and test set of BSDS5004, with 400 images for training
and 100 images for testing (BSDS100). As the original images are either 321×481
or 481×321, we randomly crop the images into patches of 96×96 and randomly
flip horizontally for data augmentation. In addition, we also compare our method
with TVAL3 [19] and GSR [34] on Set5 and Set145, which contains 5 images and
14 images, respectively. Because those images are not shape consistent, we resize
them into (256, 256) for evaluation. All the images are first converted to YCbCr
color space and only the Y channel is used as the input of all the models. We
use Adam optimizer [16] for training and set the exponential decay rates to 0.9
and 0.999 for the first and second moment estimate. The batch size is set to 4
and both CSNet+ [29] and RK-CCSNet were trained for 200 epochs at all, with
the initial learning rate of 1e− 3 and decay of 0.25 at 60, 90, 120, 150 and 180
epochs respectively. The sampling ratio for testing was set from 1/64 to 1/2, i.e.,
1.5625%, 3.1250%, 6.2500%, 12.5000%, 25.0000%, and 50.0000%. PSNR (Peak
Signal-to-Noise Ratio) and SSIM (Structural SIMilarity) [14] are chosen as the
evaluation metrics throughout our experiments.

4.3 Experimental Results

Table 1 presents the test results of CSNet+ [29] and RK-CCSNet on BSDS100
with the corresponding PSNR and SSIM, and the best results are marked in
bold font. It can be seen that our model exhibits significantly better performance
compared with CSNet+ across all sampling ratios. In average, our model gains
2.14% and 1.72% improvements in PSNR and SSIM, respectively.

Further experimental results of our model on Set5 and Set14 compared with
TVAL3, GSR and CSNet+ are provided in Table 2. Our model outperforms all
the other ones across all different datasets, exhibiting excellent generalization

4
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html#bsds500

5 http://vllab.ucmerced.edu/wlai24/LapSRN/
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Table 1. Comparisons of CSNet+ and RK-CCSNet on BSDS100

CSNet+ RK-CCSNet (our)
Data ratio PSNR SSIM PSNR SSIM

BSDS100

1.56% 25.01 0.6904 25.56 0.7055
3.12% 26.55 0.7413 26.99 0.7564
6.25% 28.14 0.7977 28.60 0.8133
12.5% 30.11 0.8602 30.56 0.8759
25.0% 32.81 0.9206 33.43 0.9335
50.0% 36.62 0.9659 37.92 0.9766

Average 29.87 0.8294 30.51 0.8437

Table 2. Comparisons of different CS algorithms on Set5 and Set14

TVAL3 GSR CSNet+ RK-CCSNet (our)
Data ratio PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Set5

1.5625% 19.00 0.4844 21.39 0.5815 25.02 0.6888 25.63 0.7186
3.1250% 19.89 0.5415 23.70 0.6822 27.42 0.7778 28.03 0.8142
6.2500% 22.03 0.6175 27.59 0.8163 30.11 0.8605 30.91 0.8867
12.5000% 23.75 0.7365 31.61 0.9016 33.57 0.9250 35.05 0.9461
25.0000% 27.39 0.8522 36.32 0.9510 37.94 0.9665 39.29 0.9758
50.0000% 33.11 0.9430 42.18 0.9908 42.70 0.9856 44.72 0.9913

Set14

1.5625% 16.79 0.3993 18.93 0.4399 23.13 0.5768 23.32 0.5933
3.1250% 18.40 0.4514 20.26 0.5184 25.03 0.6660 25.42 0.6968
6.2500% 19.65 0.5287 23.59 0.6526 27.25 0.7651 27.48 0.7897
12.5000% 21.03 0.6379 28.08 0.7915 30.16 0.8630 30.93 0.8880
25.0000% 22.69 0.7731 31.82 0.8939 33.92 0.9354 35.03 0.9505
50.0000% 26.61 0.9004 37.47 0.9619 38.67 0.9756 40.66 0.9848

Average 22.53 0.6555 28.57 0.7650 31.24 0.8322 32.21 0.8530

and achieving state-of-the-art results. We selected some representative images
to demonstrate visual comparisons of each model, in Fig. 8 and 9. It can be
seen that neither TVAL3 nor GSR can reconstruct meaningful features from
sample images in extremely low ratios. CSNet+ can roughly restore the original
image but results in serious blocking artifacts, while RK-CCSNet produces much
smoother boundary between blocks. Moreover, RK-CCSNet has less luminance
loss compared with CSNet+. When the sampling ratio comes to 12.5%, these
models all perform well. However, the one reconstructed by TVAL3 has a lot of
noises. GSR does a bit better in visual but brings about distortions. CSNet’s
reconstruction performs poorly in details of the image. We also found that in the
case of block by block sensing, if the block contains high-frequency components,
the noise will be distributed across all parts of the reconstructed block, causing
the whole reconstructed block less smooth. And this difference between blocks
exacerbates blocking artifacts. However, RK-CCSNet with SCM as the sensing
module, will not lead to this phenomenon, which is thus significantly better in
the reconstruction of high frequency details of the image. All in all, RK-CCSNet
has the highest reconstruction quality among all the models.

4.4 Ablation Studies

Ablation studies are further carried out to justify the efficacy of the two mod-
ules proposed in our model. In general, we divide a CS model into two sub-
modules: sensing module and reconstruction module. We replace different mod-



Runge-Kutta Convolutional Compressed Sensing Network 13

Comic/PSNR/SSIM TVAL3/15.86db/0.1209 GSR/16.29db/0.2090 CSNet+/19.89db/0.3949 RK-CCSNet+/20.59db/0.4613

Fig. 8. Visual comparisons of the reconstructed image in sampling ratio of 1.5625%

Monarch/PSNR/SSIM RK-CCSNet/29.54db/0.9364CSNet+/27.20db/0.8740GSR/25.30db/0.7463TVAL3/24.35db/0.4223

Fig. 9. Visual comparisons of the reconstructed image in sampling ratio of 12.5000%

ules of CSNet+ to form different models. To be more specific, the models com-
pared are listed as follows: Baseline (CSNet+), Baseline with SCM, Baseline with
LRKB, and RK-CCSNet. The experimental results are shown in Table 3. It can
be seen that both proposed modules can lead to appreciable improvements over
the baseline model. LRKB has more non-linear reconstruction strength for the
global structure of the image when the observation rate is limited, since LRKB is
from ODE theory with higher order of accuracy for numerical analysis than the
one in the baseline with a conventional residual architecture. SCM can restore
more details and eliminate most noises when the observation rate is sufficient.
And SCM’s power of preserving spatial features grows with the increasing of
sampling ratios, because the larger spatial shape of the measurement will con-
tain more spatial information, while the standard fully connected layer cannot
capture spatial features well. Moreover, SCM’s local sensing strategy can also
avoid introducing noises.

Table 3. Ablation results on BSDS100

1.5625% 3.1250% 6.2500% 12.5000% 25.0000% 50.0000%

SCM LRKB PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

25.01 0.6904 26.55 0.7413 28.14 0.7977 30.11 0.8602 32.81 0.9206 36.62 0.9659
X 25.31 0.7014 26.64 0.7488 28.25 0.8075 30.26 0.8710 33.05 0.9294 37.59 0.9753

X 25.49 0.7010 26.91 0.7499 28.48 0.8055 30.11 0.8584 32.43 0.9138 36.91 0.9670
X X 25.56 0.7055 26.99 0.7564 28.60 0.8133 30.56 0.8759 33.43 0.9335 37.92 0.9766
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CSNet+/27.20db/0.8740 CSNet+(SCM)/26.50db/0.8884 RK-CCSNet/29.54.db/0.9364

Fig. 10. Visual comparisons of reconstructed image in the sampling ratio of 12.5%

To further present the effect of SCM and LRKB, we compare the visual
quality of the reconstructed image by three different models in Fig. 10. It can be
seen that our proposed SCM can eliminate most noises inside the block caused
by high frequency components as mentioned above, and alleviate luminance loss.
Combined with LRKB’s powerful reconstruction strength, our model can restore
images to a higher level.

5 Conclusion

In this paper, we have proposed a sensing module and a reconstruction mod-
ule respectively to enhance DCS frameworks. In the sensing stage, the proposed
SCM applies continuous convolution operations to replace the conventional single
matrix multiplication to preserve spatial features. In the reconstruction module
of the proposed LRKB, we reformulate the forward process of ResNet as a dis-
crete dynamical system and introduce a novel residual architecture inspired by
Runge-Kutta methods, which can lead to much more precise reconstructions.
Furthermore, we have introduced an end-to-end RK-CCSNet to encapsulate the
two modules above. The implementation of RK-CCSNet has outperformed other
prestigious baselines when extensively evaluated on influential benchmarks. In
addition, ablation studies are also carried out that have justified the efficacy of
the two modules individually.

References

1. Arbelaez, P., Maire, M., Fowlkes, C.C., Malik, J.: Contour detection and hierar-
chical image segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence 33(5), 898–916 (2011)



Runge-Kutta Convolutional Compressed Sensing Network 15

2. August, Y., Vachman, C., Rivenson, Y., Stern, A.: Compressive hyperspectral
imaging by random separable projections in both the spatial and the spectral
domains. Applied optics 52(10), D46–D54 (2013)

3. Candès, E.J.: The restricted isometry property and its implications for compressed
sensing. Comptes rendus mathematique 346(9-10), 589–592 (2008)

4. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit.
SIAM review 43(1), 129–159 (2001)

5. Donoho, D.L., et al.: Compressed sensing. IEEE Transactions on Information The-
ory 52(4), 1289–1306 (2006)

6. Du, J., Xie, X., Wang, C., Shi, G., Xu, X., Wang, Y.: Fully convolutional mea-
surement network for compressive sensing image reconstruction. Neurocomputing
328, 105–112 (2019)

7. Duarte, M.F., Davenport, M.A., Takhar, D., Laska, J.N., Sun, T., Kelly, K.F.,
Baraniuk, R.G.: Single-pixel imaging via compressive sampling. IEEE Signal Pro-
cessing Magazine 25(2), 83–91 (2008)

8. E, W.: A proposal on machine learning via dynamical systems. Communications
in Mathematics and Statistics 5, 1–11 (02 2017). https://doi.org/10.1007/s40304-
017-0103-z

9. Gehm, M., John, R., Brady, D., Willett, R., Schulz, T.: Single-shot compressive
spectral imaging with a dual-disperser architecture. Optics express 15(21), 14013–
14027 (2007)

10. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In: 2015 IEEE International Confer-
ence on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015. pp.
1026–1034. IEEE Computer Society (2015)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016. pp. 770–778. IEEE Computer Society
(2016)

12. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks.
In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision - ECCV
2016 - 14th European Conference, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part IV. Lecture Notes in Computer Science, vol. 9908, pp.
630–645. Springer (2016)

13. Hitomi, Y., Gu, J., Gupta, M., Mitsunaga, T., Nayar, S.K.: Video from a single
coded exposure photograph using a learned over-complete dictionary. In: Metaxas,
D.N., Quan, L., Sanfeliu, A., Gool, L.V. (eds.) IEEE International Conference on
Computer Vision, ICCV 2011, Barcelona, Spain, November 6-13, 2011. pp. 287–
294. IEEE Computer Society (2011)
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ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Proceedings
of Machine Learning Research, vol. 80, pp. 3282–3291. PMLR (2018)

21. Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.: Compressed sensing MRI.
IEEE Signal Processing Magazine 25(2), 72 (2008)

22. Mousavi, A., Baraniuk, R.G.: Learning to invert: Signal recovery via deep convo-
lutional networks. In: 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP 2017, New Orleans, LA, USA, March 5-9, 2017.
pp. 2272–2276. IEEE (2017)

23. Mousavi, A., Dasarathy, G., Baraniuk, R.G.: A data-driven and distributed ap-
proach to sparse signal representation and recovery. In: International Conference
on Learning Representations (2018)

24. Mousavi, A., Patel, A.B., Baraniuk, R.G.: A deep learning approach to structured
signal recovery. In: 53rd Annual Allerton Conference on Communication, Control,
and Computing, Allerton 2015, Allerton Park & Retreat Center, Monticello, IL,
USA, September 29 - October 2, 2015. pp. 1336–1343. IEEE (2015)

25. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Internal Representations
by Error Propagation, p. 318–362. MIT Press, Cambridge, MA, USA (1986)

26. Sauer, T.: Numerical Analysis. Addison-Wesley Publishing Company, USA, 2nd
edn. (2011)

27. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic
segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)

28. Shi, W., Jiang, F., Liu, S., Zhao, D.: Scalable convolutional neural network for
image compressed sensing. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019. pp. 12290–
12299. Computer Vision Foundation / IEEE (2019)

29. Shi, W., Jiang, F., Liu, S., Zhao, D.: Image compressed sensing using convolutional
neural network. IEEE Transactions on Image Processing 29, 375–388 (2020)

30. Shi, W., Jiang, F., Zhang, S., Zhao, D.: Deep networks for compressed image
sensing. In: 2017 IEEE International Conference on Multimedia and Expo, ICME
2017, Hong Kong, China, July 10-14, 2017. pp. 877–882. IEEE Computer Society
(2017)

31. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via or-
thogonal matching pursuit. IEEE Transactions on Information Theory 53(12),
4655–4666 (2007)

32. Xu, K., Zhang, Z., Ren, F.: LAPRAN: A scalable laplacian pyramid reconstructive
adversarial network for flexible compressive sensing reconstruction. In: Ferrari, V.,
Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision - ECCV 2018 -



Runge-Kutta Convolutional Compressed Sensing Network 17

15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings,
Part X. Lecture Notes in Computer Science, vol. 11214, pp. 491–507. Springer
(2018)

33. Yao, H., Dai, F., Zhang, D., Ma, Y., Zhang, S., Zhang, Y.: Dr2-net: Deep residual
reconstruction network for image compressive sensing. Neurocomputing 359, 483–
493 (2017)

34. Zhang, J., Zhao, D., Jiang, F., Gao, W.: Structural group sparse representation for
image compressive sensing recovery. In: Bilgin, A., Marcellin, M.W., Serra-Sagristà,
J., Storer, J.A. (eds.) 2013 Data Compression Conference, DCC 2013, Snowbird,
UT, USA, March 20-22, 2013. pp. 331–340. IEEE (2013)


