3D Human Shape and Pose from a Single Low-Resolution Image with Self-Supervised Learning Supplementary Material

Xiangyu Xu¹, Hao Chen², Francesc Moreno-Noguer³, László A. Jeni¹, and Fernando De la Torre^{1,4}

¹ Robotics Institute, Carnegie Mellon University, Pittsburgh, USA
² Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, USA
³ Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Barcelona, Spain
⁴ Facebook Reality Labs (Oculus), Pittsburgh, USA

1 More Qualitative Results

We provide more visual comparisons against the baseline methods [1, 2] in Figure 1. The proposed algorithm is able to achieve high-quality 3D human shape and pose estimation for the challenging low-resolution input.

2 Generalization to Real-World Images

We also evaluate the proposed algorithm on real-world low-resolution images. As shown in Figure 2 and 3, our method generalizes well to real scenarios.

Fig.1. Visual comparisons with the state-of-the-art methods on challenging low-resolution input. The input image has a resolution of 32×32 . The results of high-resolution images are also included as a reference.

 ${\bf Fig.~2.}$ 3D shape and pose of low-resolution humans captured from a real sports video.

Fig. 3. 3D shape and pose of low-resolution humans captured from a real surveillance video.

4 X. Xu et al.

References

- 1. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: CVPR (2018) 1
- 2. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3d human pose and shape via model-fitting in the loop. In: ICCV (2019) 1