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Overview

In this supplementary material, we provide additional information to comple-
ment the manuscript. First, we present details of Gridding, Gridding Reverse,
and Cubic Feature Sampling (Section 1). Second, we provide additional quanti-
tative results on ShapeNet, Completion3D, and KITTI (Sections 2, 3, and 4).
Third, we present additional ablation studies (Section 5). At last, we present
more qualitative results compared to other methods (Section 6).

1 More Explanations on Gridding, Gridding Reverse,
and Cubic Feature Sampling

1.1 Gridding

According to the manuscript, given a vertex vi and its neighboring points p ∈
N (vi). The proposed Gridding layer computes the corresponding value wi of this
vertex vi as

wi =
!

p∈N (vi)

w(vi, p)

|N (vi)|
(1)

where |N (vi)| is the number of neighboring points of vi and w(vi, p) is defined
as

w(vi, p) = (1− |xv
i − x|)(1− |yvi − y|)(1− |zvi − z|) (2)

Based on Equations 1 and 2, the partial derivative with respect to x can be
calculated as follows

∂wi

∂x
=

"
− 1

|N (vi)|
#

p∈N (vi)
(1− |yvi − y|)(1− |zvi − z|), x > xv

i
1

|N (vi)|
#

p∈N (vi)
(1− |yvi − y|)(1− |zvi − z|), x ≤ xv

i

(3)
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where x and xv
i are the x-coordinates of the point p and vertex vi, respectively.

Similarly, the partial derivative with respect to y and z can be calculated as
follows

∂wi

∂y
=

"
− 1

|N (vi)|
#

p∈N (vi)
(1− |xv

i − x|)(1− |zvi − z|), y > yvi
1

|N (vi)|
#

p∈N (vi)
(1− |xv

i − x|)(1− |zvi − z|), y ≤ yvi
(4)

∂wi

∂z
=

"
− 1

|N (vi)|
#

p∈N (vi)
(1− |xv

i − x|)(1− |yvi − y|), z > zvi
1

|N (vi)|
#

p∈N (vi)
(1− |xv

i − x|)(1− |yvi − y|), z ≤ zvi
(5)

where y and yvi are the y-coordinates of the point p and vertex vi, respectively.
z and zvi are the z-coordinates of the point p and vertex vi, respectively.

1.2 Gridding Reverse

Point Coordinates Normalization. Gridding Reverse generates point pci =
(xc

i , y
c
i , z

c
i ) for the i-th grid cell by a weighted combination of eight vertices

{vθ|θ ∈ Θi} and the corresponding values {w′
θ|θ ∈ Θi} in this cell, which is

calculated as

pci =

#
θ∈Θi w′

θvθ#
θ∈Θi w′

θ

(6)

where
#

θ∈Θi w′
θ ∕= 0 and Θi = {θij}8j=1 represents the index set of vertices

of this 3D grid cell. Let (xv
θ , y

v
θ , z

v
θ ) be the coordinate of the vertex vθ, where

xv
θ , y

v
θ , z

v
θ ∈ {−N

2 ,−
N
2 + 1, . . . ,−N

2 − 1} and N is the resolution of the 3D grid.
The x-, y-, and z- coordinates of pci is calculated as

xc
i =

#
θ∈Θi w′

θx
v
θ#

θ∈Θi w′
θ

(7)

yci =

#
θ∈Θi w′

θy
v
θ#

θ∈Θi w′
θ

(8)

zci =

#
θ∈Θi w′

θz
v
θ#

θ∈Θi w′
θ

(9)

Since the coordinate (xgt
i , ygti , zgti ) of the point in the ground truth point cloud

satisfies −1 < xgt
i , ygti , zgti < 1. The coordinates of the point pci are normalized

to (−1, 1) by dividing −N
2 .

Backward of Gridding Reverse. The partial derivative with respect to w′
θ

can be calculated as
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∂xc
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∂w′
θ
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xv
θ#

θ∈Θi w′
θ
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v
θ$#

θ∈Θi w′
θ

%2

=
xv
θ#

θ∈Θi w′
θ

− 1#
θ∈Θi w′

θ

· xc
i

=
xv
θ − xc

i#
θ∈Θi w′

θ

(10)

Similarly,
∂yci
∂w′

θ

=
yvθ − yci#
θ∈Θi w′

θ

(11)

∂zci
∂w′

θ

=
zvθ − zci#
θ∈Θi w′

θ

(12)

1.3 Cubic Feature Sampling

Point Coordinates Normalization. Cubic Feature Sampling aggregates fea-
tures F c = {f c

i }mi=1 of the coarse point cloud P c = {pci}mi=1 from the 3D feature

map F = {fv
i }t

3

i=1, where f c
i , f

v
i ∈ Rc, c is the number of channels of F , m is

the number of points in the coarse point cloud, and t is the resolution of F .
According to the manuscript, the features f c

i for pci = (xc
i , y

c
i , z

c
i ) are calculated

as

f c
i = [fv

θi
1
, fv

θi
2
, . . . , fv

θi
8
] (13)

where {fv
θi
j
}8j=1 denotes the features of eight vertices of the i-th 3D gird cell where

pci lies in. Specifically, the coordinates of the eight vertices {(xv
θi
j
, yv

θi
j
, zv

θi
j
)}8j=1

satisfy xv
θi
j
∈ {⌊ t

2x
c
i⌋, ⌈ t

2x
c
i⌉}, yvθi

j
∈ {⌊ t

2y
c
i ⌋, ⌈ t

2y
c
i ⌉}, and zv

θi
j
∈ {⌊ t

2z
c
i ⌋, ⌈ t

2z
c
i ⌉},

respectively.
Backward of Cubic Feature Sampling. During backward propagation, the
partial derivative with respect to fv

θi
j
can be presented as

∂f c
i,j

∂fv
θi
j

= 1 (14)

where j ∈ {1, 2, . . . , 8} and f c
i,j denotes the j-th element in f c

i .
Since ⌊·⌋ and ⌈·⌉ is not differentiable, the partial derivatives with respect to

xc
i , y

c
i , and zci are 0 [1], which can be formulated as follows:

∂f c
i,j

∂xc
i

= 0 (15)

∂f c
i,j

∂yci
= 0 (16)
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Table 1. Results of point cloud completion on ShapeNet compared using the Chamfer
Distance (CD) with L1 norm computed on 16,384 points and multiplied by 103. The
best results are highlighted in bold.

Methods Airplane Cabinet Car Chair Lamp Sofa Table Watercraft Overall

AtlasNet [2] 6.366 11.943 10.105 12.063 12.369 12.990 10.331 10.607 10.847
PCN [7] 5.502 10.625 8.696 10.998 11.339 11.676 8.590 9.665 9.636
FoldingNet [6] 9.491 15.796 12.611 15.545 16.413 15.969 13.649 14.987 14.308
TopNet [4] 7.614 13.311 10.898 13.823 14.439 14.779 11.224 11.124 12.151
MSN [3] 5.596 11.963 10.776 10.620 10.712 11.895 8.704 9.485 9.969
GRNet 6.450 10.373 9.447 9.408 7.955 10.512 8.444 8.039 8.828

∂f c
i,j

∂zci
= 0 (17)

2 Additional Quantitative Results on ShapeNet

According to the manuscript, the Chamfer Distance is with L2 norm. However,
PCN [7] adopts the Chamfer Distance with L1 norm as an evaluation metric,
which can be formulated as follows

CD =
1

2

&
1

nT

!

t∈T
min
r∈R

||t− r||+ 1

nR

!

r∈R
min
t∈T

||t− r||
'

(18)

where T = {(xi, yi, zi)}nT
i=1 is the ground truth and R = {(xi, yi, zi)}nR

i=1 is the
reconstructed point set being evaluated. nT and nR are the numbers of points
of T and R, respectively.

Table 1 shows the results of point cloud completion using the Chamfer Dis-
tance calculated with Equation 18. The values of PCN are exactly the same as
Table 4 in the original paper 1.

3 Quantitative Results on Completion3D

Figure 1 is the screenshot of the leaderboard results on the Completion3D bench-
mark, which is available online at https://completion3d.stanford.edu/results.

4 Additional Quantitative Results on KITTI

PCN [7] uses the Fidelity Distance (FD) and Minimal Matching Distance (MMD)
as evaluation metrics for KITTI. FD is the average distance from each point in
the input to its nearest neighbor in the output, which can be defined as follows

1 https://arxiv.org/pdf/1808.00671

https://completion3d.stanford.edu/results
https://arxiv.org/pdf/1808.00671
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Fig. 1. The screenshot of the Completion3D benchmark results. Available online at
https://completion3d.stanford.edu/results

.

KITTI RGB Image KITTI LiDAR Scan Input MSN GRNet

Fig. 2. The clutters in the KITTI LiDAR Scan, as shown in the blue bounding box.
Compared to MSN, GRNet recovers the complete point cloud while removing the
clutters in the input point cloud.

FD =
1

nI

!

i∈I
min
r∈R

||i− r||22 (19)

where I denotes the input point cloud. MMD is the Chamfer Distance (CD)
between the output and the car point cloud from ShapeNet that is the closest
to the output point cloud in terms of CD. The Fidelity and MMD on KITTI of
the compared methods are shown in Table 2.

However, both FD and MMD are not suitable metrics for KITTI. As shown
in Figure 2, real-world LiDAR scans usually contain clutters which should be

https://completion3d.stanford.edu/results
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Table 2. Results of point cloud completion on KITTI compared using Fidelity Distance
(CD) and Minimal Matching Distance (MMD) computed on 16,384 points. Note that
both FD and MMD are with L2 norm. The best results are highlighted in bold.

Methods FD (×103) MMD (×103)

AtlasNet [2] 1.759 2.108
PCN [7] 2.235 1.366
FoldingNet [6] 7.467 0.537
TopNet [4] 5.354 0.636
MSN [3] 0.434 2.259
GRNet 0.816 0.568

Table 3. The Chamfer Distance (CD) and F-Score@1% on ShapeNet with different
numbers of points sampled from the coarse point cloud. The best results are highlighted
in bold.

# Points CD (×10−4) F-Score@1%

1024 2.775 0.697
2048 2.723 0.708
4096 2.832 0.681

removed in the recovered point cloud. MSN [3] incorporates the minimum density
sampling (MDS) to preserve the structure of the input point cloud. Although
MSN outperforms other methods in terms of FD, the clutters in the input point
cloud are also preserved. MMD s measures how much the output resembles the
cars in ShapeNet. However, cars from ShapeNet cannot cover all types of cars
in the real-world.

5 Additional Ablation Studies

Number of Sampling Points. Gridding Reverse generates a coarse point cloud
from a 3D grid. We randomly sample 2,048 points from the coarse point cloud
to generate a point cloud containing a fixed number of points for the following
MLP. Table 3 shows the Chamfer Distance (CD) and F-Score@1% with different
numbers of points sampled.

Experimental results indicate that sampling 2,048 points from the coarse
point clouds archives the best performance in terms of CD and F-Score. The
coarse point cloud of an object usually contains about 3,000-4,000 points, over-
sampling 4,096 points from the coarse point cloud leads to redundant information
in the sampled point cloud. Sampling 1,024 points from the coarse point cloud
may lose too much information for the subsequent processing.
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6 Qualitative Comparisons

In this section, we provide more visual comparisons with the state-of-the-art
methods [7,2,6,4,3] for point cloud completion on the ShapeNet dataset [5].

Input AtlasNet PCN FoldingNet TopNet MSN GRNet GT

1
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Input AtlasNet PCN FoldingNet TopNet MSN GRNet GT

1
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