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Introduction

This supplementary material provides the mathematical expressions that are
necessary for the completeness of the paper (Appendix A) and figures that aid
the experimental evaluation of the proposed approach (Appendix B).

Appendix A

This section provides the partial derivatives that are needed to obtain the deriva-
tive of the objective function but were omitted from the main text (Section 3.4)

due to their lengthy expressions—the partial derivatives ∂ĝtx[k]
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,
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,
∂Îdt
∂ct

and

∂xt

∂ct
. Note that the partial derivative

∂Îdt
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is not explicitly mentioned in the text

but it is a block-diagonal matrix (of 1 × 2-sized blocks) very similar to
∂Îft
∂xt

—
the only difference is that the blocks contain the (un-normalized) gradients of
the image that corresponds to the diffuse reflection component of the Phong
illumination model, Îdt , instead of the estimated (illumination-free) face image

Îft .

The kith entries of the matrices ∂ĝtx/∂Ît and ∂ĝty/∂Ît are:
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(̂It[kb]−Ît[ka])−1h
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(̂It[kb]−Ît[ka])−1h
3
2

if i = kl

0 otherwise

(S.1)

where h, kl, kr, ka and kb are defined as in Eq. (7) of the main text.
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The partial derivative
∂Îdt
∂ct

is an N×6 matrix, whose each column is the partial
derivative w.r.t. one of the camera parameters ct = (q1, q2, q3, τx, τy, τz), i.e.,
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The ith entries of the vectors on the right-hand-side of (S.2) are computed as

∂Îdt [i]
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 (S.3)
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where n̄i is the surface normal for the ith point of the mesh (w.r.t. canonical
pose; i.e.. without view transformation), and (λx, λy, λz) is the 3D location of
the illumination source, as defined in Section 3.1 of the main text.

The other partial derivative term, ∂xt

∂ct
, has been calculated in previous stud-

ies (see Supplementary material of Booth et al. [7]), but we present them here
for completeness and coherence with our notation.3 The partial derivative ∂xt

∂ct

is a 2N × 6 matrix,

3 We also do a minor correction to [7]. The last derivative in Eq. (15) of Supp. material
of [7] has a denominator with an expression in the power of 3. As we show in Eqs.
(S.14) and (S.17) of this supplementary material, the expression in the denominator
should be in the power of 2.
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whose entries are the derivatives of all 2D image points w.r.t. camera parameters.
For the ith point, those derivatives are computed as
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Some of the formulae above require the partial derivatives of the (view-transformed)
3D points w.r.t. rotation parameters (i.e., quaternions q1, q2, q3), which are com-
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puted as
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Appendix B

This section provides visualizations of facial shapes obtained with the Basel 2017
morphable model (Fig. 1); images of the Synthesized dataset (Fig. 6); visual
illustrations of the facial shapes generated with the methods compared in the
experiments (3); additional illustrations of morphable model fitting results on
the AFLW2000-3D dataset (Fig. 4); and the results of our multi-frame method
with 3 and 9 frames in addition to 5 frames (Fig. 5).
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Fig. 1. Random faces generated using the Basel 2017 morphable model. The basis coef-
ficients used to generate the faces were sampled from Normal distributions. Specifically,
each basis coefficient was sampled independently from the others, using a zero-mean
Normal distribution whose standard deviation, σi, is learned while constructing the
model; therefore, the coefficients are mostly in the interval [−3σi, 3σi]. However, the
faces from this interval tend to look awkward as can be seen with a close inspection; for
example, some faces on the bottom row have unrealistic-looking eyes due to protrusions
that are unlikely to exist in real faces. Therefore, in experiments we used a reduced
interval of [−1.5σi, 1.5σi], which is well capable of representing faces with very diverse
characteristics and facial expressions with very large magnitude (e.g., see Fig. 4 below)

Fig. 2. Illustrations of facial images of the Synthesized dataset, which was generated
using the Basel 2009 morphable model and used in the paper for experimental evalua-
tion.
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Ground
Truth

3DDFA PRNet
3DMM
Edges

ITW
3DI

(Ours)

Fig. 3. Illustrations of the (estimated) facial shapes generated by the methods com-
pared in experiments (Section 4) in comparison to the true (i.e., ground truth) facial
shapes.
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(Continued below)
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(Continued below)
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Fig. 4. Additional qualitative illustrations that depict our method’s performance on
the AFLW2000-3D dataset. We separately demonstrate each input image, the 2D land-
marks estimated in the input image by our method, and the dense 3D shape estimated
by our method. It is notable that our method can successfully operate in such un-
controlled conditions, even though we use a 3DMM constructed from controlled data,
namely Basel 2017



10 E. Sariyanidi et al.

2 4 6 8

Normalized mean error (%)

0

10

20

30

40

50

60

70

80

90

100

P
e

rc
e

n
ta

g
e

o
f

im
a

g
e

s
Our (1 Frame)

Our (3 Frames)

Our (5 Frames)

Our (9 Frames)

PRNet

3DDFA

ITW (1 Frame)

ITW (5 Frames)

Fig. 5. Cumulative Error Distribution (CED) of compared methods on the BU4DFE
dataset. Normalized mean error (NME) was computed by dividing to the distance be-
tween the outer eye corners. Our method visibly outperforms other methods, especially
when used with multiple frames. The performance of our method with 3 and 5 frames is
very similar. Interestingly, performance slightly deteriorates when more (i.e., 9) frames
are used; this may be due to the fact that the optimization problem that is solved be-
comes more difficult as more frame are used, and that using more than, say, 5 frames
provides little extra information that cannot be obtained from 5 frames
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Fig. 6. Cumulative Error Distribution (CED) of compared methods on the Synthesized
dataset for L = 51 landmark points. Differently from the corresponding figure in the
main text, here we provide results with our method obtained with the Basel’17 model in
addition to the Basel’09 model (for a single frame). These results prove that our method
outperforms other methods even when the model that is used for fitting (Basel’17) is
different from the model that is used when generating the dataset (Basel’09).


