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Abstract. We revisit the benefits of merging classical vision concepts
with deep learning models. In particular, we explore the effect of re-
placing the first layers of various deep architectures with Gabor layers
(i.e. convolutional layers with filters that are based on learnable Gabor
parameters) on robustness against adversarial attacks. We observe that
architectures with Gabor layers gain a consistent boost in robustness
over regular models and maintain high generalizing test performance. We
then exploit the analytical expression of Gabor filters to derive a compact
expression for a Lipschitz constant of such filters, and harness this the-
oretical result to develop a regularizer we use during training to further
enhance network robustness. We conduct extensive experiments with var-
ious architectures (LeNet, AlexNet, VGG16, and WideResNet) on several
datasets (MNIST, SVHN, CIFAR10 and CIFAR100) and demonstrate
large empirical robustness gains. Furthermore, we experimentally show
how our regularizer provides consistent robustness improvements.
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1 Introduction

Deep neural networks (DNNs) have enabled outstanding performance gains in
several fields, from computer vision [16], [21] to machine learning [23] and nat-
ural language processing [17]. However, despite this success, powerful DNNs are
still highly susceptible to small perturbations in their input, known as adver-
sarial attacks [15]. Their accuracy on standard benchmarks can be drastically
reduced in the presence of perturbations that are imperceptible to the human
eye. Furthermore, the construction of such perturbations is rather undemanding
and, in some cases, as simple as performing a single gradient ascent step on a
loss function with respect to the image [15].

The brittleness of DNNs in the presence of adversarial attacks has spurred
interest in the machine learning community, as evidenced by the emerging corpus
of recent methods that focus on designing adversarial attacks [0], [15], [32], [49].
This phenomenon is far-reaching and widespread, and is of particular importance
in real-world scenarios, e.g., autonomous cars [5], [9] and devices for the visually

* denotes equal contribution



2 J.C. Pérez et al.

Standard
— Gabor
—— Gabor + reg.

\|/ Z
l

lnnutl Chanr\el Wise ReLU 1 x1 Oumutﬂ
Convolution Convolution
Singular Values €

(a) (b)

IE mB oS O :m]

Frequency

Fig.1: Gabor layers and their effect on network robustness. (a): Gabor
layers convolve each channel of the input with a set of learned Gabor filters. As
low-level filters, Gabor filters offer a natural approach to represent local signals.
(b): Replacing standard convolutional layers with Gabor layers yields an struc-
tured distribution of the filters’ singular values, reduces the Lipschitz constant
of the filters (L in the legend of the left plot), and improves accuracy under
adversarial attacks (right figure). These results are for VGG16 on CIFAR100.

impaired [38]. The risks that this degenerate behavior poses underscore the need
for models that are not only accurate, but also robust to adversarial attacks.

Despite the complications that adversarial examples raise in modern com-
puter vision, such inconveniences were not a major concern in the pre-DNN
era. Many classical computer vision methods drew inspiration from the animal
visual system, and so were designed to extract and use features that were se-
mantically meaningful to humans [25,26,27], [34], [37]. As such, these methods
were structured, generally comprehensible and, hence, better understood than
DNNs. Furthermore, these methods even exhibited rigorous stability properties
under robustness analysis [14]. However, mainly due to large performance gaps
on several tasks, classical methods were overshadowed by DNNs. It is precisely
in the frontier between classical computer vision and DNNs that a stream of
works arose to combine tools and insights from both worlds to improve perfor-
mance. For instance, the works of [16], [53] showed that introducing structured
layers inspired by the classical compressed sensing literature can outperform
pure learning-based DNNs. Moreover, Bai et al. [3] achieved large gains in per-
formance in instance segmentation by introducing intuitions from the classical
watershed transform into DNNs.

In this paper, and searching for robustness in computer vision, we draw in-
spiration from biological vision, as the survival of species strongly depends on
both the accuracy and robustness of the animal visual system. We note that
Marr’s and Julesz’ work [19], [30] argues that the visual cortex initially pro-
cesses low-level agnostic information, in which the system’s input is segmented
according to blobs, edges, bars, curves, and boundaries. Furthermore, Hubel and
Wiesel [18] demonstrated that individual cells on the primary visual cortex of an
animal model respond to wave textures with different angles, providing evidence
that supports Marr’s theory. Since Gabor filters [13] are based on mathematical
functions that are capable of modeling elements that resemble those that the
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animal visual cortices respond to, these filters became of customary use in com-
puter vision, and have been used for texture characterization [19], [25], character
recognition [15], edge detection [33], and face recognition [8]. While several works
examine their integration into DNNs [1], [28], [41], none investigate the effect of
introducing parameterized Gabor filters into DNNs on the robustness of these
networks. Our work fills this gap in the literature, as we provide experimental
results demonstrating the significant impact that such architectural change has
on improving robustness. Figure 1 shows an overview of our work and results.

Contributions: Our main contributions are two-fold: (1) We propose a
parameterized Gabor-structured convolutional layer as a replacement for early
convolutional layers in DNNs. We observe that such layers can have a remarkable
impact on robustness. Thereafter, we analyze and derive an analytical expression
for a Lipschitz constant of the Gabor filters, and propose a new training regu-
larizer to further boost robustness. (2) We empirically validate our claims with
a large number of experiments on different architectures (LeNet [24], AlexNet
[21], VGG16 [141] and Wide-ResNet [51]) and over several datasets (MNIST [22],
SVHN [31], CIFAR10 and CIFARI100 [20]). We show that introducing our pro-
posed Gabor layers in DNNs induces a consistent boost in robustness at negligi-
ble cost, while preserving high generalizing test performance. In addition, we ex-
perimentally show that our novel regularizer based on the Lipschitz constant we
derive can further improve adversarial robustness. For instance, we improve ad-
versarial robustness on certain networks by almost 18% with /., bounded noise
of 8/255. Lastly, we show empirically that combining this architectural change
with adversarial training [29], [13] can further improve robustness.?

2 Related Work

Integrating Gabor Filters with DNNs. Several works attempted to combine
Gabor filters and DNNs. For instance, the work of [11] showed that replacing
the first convolutional layers in DNNs with Gabor filters speeds up the train-
ing procedure, while [28] demonstrated that introducing Gabor layers reduces
the parameter count without hurting generalization accuracy. Regarding large
scale datasets, Alekseev and Bobe [1] showed that the standard classification
accuracy of AlexNet [21] on ImageNet [10] can be attained even when the first
convolutional filters are replaced with Gabor filters. Moreover, other works have
integrated Gabor filters with DNNs for various applications, e.g., pedestrian de-
tection [35], object recognition [50], hyper-spectral image classification [7], and
Chinese optical character recognition [55]. Likewise, in this work, we study the
effects of introducing Gabor filters into various DNNs by means of a Gabor
layer, a convolution-based layer we propose, in which the convolutional filters
are constructed by a parameterized Gabor function with learnable parameters.
Furthermore, and based on the well-defined spatial structure of these filters, we
study the effect of these layers on robustness, and find encouraging results.

3 Code at https://github.com/BCV-Uniandes/Gabor_Layers_for_Robustness
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Robust Neural Networks. Recent work demonstrated that DNNs are vul-
nerable to perturbations in their input. While input perturbations as simple as
shifts and translations can cause drastic changes in the output of DNNs [54], the
case of carefully-crafted adversarial perturbations has been of particular inter-
est for researchers [47]. This susceptibility to adversarial perturbations incited a
stream of research that aimed to develop not only accurate but also robust DNNs.
A straightforward approach to this nuisance is the direct augmentation of data
corrupted with adversarial examples in the training set [15]. However, the per-
formance of this approach can be computationally limited, since the amount of
augmentation needed for a high dimensional input space is computationally pro-
hibitive. Moreover, Papernot et al. [36] showed that distilling DNNs into smaller
networks can improve robustness. Another approach to robustness is through
the functional lens. For instance, Parseval Networks [1 1] showed that robustness
can be achieved by regularizing the Lipschitz constant of each layer in a DNN
to be smaller than 1. In this work, along the lines of Parseval Networks [11], and
since Gabor filters can be generated by sampling from a continuous Gabor func-
tion, we derive an analytical closed form expression for the Lipschitz constant
of the filters of the proposed Gabor layer. This derivation allows us to propose
well-motivated regularizers that can encourage Lipschitz constant minimization,
and then harness such regularizers to improve the robustness of networks with
Gabor layers.

Adversarial Training. An orthogonal direction for obtaining robust mod-
els is through optimization of a saddle point problem, in which an adversary,
whose aim is to maximize the objective, is introduced into the traditional opti-
mization objective. In other words, instead of the typical training scheme, one
can minimize the worst adversarial loss over all bounded energy (often measured
in ¢, norm) perturbations around every given input in the training data. This
approach is one of the most celebrated for training robust networks, and is now
popularly known as adversarial training [29]. However, this training comes at an
inconvenient computational cost. To this regard, several works [43], [48], [52] pro-
posed faster and computationally-cheaper versions of adversarial training capa-
ble of achieving similar robustness levels. In this work, we use “free” adversarial
training [43] in our experiments to further study Gabor layers and adversar-
ial training as orthogonal approaches to achieve robustness. Our results show
how Gabor layers interact positively with adversarial training and hence, can be
jointly used for enhancing network robustness.

3 Methodology

As demonstrated by Hubel and Wiesel [18], the first layers of visual processing
in the animal brain are responsible for detecting low-level visual information.
Since Gabor filters have the capacity to capture low-level representations, and
inspired by the robust properties of the animal visual system, we hypothesize
that Gabor filters possess inherent robustness properties that are transferable
to other systems, perhaps even DNNs. In this section, we discuss our proposed
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Fig.2: Gabor layer operations. (1) We generate filters by rotating a sampled
grid over multiple orientations and then evaluating the Gabor function according
to the set of parameters P to yield the set of filters Fp (2). Then, we construct
the total set of filters K by joining multiple sets Fp, (3). Finally, the Gabor
Layer operation (4) separately convolves every filter in K with every channel
from the input, applies ReLU non-linearity, and then applies a 1 x 1 convolution
to the output features to get the desired number of output channels.

Gabor layer and its implementation. Then, we derive a Lipschitz constant to the
Gabor filter, and design a regularizer, which aims at controlling the robustness
properties of the layer by controlling the Lipschitz constant.

3.1 Convolutional Gabor Filter as a Layer

We start by introducing the Gabor functions, defined as follows:

Go(2 s 0,7, A1) i= e~ @70/ cos(Na! + o))

2 =xcosh —ysinh y = xsind + ycosh.

(1)

To construct a discrete Gabor filter, we discretize z and y in Equation (1)
uniformly on a grid, where the number of grid samples determines the filter size.
Given a fixed set of parameters {o,v, A, ¥}, a grid {(z;,v:)} K of size k x k,
a rotation angle 6; and a filter scale o, computing Equation (1) with a scale
over the grid yields a single surface a;Go, (z/,y';0,7,\,1) € RP>F*Fthat we
interpret as a filter for a convolutional layer. The learnable parameters [39] for
such a function are given by the set P = {a;, 0,7, A\, ¥;Vj =1,...,7}, where the
rotations 6; are restricted to be r angles uniformly sampled from the interval
[0, 27]. Evaluating these functions results in r rotated filters, each with a scale
a; defined by the set Fp = {a;Gy, }’_;. In this work, we consider several sets of
learnable parameters P, say p of them, thus, the set of all Gabor filters (totaling
to rp filters) is given by the set K = {Fp,}’_,. Refer to Figure 2 for a graphical
guide on the construction of K.

3.2 Implementation of the Gabor Layer

Given an input tensor I with m channels, I € R™*"*% the Gabor layers follow
a depth-wise separable convolution-based [10] approach to convolve the Gabor
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filters in K with I. The tensor I is first separated into m individual channels.
Next, each channel is convolved with each filter in /C, and then a ReLLU activation
is applied to the output. Formally, the Gabor layer with filters in the set K
operating on some input tensor I is presented as R = {ReLU(I;  f;), I; €
Z, fj € K, Vi,j} where I; = I(i,:,:) € R xw and % denotes the convolution
operation. This operation produces |R| = mrp responses. Finally, the responses
are stacked and convolved with a 1x 1 filter with n filters. Thus, the final response
is of size n x b’ x w’. Figure 2 shows an overview of this operation.

3.3 Regularization

A function f: R™ — R is L-Lipschitz if || f(z) — f(v)|| < L||z — y|| Yx,y € R,
where L is the Lipschitz constant. Studying the Lipschitz constant of a DNN
is essential for exploring its robustness properties, since DNNs with a small
Lipschitz constant enjoy a better-behaving backpropagated signal of gradients,
improved computational stability [12], and an enhanced robustness to adversar-
ial attacks [L1]. Therefore, to train networks that are robust, Cisse et al. [11]
proposed a regularizer that encourages the weights of the networks to be tight
frames, which are extensions of orthogonal matrices to non-square matrices.
However, the training procedure is nontrivial to implement. Following the intu-
ition of [11], we study the continuity properties of the Gabor layer and derive an
expression for a Lipschitz constant as a function of the parameters of the filters,
P. This expression allows for direct network regularization on the parameters of
the Gabor layer corresponding to the fastest decrease in the Lipschitz constant
of the layer. To this end, we present our main theoretical result, which allows us
to apply regularization on the Lipschitz constant of the filters of a Gabor layer.

Theorem 1. Given a Gabor filter Gg(m,n;o,7v, A, 1), a Lipschitz constant L of
the convolutional layer that has Gy as its filter, with circular boundary conditions
for the convolution, is given by:

I = (1 + |X/|e—mz/02) (1 + |Y/‘e—72nz/02) ,

where X' = X\ {0}, Y/ =Y\ {0}, X = {xl}fil and Y = {yz}fil are sets of
sampled values of the rotated (z',y") grid where {0} € X, Y, m, = argmin, ¢ x/ ||
and n, = argmin, ¢y |y|.

Proof. To compute the Lipschitz constant of a convolutional layer, one must
compute the largest singular value of the underlying convolutional matrix of the
filter. For separable convolutions, this computation is equivalent to the max-
imum magnitude of the 2D Discrete Fourier Transform (DFT) of the Gabor
filter G [1] [12]. Thus, the Lipschitz constant of the convolutional layer is given
by L = max, ,|DFT (Go(m,n;0,v,\,v))|, where DFT is the 2D DFT over the
coordinates m and n in the spatial domain, v and v are the coordinates in the
frequency domain, and |- | is the magnitude operator. Note that Gy can be ex-
pressed as a product of two functions that are independent of the sampling sets
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X and Y as follows:
Go(myn; 0,7, A, ) i= e ™/ cos(Am + ) ¢ /7

F(mso A ) 9(n;0,7)

Thus, we have

L = max ’DFT (Ge(myn; a,7%, Aa w)) |

uU,v

= H;aUXI et f(mio, \ ) Y e g(ns0,9))]

meX ney

<max > |f(mio A w)| D lg(ni o).

meX ney
Note that w,, = %, Wy = J‘ZTT and j2 = —1. The last inequality follows from
Cauchy—Schwarz and the fact that |[e”“m%™"| = |e~“~""| = 1. Note that since

lg(n;o,7v)| = g(n;0,7), and |f(m; o, \,¥)| < e~™/7” we have that:

L< Z e—7n2/o'2 Z 6—72n2/02 < (1 + |X/|e—7ni/02) (1 + |Y/|€_’yznz/02) ]
meX ney

The last inequality follows by construction, since we have {0} € X,Y, i.e.,
the choice of uniform grid contains the 0 element in both X and Y, regardless of
the orientation ¢, where m, = argmin, ¢ x/|z[, and n, = argmin, ¢y~ |y|. O

3.4 Lipschitz Constant Regularization

Theorem 1 provides an explicit expression for a Lipschitz constant of the Ga-
bor filter as a function of its parameters. Note that the expression we derived
decreases exponentially fast with o. In particular, we note that, as o decreases,
Gy converges to a scaled Dirac-like surface. Hence, this Lipschitz constant is
minimized when the filter resembles a Dirac-delta. Therefore, to train DNNs
with improved robustness, one can minimize the Lipschitz constant we derived
in Theorem 1. Note that the Lipschitz constant of the network can be upper
bounded by the product of the Lipschitz constants of individual layers. Thus,
decreasing the Lipschitz constant we provide in Theorem 1 can aid in decreasing
the overall Lipschitz constant of a DNN, and thereafter enhance the network’s
robustness. To this end, we propose the following regularized loss:

L="Le+ 0 Zaf, (2)

where L. is the typical cross-entropy loss and 8 > 0 is a trade-off parameter.
The loss in Equation (2) can lead to unbounded solutions for ;. To alleviate
this behavior, we also propose the following loss:

L',:[,mqtﬂZ(u tanh o;)?, (3)
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where p is a scaling constant for tanh o. In the following section, we present ex-
periments showing the effect of our Gabor layers on network robustness. Specif-
ically, we show the gains obtained from the architectural modification of in-
troducing Gabor layers, the introduction of our proposed regularizer, and the
addition of adversarial training to the overall pipeline.

4 Experiments

To demonstrate the benefits and impact on robustness of integrating our Gabor

layer to DNNs, we conduct extensive experiments with LeNet [24], AlexNet [21],
VGG16 [14], and Wide-ResNet [51] on the MNIST [22], CIFAR10, CIFAR100 [20]
and SVHN [31] datasets. In each of the aforementioned networks, we replace up

to the first three convolutional layers with Gabor layers, and measure the impact
of the Gabor layers in terms of accuracy, robustness, and the distribution of
singular values of the layers. Moreover, we perform experiments demonstrating
that the robustness of the Gabor-layered networks can be enhanced further by
using the regularizer we propose in Equations (2) and (3), and even when jointly
employing regularization and adversarial training [43].

4.1 Implementation Details

We train all networks with stochastic gradient descent with weight decay of
5 x 10~*, momentum of 0.9, and batch size of 128. For MNIST, we train the
networks for 90 epochs with a starting learning rate of 10~2, which is multiplied
by a factor of 10! at epochs 30 and 60. For SVHN, we train models for 160
epochs with a starting learning rate of 10~2 that is multiplied by a factor of 10+
at epochs 80 and 120. For CIFAR10 and CIFAR100, we train the networks for
300 epochs with a starting learning rate of 102 that is multiplied by a factor of
10~! every 100 epochs.

4.2 Robustness Assessment

Following common practice for robustness evaluation [29], [43], we assess the
robustness of a DNN by measuring its prediction accuracy when the input is
probed with adversarial attacks, which is widely referred to in the literature as
“adversarial accuracy”. We also measure the “flip rate”, which is defined as the
percentage of instances of the test set for which the predictions of the network
changed when subjected to adversarial attacks.

Formally, if # € R? is some input to a classifier C' : R? — R* C(z) is the
prediction of C' at input z. Then, 221 = x + n is an adversarial example if the
prediction of the classifier has changed, i.e. C(z2dV) # C(z). Both n and x4V
must adhere to constraints, namely: (i) the ¢,-norm of 7 must be bounded by
some €, i.e., |n]l, <€ and (i) " must lie in the space of valid instances X,
ie., 22V ¢ [0, 1]d. A standard approach to constructing v for some input
is by running Projected Gradient Descent (PGD) [29] with « as an initialization
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Table 1: Test set accuracies on different datasets of various baselines,
and their Gabor-layered versions. Gabor-layered architectures can recover
the accuracies of their standard counterparts while providing robustness. A is the
absolute difference between the baselines and the Gabor-layered architectures.

Dataset ‘ Architecture ‘ Baseline Gabor A

MNIST LeNet 99.36 99.03 0.33
SVHN WideResNet 96.62 96.70 0.08
SVHN VGG16 96.52 96.18 0.34
CIFAR10 VGG16 92.03 91.35 0.68
CIFAR100 AlexNet 46.48 45.15 1.33
CIFAR100| WideResNet 77.68 76.86 0.82
CIFAR100 VGG16 67.54 64.49 3.05

for several iterations. For some loss function £, a PGD iteration projects a step
of the Fast Gradient Sign Method [15] onto the valid set S, which is defined by
the constraints on 7 and 221V, Formally, one iteration of PGD attack is:

ph — H (xk + § sign (ka£<$ka y))) )
S

where ] ¢ is the projection operator onto S and y is the label. In our experiments,
we consider attacks where 7 is e-£,, bounded. For each image, we run PGD for
200 iterations and perform 10 random restarts inside the e-f,, ball centered in
the image. Following prior art [18], we set € € {0.1,0.2,0.3} for MNIST and
€ € {2/255,8/255,16/255} for all other datasets. Throughout our experiments, we
assess robustness by measuring the test set accuracies under PGD attacks.

4.3 Performance of Gabor-Layered Architectures

The Gabor function in Equation (1) restricts the space of patterns attainable by
the Gabor filters. However, this set of patterns is aligned with what is observed
in practice in the early layers of many standard architectures [2], [21]. This
observation follows the intuition that DNNs learn hierarchical representations,
with early layers detecting lines and blobs, and deeper layers learning semantic
information [12]. By experimenting with Gabor layers on various DNNs, we find
that Gabor-layered DNNs recover close-to-standard, and sometimes better, test-
set accuracies on several datasets. In Table 1, we report the test-set accuracies
of several dataset-network pairs for standard DNNs and their Gabor-layered
counterparts. We show the absolute difference in performance in the last column.

Moreover, in Figure 3, we provide a visual comparison between the patterns
learned by AlexNet in its original implementation [21] and those learned in the
Gabor-layered version of AlexNet (trained on CIFAR100). We observe that fil-
ters in the Gabor layer converge to filters that are similar to those found in the
original implementation of AlexNet, where we observe blob-like structures and
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Fig.3: Comparison between filters learned by AlexNet and by Gabor-
layered AlexNet. (a) Various filters learned in the first convolutional layer
of AlexNet in its original implementation [21]. (b) Several filters learned in the
Gabor-layered version of AlexNet. Each column in (b) is a different orientation
of the same filter, while each row represents a different set of parameters of the
Gabor function. Note that standard convolutional layers use multiple-channeled
filters, while Gabor layers use single-channeled filters. Compellingly, both sets of
filters present blobs and oriented edges and bars of various sizes and intensities.

oriented edges and bars of various sizes. Note that both sets of filters are, in
turn, similar to filter banks traditionally used in computer vision, as those pro-
posed by Leung and Malik [25]. Next, we show that the Gabor-layered networks
highlighted in Table 1 not only achieve test set accuracies as high as those of
standard DNNs, but also enjoy better robustness properties for free.

4.4 Distribution of Singular Values

The Lipschitz constant of a network is an important quantity in the study of
the network’s robustness properties, since it is a measure of the variation of the
network’s predictions under input perturbations. Hence, in this work we study
the distribution of singular values and, as a consequence, the Lipschitz constant
of the filters of the layers in which we introduced Gabor layers instead of regular
convolutional layers, in a similar fashion to [11]. In Figure 4 we report box-
plots of the distributions of singular values for the first layer of LeNet trained
on MNIST, and the first three layers of VGG16 trained on CIFAR100. Each
plot shows the distribution of singular values of the standard architectures (S),
Gabor-layered architectures (G), and Gabor-layered architectures trained with
the regularizers (G+r) proposed in Equations (2) and (3).

Figure 4 demonstrates that the singular values of the filters in Gabor layers
tend to be concentrated around smaller values, while also being distributed in
smaller ranges than those of their standard convolutional counterparts, as shown
by the interquartile ranges. Additionally, in most cases, the Lipschitz constant
of the filters of Gabor layers, i.e. the top notch of each box-plot, is smaller than
that of standard convolutional layers.
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Fig.4: Box-plot representation of the distribution of singular values
in layers of LeNet and VGG16. Left: LeNet on MNIST. Right: VGG16 on
CIFARI100. S: Standard; G: Gabor-layered; G+r: Gabor-layered with regulariza-
tion. The top notch of each box-plot corresponds to the maximum value of the
distribution, i.e. the Lipschitz constant of the layer.

Moreover, we find that training Gabor-layered networks with the regularizer
we introduced in Equations (2) and (3) incites further reduction in the singular
values of the Gabor filters, as shown in Figure 4. For instance, the Gabor-layered
version of LeNet trained on MNIST has a smaller interquartile range of the singu-
lar values, but still suffers from a large Lipschitz constant. However, by jointly
introducing both the Gabor layer and the regularizer, the Lipschitz constant
decreases by a factor of almost 5. This reduction in the Lipschitz constant is
consistent in all layers of VGG16 trained on CIFAR100.

4.5 Robustness in Gabor-Layered Architectures

After observing significant differences in the distribution of singular values be-
tween standard convolutional layers and Gabor layers, we now study the impact
on robustness that Gabor layers introduce. We study the robustness properties
of different architectures trained on various datasets when Gabor layers are in-
troduced in the first layers of each network. The modifications that we perform
on each architecture are:

LeNet. We replace the first layer with a Gabor layer with p = 2.

AlexNet. We replace the first layer with a Gabor layer with p = 7.

— WideResNet. We replace the first layer with a Gabor layer with p = 4 for
SVHN, and p = 3 for CIFAR100.

— VGG16. We replace the first three layers with Gabor layers with parameters

p=3,p=1and p = 3, respectively.

Note that we fix the number of rotations r to be 8 in all of the experiments,
and we leave the ablation on p to the Appendix.
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Table 2: Adversarial accuracy comparison. We compare Standard (S), Gabor-
layered (G), and regularized Gabor-layered (G+r) architectures. For each attack
strength (), the highest performance is in bold; second-highest is underlined.

€ | 2/255 | 8/255 | 16/255
Dataset NetworkH S G G—i—r‘ S G G—l—r‘ S G GHr

SVHN WRN |]40.27 49.35 53.36| 1.02 1.03 1.13 |1.32 1.36 1.19
SVHN VGG16||57.86 62.88 64.03| 5.84 14.57 15.99| 2.33 7.98 8.88
CIFAR10 VGG16 || 34.22 37.60 38.07|23.63 30.11 30.69|13.88 19.50 19.93
CIFAR100 AN 15.05 14.77 14.68|4.80 7.71 7.88|5.37 6.25 6.67
CIFAR100 WRN || 4.52 8.06 9.33|2.38 292 3.07|1.65 24 2.59
CIFAR100 VGG16 || 27.22 31.12 31.68|18.46 25.82 26.64|10.49 15.40 16.06

Standard Architectures vs. Gabor-Layered Architectures. We report
the adversarial accuracies on both standard architectures and Gabor-layered
architectures, where we refer to each with “S” and “G”, respectively. Table 2
presents results on SVHN, CIFAR10 and CIFAR100, and Table 3 presents results
on MNIST. We observe that Gabor-layered architectures consistently outperform
their standard counterparts across datasets, and can provide up to a 9% boost in
adversarial robustness. For instance, with e = 8/255 attacks, introducing Gabor
layers into VGG16 boosts adversarial accuracy from 23.63 to 30.11 (6.48% rela-
tive increment) and from 5.84 to 14.57 (8.73% relative increment) on CIFAR10
and SVHN (Table 2), respectively. For LeNet on MNIST, under an € = 0.2 at-
tack, introducing Gabor layers can boost adversarial accuracy from 4.39% to
7.94% (80% relative increment). Additionally, we report the flip rates for these
experiments and for experiments on ImageNet as well in the Appendix. On
the flip rates, we conduct a similar analysis, which yields equivalent conclusions:
introducing Gabor layers leads to boosts in robustness.

It is worthwhile to note that the increase in robustness we observe in the
Gabor-layered networks came solely from an architectural change, i.e. replacing
convolutional layers with Gabor layers, without there being any other modifica-
tion. Our experimental results demonstrate that: (1) Simply introducing Gabor
filters, in the form of Gabor layers, as low-level feature extractors in DNNs
provides beneficial effects to robustness. (2) Such robustness improvements are
consistent across datasets and architectures. Inspired by these results, we now
investigate the robustness effects of using our proposed regularization approach,
as proposed in Equations (2) and (3).

Robustness Effects of Introducing Regularization. To better control
robustness and to regularize the Lipschitz constant we derived in Theorem 1,
we proposed two regularizers for the loss function as per Equations (2) and (3).
As we noted in Subsection 4.4 (refer to Figure 4), Gabor-layered architectures
inherently tend to have lower singular values than their standard counterparts.
Additionally, upon training the same architectures with the proposed regularizer,
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Table 3: Adversarial accuracy comparison on MNIST. We compare Stan-
dard (S), Gabor-layered (G), and regularized Gabor-layered (G+r) architectures.
For each attack strength (€), the highest performance is in bold; second-highest
is underlined.

€ \ 0.1 \ 0.2 \ 0.3
Dataset Network|| S G G+r| S G G+r| S G  G+r
MNIST LeNet [[80.04 80.58 88.42] 4.39 7.94 22.69| 0.44 0.78 0.76

we observe that Gabor layers tend to enjoy further reduction in the Lipschitz
constant. These results suggest that such architectures may have enhanced ro-
bustness properties as a consequence.

To assess the role of the proposed regularizer on robustness, we train Gabor-
layered architectures from scratch following the same parameters from Subsec-
tion 4.1 and include the regularizer. We present the results in Tables 2 and 3,
where we refer to these regularized architectures as “G+r”. We observe that, in
most cases, adding the regularizer improves adversarial accuracy. For instance,
for LeNet on MNIST, the regularizer improves adversarial accuracy over the
Gabor-layered architecture without any regularization by 8% and 14% with
€ = 2/255,8/255 attacks, respectively. This improvement is still present in more
challenging datasets. For instance, for VGG16 on SVHN under attacks with
€ = 2/255 and € = 8/255, we observe increments of over 1% from the regularized
architecture with respect to its non-regularized equivalent. For the rest of the
architectures and datasets, we observe modest but, nonetheless, sustained in-
crements in performance. We report the flip rates for these experiments in the
Appendix. The conclusions obtained from analyzing the flip rates are analogous
to what we conclude from the adversarial accuracies: applying regularization on
these layers provides minor but consistent improvements in robustness.

It is worthy to note that, although the implementation of the regularizer is
trivial and that we perform optimization including the regularizer for the same
number of epochs as regular training, our results still show that it is possible to
achieve desirable robustness properties. We expect that substantial modifications
and optimization heuristics can be applied in the training procedure, with aims
at stronger exploitation of the insights we have provided here, and most likely
resulting in more significant boosts in robustness.

4.6 Effects of Adversarial Training

Adversarial training [29] has become the standard approach for tackling ro-
bustness. In these experiments, we investigate how Gabor layers interact with
adversarial training. We study whether the increments in robustness we ob-
served when introducing Gabor layers can still be observed in the regime of
adversarially-trained models. To study such interaction, we adversarially train
standard, Gabor-layered and regularized Gabor-layered architectures, and then
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Table 4: Adversarial accuracy with ¢ = 8/255. We study the effect of equip-
ping our Gabor-layered and regularized Gabor-layered architectures with adver-
sarial training on the robustness of the network.

CIFAR10 CIFAR100
Gabor|Reg.|Adv. training||AlexNet| VGG16|| AlexNet | VGG16
v 19.24 | 41.95 || 13.48 | 18.49
% v 20.26 | 42.41 [[ 10.94 | 19.66
v v 22.15 | 44.02 || 13.62 [ 19.41

compare their robustness properties. We use the adversarial training described
in [43], with 8 mini-batch replays, and e = 8/255.

In Table 4, we report adversarial accuracies for AlexNet on CIFAR10 and
CIFAR100 under € = 8/255 attacks. Even in the adversarially trained networks-
regime, our experiments show that (1) Gabor-layered architectures outperform
their standard counterparts, and (2) regularization of Gabor-layered architec-
tures provides substantial improvements in robustness with respect to their non-
regularized equivalents. Such results demonstrate that Gabor layers represent an
orthogonal approach towards robustness and, hence, that Gabor layers and ad-
versarial training can be jointly harnessed for enhancing the robustness of DNN.

The results we present here are empirical evidence that using closed form
expressions for filter-generating functions in convolutional layers can be exploited
for the purpose of increasing robustness in DNNs. We refer the interested reader
to the Appendix for the rest of the experimental results.

5 Conclusions

In this work, we study the effects in robustness of architectural changes in convo-
lutional neural networks. We show that introducing Gabor layers consistently im-
proves the robustness across various neural network architectures and datasets.
We also show that the Lipschitz constant of the filters in these Gabor layers
tends to be lower than that of traditional filters, which was theoretically and
empirically shown to be beneficial to robustness [11]. Furthermore, theoretical
analysis allows us to find a closed form expression for a Lipschitz constant of the
Gabor filters. We then leverage this expression as a regularizer in the pursuit of
enhanced robustness and validate its usefulness experimentally. Finally, we study
the interaction between Gabor layers, our regularizer, and adversarial training,
and show that the benefits of using Gabor layers are still observed when deep
learning models are specifically trained for the purpose of adversarial robust-
ness, showing that Gabor layers can be jointly used with adversarial training for
further enhancements in robustness.
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