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Abstract. We study conditional image repainting where a model is
trained to generate visual content conditioned on user inputs, and com-
posite the generated content seamlessly onto a user provided image while
preserving the semantics of users’ inputs. The content generation com-
munity has been pursuing to lower the skill barriers. The usage of human
language is the rose among thorns for this purpose, because the language
is friendly to users but poses great difficulties for the model in associat-
ing relevant words with the semantically ambiguous regions. To resolve
this issue, we propose a delicate mechanism which bridges the seman-
tic chasm between the language input and the generated visual content.
The state-of-the-art image compositing techniques pose a latent ceiling
of fidelity for the composited content during the adversarial training pro-
cess. In this work, we improve the compositing by breaking through the
latent ceiling using a novel piecewise value function. We demonstrate
on two datasets that the proposed techniques can better assist tackling
conditional image repainting compared to the existing ones.

Keywords: Image generation, semantic, compositing, adversarial

1 Introduction

The advanced image editing techniques lower the skill barriers and simplify the
required user inputs. For example, FaceApp [1] simplifies the user inputs to just
one click for various face editing tasks including the alternations of smile, age
and style. The research community also witnessed the great efforts along this
direction, e.g., GauGAN [13] is trained to synthesize images collaboratively with
users, i.e., users draw contours of objects, and GauGAN fills the object textures.

Aiming to further push the frontier of the practicability of the image editing
techniques, we study a practical use case of image editing, i.e., conditional image
repainting, which is achieved through the collaboration between users and the
trained model. By “repainting”, we mean that the model is trained to repaint an
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Fig. 1. From left to right, we show the input image, input semantic parsing mask (the
white indicates the unaltered regions), generated content, and composited image. The
input color description is “The grass is green and yellow, the pavement is gray, and the
sky is white”.

area of an existing image with some visual content. By “conditional”, we mean
that the visual content to be repainted is generated by the model conditioned on
several user inputs. As such, the conditional image repainting can be formulated
into two sub-tasks, i.e., conditional content generation and content compositing.
Figure 1 illustrates our targeted conditional image repainting problem.

Conditional content generation refers to visual synthesis tasks conditioned
on user inputs. The user inputs cover three aspects, i.e., geometry (shape, pose
and semantic labels), colors, and gray-scale textures, and can be roughly divided
into two categories, i.e., visually-concrete reference (e.g., reference images and
semantic parsing masks) and visually-abstract description (e.g., language and
latent code). For example, in [13,22], the geometry is provided by users as se-
mantic parsing masks, and the gray-scale textures altogether with colors as a
whole is squeezed into a latent code. To enable higher control flexibility, Li et
al. [12] attempt to use a separate reference image as user input for each aspect.
However, it is sometimes cumbersome to find a desirable reference image, or very
expensive to modify a reference image if the off-the-shelf one is not satisfying.

This motivates us to study the conditional content generation based on in-
puts that are more user-friendly. For the geometry, we follow [13,22] to use
semantic parsing masks as input which can be easily manipulated by users. The
gray-scale textures are highly correlated with the content class to be generated,
so we use the latent code as input for the sake of reducing users’ burden. A
naive solution of providing the color input is to ask users to select different
colors from a palette, and associate them with different parts of the geometry.
However, this solution may require extensive and precise operations on the user
interface, which is impractical on mobile devices with relatively small screens.
Natural language is a user-friendly option for summarizing colors and their dis-
tributions. In order to enforce the generated content at each region to reflect
its relevant words, the generation model needs to associate the word features
with the relevant regions on the image plane. The word features correspond to
semantically meaningful words, but as an embryo of the generated content, the
region features are semantically ambiguous, thus causing a great challenge for
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the cross-modality association. We name such a challenge as the semantic chasm.
In order to bridge the chasm, we disambiguate the semantics of region features
through the semantic parsing mark which can be considered as a cross-modality
mediator. By overlaying a semantic parsing mask on the image plane, regions
covered by object masks can be associated with words which are relevant to
the object class names. Guided by this philosophy, we propose a delicate and
plug-n-play SEmantic-BridgE (SEBE) attention mechanism for assisting using
language as the input color condition.

To complete the repainting task, the model needs to adjust the contrast and
brightness of the generated visual content according to a user-provide image
while preserving the semantics of the user-input conditions, and then composites
the adjusted content at the user-indicated location of the user-provided image.
The assumption is that the composited content should visually be indistinguish-
able from the innate content of the provided image. Based on this assumption,
state-of-the-art image compositing techniques [3,9] train an adversarial discrim-
inator for segmenting the composited content so as to supervise the compositing
model (which plays a similar role to a generator). Such an adversarial training
poses a latent ceiling of fidelity for the composited content with a rigid value
function by restricting that when training the compositing model, under no
circumstances, the discriminator should identify the innate content as the com-
posited one. However, there might be cases being mistakenly penalized where
the fidelity of the composited content is high enough to confuse the discrimina-
tor. Therefore, we propose a piecewise value function for the discriminator which
applies the proper penalization opportunistically. In order to pave the way for
the piecewise value function, we preprocess the input to the discriminator so as
to impede the convergence of the discriminator.

We conduct extensive experiments on CUB-200-2011 dataset [21] and COCO-
Stuff dataset [2], and show that the proposed SEBE attention mechanism and
piecewise value function are beneficial for conditional image repainting.

2 Related Works

Cross-modality attention. Most existing methods [4,15,17,25,26,29] addressed
the semantic chasm by attentively estimating the relevance between words and
regions. Such an attentive model is trained in a data-driven fashion and the
training is partially supervised by a cross-modality retrieval [25] or reconstruc-
tion [15] loss. Let e[i] and h[j] denote features of the i-th word and the j-th
region, respectively. Their relevance is estimated as an attention weight β[j, i]:

β[j, i] =
exp(s[j, i])∑K

k=1 exp(s[j, k])
, s[j, i] = (h[j])Tφ(e[i]), (1)

where s[j, i] is the similarity between h[j] and e[i] which is computed by the
dot product, and K is the number of words. φ(·) is a linear layer for mapping
the word features to the domain of the region features. With the estimated
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attention weights, in most existing methods [4,15,17,25,29], the words’ features
are aggregated by their relevance to each region on the image plane: c[j] =∑N

i=1 β[j, i]φ(e[i]), where c[j] is the aggregated word features (or named context
feature vector) for the j-th region. For each region, c[j] is concatenated with h[j],
so as to enforce the generated content at each region to reflect its relevant words.
Despite great improvements achieved, the cross-modality attention estimation is
still challenging because of the semantic ambiguity of regions.
Content compositing has been tackled from different angles, e.g., handcrafted
feature matching [20,24], fusion of semantic information [19], image reconstruc-
tion [6], etc. Recent progress in content compositing derives from the compositing
models [3,5,9,18] based on the adversarial training. As a concurrent work, Cong
et al. [5] train a U-Net [16] based model to fuse the composited content and the
innate content of the provided image, and also propose a domain verification
discriminator for supervising the compositing model. Compared to [5], [3,9,18]
address the compositing problem in a more parametric fashion, which train a
model to infer a set of contrast and brightness affine parameters for adjusting
the color tone of the composited content. The compositing model is supervised
by a segmentation [3,9] or detection [18] based adversarial discriminator.
Conditional normalization is proposed to alleviate the “condition dilution”
problem by performing an affine transformation after each normalization oper-
ation. The affine parameters, which are inferred through a network from the
input condition, are responsible for modulating the activations either element-
by-element [13] or channel-by-channel [10]. The element-wise transformation is
tailored for the input condition with spatial dimensions, e.g., parsing mask, while
the channel-wise one is much more general and not limited to spatial-explicit
condition, and thus should be suitable for our gray-scale texture condition, i.e.,
Gaussian noise vector.

3 Preliminaries

This section revisits recent techniques for addressing our targeted problems, so
as to analyze their limitations in detail, and clarify our motivations technically.

3.1 Object-driven attention for content generation

To further resolve the semantic chasm challenge, Li et al. [11] proposed the
object-driven attention in which with the help of objects’ names, the cross-
modality attention estimation can be converted to the attention estimation
within the same modality. The intuition of the object-driven attention (2) is
as follows: (i) The attention of a region to a word can be estimated by compar-
ing the name embedding of the object that covers this region and the embedding
of this word. If the name of an object to be generated in the image matches with
one in a sentence, the word embedding of these two names should be similar
thus leading to high and reliable attention weight. (ii) The descriptive words
of an object should reside around the object name in a sentence, so the feature
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of the object name should contain the information of its descriptive words due
to the property of the bi-directional LSTM based text encoder [25]. (iii) Given
the reliable attention weight and the meaningful feature of the object name,
it should be more effective in enforcing the reflection of the relevant words on
image regions. Similar to (1), the object-driven attention is formulated as:

βobj[t, i] =
exp(sobj[t, i])∑K

k=1 exp(sobj[t, k])
, sobj[t, i] = (ê+[t])T ê[i], (2)

where ê[i] and ê+[t] denote the GloVe embedding [14] of the i-th word and the
name of the t-th object, respectively. For the j-th region, if it is covered by the
t-th object, its object-driven context feature cobj[j] can be computed similarly to

computing c[j] using the cross-modality attention: cobj[j] =
∑N

i=1 β
obj[t, i]φ(e[i]).

If a region is not covered by any object, its object-driven context feature is set
to all-zero. For each region, c[j] and cobj[j] are concatenated with h[j] to enforce
the reflection of the relevant words.

Limitation 1 Despite the rationality of the object-driven attention, it has three
weaknesses that we cannot ignore. (i) The dot product is not suitable for comput-
ing the similarity in the object-driven attention (2), because its output depends
on the magnitude of the word embedding vectors. For example, the similarity
between any pair of identical word embedding vectors should be high and con-
stant, because their similarity should indicate the “perfect-match”. But, the dot
product cannot guarantee this. (ii) The context feature vectors driven by these
two attentions are concatenated with the region features without partiality. When
these two attentions are not in consensus for a particular region, it causes extra
burdens for the generation model learning to figure how out to use these two
attentions in the training stage. (iii) The concatenation of two context feature
vectors causes large overhead of the runtime memory.

3.2 Segmentation-based adversarial training for compositing

We study [3,9] to design our compositing model, which employ the segmentation-
based adversarial discriminator for training. During training, the adversarial
discriminator D learns to identify the composited foreground content by maxi-
mizing the value function V1:

max
D

V1(D,G) = Ey∼pdata(y)ξ
(

log(1−D(y|ȳ))
)

+ Ey∼pg(y)ξ
(

logD(y|ȳ)
)
+

Ey∼pdata(y)ξ
(

log(1−D(ȳ|y))
)

+ Ey∼pg(y)ξ
(

log(1−D(ȳ|y))
)
,

(3)

where pg is a probability distribution defined by the compositing model G, and
y and ȳ represent the foreground and background content, respectively. D(y|ȳ)
outputs the probability of y being the composited foreground content conditioned
on ȳ. ξ represents the mean-reduction function for pixels inside a content.

D has two directions with the shared parameters: D(y|ȳ) and D(ȳ|y). Given

a fixed G, the optimality of D(y|ȳ) is proved in [7] to be D∗G(y|ȳ) = pdata(y)
pdata(y)+pg(y) .
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In the supplementary, we prove the optimality ofD(ȳ|y) to beD∗G(ȳ|y) = 0 which
has nothing to do with pg, and thus can be regarded as a posterior-collapse state.
This is understandable because the amount of real images for training is limited,
given enough training steps, D(ȳ|y) should be able to memorize the data. At
that time, the loss terms related to D(ȳ|y) should be invalid.

During the training of G, G minimizes the value function V2:

min
G

V2(G,D) = Ey∼pg(y)ξ
(

logD(y|ȳ)
)

+ Ey∼pg(y)ξ
(

logD(ȳ|y)
)
. (4)

The intuition of V2(4) is that both the composited foreground content and the
innate background content should be identified as the innate content by D, i.e.,
D(y|ȳ) = 0 and D(ȳ|y) = 0, and thus these two contents should be indistinguish-
able. However, the minimax game shown in V1(3) and V2(4) is atypical from the
perspective of adversarial training, because the underlined terms in V1(3) and
V2(4) should be identical for each player in a typical minimax game. The typical
value function V ′2 can be formed by substituting the underlined term in V1(3)
for that in V2(4):

min
G

V ′2(G,D) = Ey∼pg(y)ξ
(

logD(y|ȳ)
)

+ Ey∼pg(y)ξ
(

log(1−D(ȳ|y))
)
. (5)

Limitation 2 Minimizing V ′2(5) pushes G to evolve toward confusing D to iden-
tify the innate content as the composited one, i.e., D(ȳ|y) = 1, which contradicts
the intuition of V2(4). Moreover, as discussed above, it should not be difficult
for D(ȳ|y) to reach its optimality. Thus, D(ȳ|y) could be reliable for most of the
training time, so the gradients deriving from the underlined term in V ′2(5) would
keep steady no matter how G evolves, thus bringing the potential harm to the
training. Considering the high reliability of D(ȳ|y), the underlined term in V2(4)
would be kept minimal during the training period no matter how G evolves, so
this term makes little sense in supervising G. Here we come to understand that
[3,9] abandon the harm of V ′2(5) and embrace the limitation of V2(4). The limita-
tion of V2(4) stems from the convenience for D(ȳ|y) in reaching the convergence.
Supposing that we can impede the convergence of D(ȳ|y), the reliability of D(ȳ|y)
should be weakened. In this fashion, the aforementioned intuition of V2(4) may
be too strict for the weakened D(ȳ|y), because there are higher chances that the
fidelity of the composited content is high enough to confuse D(ȳ|y) to mistakenly
identified the innate content as the composited one. So, G could be excessively
penalized by V2(4) given the weakened D(ȳ|y). In other words, V2(4) poses a la-
tent ceiling of fidelity for the composited content by constraining that the fidelity
of the composited content should not be high enough to confuse D(ȳ|y).

4 Conditional Image Repainting

In this work, the conditional image repainting is formulated as a generation-
compositing setting. In the generation phase, the content generation model Gcg

accepts three inputs: (i) a semantic parsing mask xg ∈ LNg×H1×W1 for defining
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the content geometry, where L ∈ {0, 1}, and Ng, H1 and W1 represent the
number of object classes, image height and width, respectively; (ii) a sentence
xc describing the colors and their distributions on the geometry; (iii) a Gaussian
noise vector xt ∼ N (0, 1) encoding the gray-scale textures. Then, Gcg maps these
inputs to a visual content ẏ, concluding the generation phase.

ẏ can be composited onto a user-provided image ȳ at a user-indicated loca-
tion. In order to make ẏ and ȳ more harmonious, the content compositing model
Gcc infers a set of contrast and brightness affine parameters for ẏ to be adjusted.

4.1 Semantic-bridge attention for content generation

In order to resolve Limitation 1, we propose the SEmantic-BridgE (SEBE) at-
tention mechanism for content generation. The intuition of SEBE attention is
the same as that of the object-driven attention in §3, i.e., bridging the semantic
chasm between the word features and the region features through the semantics
of the geometry that covers those regions. SEBE achieves improvements over
the object-driven attention in three aspects, i.e., attention estimation, attention
selection, and computational overhead.
Trustier attention estimation. Let ê[i] and ê+[t] denote the GloVe embed-
ding of the i-th word in the input sentence, and the name of the t-th object to
be generated on the image plane. For any region, if it is covered by the geometry
of the t-th object on the image plane, then its region feature hj can be repre-
sented by ê+[t]. Given the GloVe embedding of any word ê[i], the cross-modality
attention estimation between words and regions can thus be formulated as the
attention estimation of the same modality (viz. the space of GloVe embedding).

The object-driven attention computes the similarity between ê[i] and ê+[t]
as their dot product in (2). However, as discussed in §3, the dot product op-
eration is not suitable for computing the similarity for embedding of the same
modality, because its output depends on the magnitude of the word embedding
vectors. Therefore, supposing that the j-th region is covered by the t-th object,
we formulate the attention estimation of SEBE as

βSEBE[j, i] =
sSEBE[j, i] + 1∑K

k=1(sSEBE[j, k] + 1)
, sSEBE[j, i] =

(ê+[t])T ê[i]

‖ê+[t]‖‖ê[i]‖
, (6)

where sSEBE[j, k] ∈ [−1, 1] is the cosine similarity between ê+[t] and ê[i], viz. the
dot product operation normalized the magnitude of two vectors. The attention
weight βSEBE[j, i] ∈ [0, 1] is computed by shifting sSEBE[j, i] to be non-negative
and normalizing the shifted value by L1 Norm of attention weights of the t-th
object for all words. Thus, if ê+[t] and ê[i] are embedding vectors of the same
word (viz. object name), sSEBE[j, i] is able to stay constantly as 1. The coverage
relationship between regions and objects is specified in the input semantic pars-
ing mask xg. If a region is not covered by any objects, we set its SEBE attention
weight to be zero.
Smarter attention selection. As discussed in §3, the object-driven atten-
tion and the cross-modality are used to compute their respective context feature
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vector for each region, and these two types of context feature vectors are concate-
nated with the region features for model’s further processing. Such an impartial
treatment of these two attentions shift the duty of selecting which attention
to trust from the input end to model, which causes extra learning burdens for
model. Therefore, in SEBE, we address the attention selection at the input end
with the philosophy of “loudness is persuasive”. For the j-th region, we formulate
its context feature vector computation based on two types of attentions as

cSEBE[j] =

N∑
i=1

max(βSEBE[j, i], β[j, i])φ(e[i]). (7)

If the j-th region is covered by an object, βSEBE[j, i] is computed as in (6),
and otherwise is set to zero. β[j, i] is a cross-modality attention weight which is
computed as in (1). φ(·) is a linear layer as introduced below (1). Consequently,
there is only one context feature vector, i.e., cSEBE[j], for each region.
Lighter computational overhead. Reducing a half of the context feature vec-
tors reduce the runtime memory overhead significantly because the concatenated
features are supposed to be fed in a series of residual blocks which need to keep
the feature dimensions the same throughout the process.

4.2 Piecewise value function for content compositing

In order to resolve Limitation 2, we propose a piecewise value function for content
compositing. Specifically, we modify V2(4) by replacing its rigid underlined term
with a piecewise term:

S(D(ȳ|y)) =

{
Ey∼pg(y)ξ

(
logD(ȳ|y)

)
, if D(ȳ|y) < 0.5

Ey∼pg(y)ξ
(

log(1−D(ȳ|y))
)
, otherwise

(8)

The philosophies behind (8) are two-fold: (i) when D(ȳ|y) < 0.5, it retains the
intuition of V2(4) in §3.2 that the composited content should be indistinguishable
from the innate one, i.e., D(y|ȳ) = 0 and D(ȳ|y) = 0; (ii) otherwise, we con-
sider that y ∼ pg(y) has successfully confused D(ȳ|y), so we urge Gcc to evolve
along the direction of making D(ȳ|y) more confused (viz. producing composited
content of higher fidelity) by encouraging D(ȳ|y) to approximate 1.

Considering the gradient ineffectiveness issue of the underlined term in V ′2(5)
as justified in §3.2, combining these two philosophies in (8) help further improve
Gcc while circumventing the weakness of V ′2(5). By replacing the underlined term
in V2(4) with (8), we have the piecewise value function V3 as

min
G

V3(G,D) = Ey∼pg(y)ξ
(

logD(y|ȳ)
)

+ S(D(ȳ|y)). (9)

V1(3) and V3(9) compose a two-player minimax game for Gcc and its adversarial
discriminator Dcc. As discussed in §3.2, it is convenient for Dcc(y|ȳ) to reach
the convergence. Thus, in order to impede the convergence, we propose a novel
but delicate strategy to improve Dcc based on the design in [9], which will be
introduced in the network architecture design §4.3.
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Fig. 2. (a) The multistage conditional content generator Gcg takes as input three
conditions, i.e., geometry xg0, color xc, and gray-scale texture xt for the first stage. xc

and xt are encoded by Encc and Enct to form e and z for condition injection. xg0 is
encoded by Encg to form the initial region features h0. The resolution of xgi is doubled
with the increment of i, while the specified objects remain the same. ê and ê+ denote
the GloVe embedding of words in xc and names of objects specified in xgi . Red arrows
indicate that regions are associated with their relevant words through SEBE, and the
word features e are aggregated by these associations to form the context features c.
Green arrows indicate the injection of z under the guidance of xgi . (b) The input
preparation process, “scatter & shuffle”, for the compositing discriminator Dcc.

4.3 Network architecture design

Conditional content generator Gcg is multistage, in which every stage shares
the architecture that stacks two residual blocks as shown in Fig. 2(a). In each
block, we employ the Gated Adaptive Instance Normalization (GAIN) [23] for
injecting the texture code (i.e., , Gaussian noise), which is proved to overcome the
shortcomings of AdaIN in injecting the texture code for the non-rigid geometry.
hi+1 represents the intermediate features from the previous stage, which can be
fed into a conv-tanh block to generate an image ẏi+1 (omitted in Fig. 2(a)) The
resolution of ẏi+1 is doubled with the increment of i. Red arrows indicate the
inputs to and output from SEBE, which supplement the introduction in §4.1.

Compositing model Gcc. Its design follows the recently proposed pixel trans-
formation method [3] using a neural network to infer the contrast and brightness
transformation parameters given both the composited and the innate contents.

Compositing discriminator Dcc is not designed following the segmentation-
based discriminator in [3], because as discussed in §3.2, it is not difficult for the
segmentation-based discriminator to reach convergence because the discrimina-
tor can memorize data after some epochs. This could weaken the effectiveness
of the proposed piecewise value function in §4.2. Therefore, in order to impede
the convergence, we exponentially increase the amount of real training images
by reorganizing images using a simple “scatter & shuffle” strategy (which is also
applied to the composited images) as shown in Fig. 2(b). This makes Dcc very
hard to go through all reorganized images multiple times to memorize data dur-
ing training. Then, the real/fake labels are no longer distributed by pixels but by
patches. Therefore, we build Dcc as a simple CNN for patch-wise classification.
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4.4 Learning

We train the proposed generation-compositing framework by solving a minimax
optimization problem given by

min
Dcg,Dcc

max
Gcg,Gcc

Lcg(Dcg, Gcg, Gcc) + λ1Lcm(Gcg) + λ2Lcc(Dcc, Gcc) + λ3Lr(G
cc),

(10)
where Lcg, Lcm, Lcc, and Lr are the GAN loss for the overall image quality,
DAMSM loss [25] for the color condition, GAN loss and a regularization loss [3]
for the compositing performance, respectively. Dcg is a set of joint-conditional-
unconditional patch discriminators [11] for each stage of Gcg. Lcg, Lcm, and Lr

are borrowed from [23]. Lcc is defined by V1(3) for training Dcc and by V3(9)
for training Gcc. Let y denote a composited image. Applying Dcc to y, we have
p = Dcc(y), where p = {p1, . . . , pi, . . . , pN} is a set of probabilities with each
indicating how likely a patch belongs to the composited content. We define two
index sets for each y, i.e., the composited patch index set Ici and the innate patch
index set Iii. For training Dcc, Lcc is a typical classification loss. For training
Gcc, Lcc is defined as

Lcc(Gcc, Dcc) = − 1

N

(∑
i∈Ici

log(1− pi) +
∑
i∈Iii

logψ(pi)
)
, (11)

where ψ corresponds to the piecewise term in (8), which is defined as ψ(pi) =
1− pi, if pi < 0.5; otherwise, ψ(pi) = pi.

Based on the experiments on a held-out validation set, we set the hyperpa-
rameters in this section as: λ1 = 20, λ2 = 0.03, and λ3 = 1.0.

5 Experiments

Datasets. We use CUB-200-2011 [21] and COCO-Stuff [2] for evaluation. For
CUB, we annotate bird images with parsing masks, and follow [25] for data
processing. For COCO, we select 9 most common stuff classes to use, including
sky, grass, road, clouds, pavement, dirt, sand, bush, and sea. We annotate 10
captions per image, and use 6.2K images for training and 1.4K for test.
Quantitative evaluation metrics. Three evaluation metrics are used: (i) we
use the Fréchet inception distance (FID) [8] score to evaluate the general image
quality. (ii) Following [25], we use R-precision to evaluate whether the generated
image is well conditioned on the input color description. More specifically, given a
generated image y conditioned on the input sentence xc and 9 randomly sampled
sentences, we rank these 10 sentences by the pre-trained DAMSM model. If
the ground truth sentence xc is ranked the highest, we count this a success
retrieval. We perform this retrieval task on all generated images and calculate
the percentage of success retrievals as the R-precision score. (iii) For measuring
the compositing quality, we follow [18] to use the M-score which is the output by
a manipulation detection model [28]. The higher M-score, the higher possibility
that an image has been manipulated. For each compared method, we randomly
pick 500 generated images to calculate the average M-score.
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Table 1. The quantitative experiments. ↑ (↓) means the higher (lower), the better.
The best performances are highlighted in bold. The compared baselines are divided
into six categories: Rows 1-2 for generation, and Rows 3-4 for compositing.

Category Methods
CUB-200-2011 COCO-Stuff

FID ↓ R-prcn (%) ↑ M-score ↓ FID ↓ R-prcn (%) ↑ M-score ↓

Attn Est
SEBE w/ DotPrdct 12.6 98.72 32.86 19.3 59.14 81.62
SEBE w/o CrsMod 12.68 98.75 35.68 19.43 58.73 72.11
CrsMod 12.21 98.7 31.38 19.06 60.48 78.54

Attn Sel SEBE w/o SAS 12.31 98.91 34.18 20.03 61.13 81.14

Seg
Seg V2(4) 12.12 98.74 28.1 19.11 60.36 75.16
Seg V3(9) 12.25 98.99 33.53 19.25 57.34 76.35

Cls
Cls V2(4) 12.39 98.81 27.17 19.23 57.4 74.74
Cls V ′

2 (5) 12.44 99.18 34.95 19 57.65 81.22
Cls V3(9) w/o Pwise 12.62 98.99 26.65 18.96 58.53 76.21

Ours SEBE-GAIN-Cls-V3(9) 12.08 98.94 24.6 18.91 65.43 67.96

5.1 Content generation

We evaluate two aspects of our method for content generation, i.e., attention
estimation (abbr. Attn Est) and attention selection (abbr. Attn Sel) in §4.1. For
each aspect, we create some baselines either by disabling modules of our model
or adapting the existing techniques to our task. The quantitative and qualitative
comparison are shown in Table 1 and left side of Fig. 3, respectively. Note that
our full-version method outperforms the compared baselines in most metrics on
both datasets, which demonstrates the effectiveness of our proposed modules
quantitatively, so we focus on analyzing the qualitative results in the following.
Attention estimation. We create three baselines for this aspect: (i) SEBE w/
DotPrdct using the object-driven attention (2) [11] for estimation, and keep-
ing the attention selection (7); (ii) SEBE w/o CrsMod by disabling the cross-
modality attention in (7); (iii) CrsMod using the cross-modality attention esti-
mation (1) [25], and by disabling the SEBE attention in (7). Figure 3 shows that
SEBE is effective in controlling the color artifacts such as Column 3 and 5 for
SEBE w/ DotPrdct, Column 2 and 4 for SEBE w/o CrsMod, and Column 4 for
CrsMod. Please refer to §2 and Limitation 1 for shortcomings of these baselines.
Attention selection. We create SEBE w/o SAS by disabling the attention
selection (7). As justified in §4.1, this module should be able to shift model’s
burden in selecting attention to the input end. The texture artifacts in Column
1 and the color artifacts in Column 4 of Fig. 3 are obvious for SEBE w/o SAS.

5.2 Content compositing

For content compositing, we evaluate the influences of discriminator design,
i.e., the full-image and segmentation based discriminator [3] (abbr. Seg) vs. the
shuffled-patches and classification based one (abbr. Cls), and the influences for
different value functions including V2(4), V ′2(5), V3(9) w/o the piecewise (abbr.
Pwise) term (8), and V3(9).
Seg vs. Cls. When the Seg and Cls discriminators are evaluated with the same
value functions, i.e., V2(4) and V3(9), Cls outperforms Seg in terms of M-score on
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Fig. 3. Qualitative comparison for content generation (left) and compositing (right).
Best viewed on the computer, in color and zoomed-in. Input color descriptions: (1)
“This bird is black and yellow in color, and has an orange beak.” (2) “The bird has a
white belly and chest with gray wings and tail and black striped head.” (3) “This bird
has a white belly and breast, with a long orange hooked bill.” (4) “The pavement is
brown and gray.” (5) “The grass in the picture is brown and green.”

both datasets, which demonstrate the effectiveness of our discriminator design
in §4.3. In the supplementary, we show that the Seg discriminator reaches the
convergence much faster than the Cls one. This implies that Seg discriminator
and the compositing model reach the Nash equilibrium faster, which prevents
further improving the compositing model in the training.

Value functions. In Table 1, Cls V3(9) outperforms Cls V2(4) significantly in
terms of M-score, while this is not the case for the Seg. This phenomenon echos
our analysis in Limitation 2 that we need to first impede the early convergence
of the discriminator before the value function is improved. It also proves the
necessity of modifying the discriminator as in §4.3. In addition, Cls V ′2(5) yields
much worse M-score than our method, which provides some evidence for our
discussions in Limitation 2 about the weakness of V ′2(5). Here we come to know
that both V2(4) and V ′2(5) cannot achieve prominent compositing performance
alone. In fact, our proposed V3(9) implements a mechanism for choosing to apply
V2(4) or V ′2(5) at the right time. To further study the impact of the proposed
piecewise term (8), we simply remove it from V3(9) to see the results. This means
that the discriminator only cares about the composited content but ignores the
innate one when training the compositing model. From Table 1, we see that
the influences are more obvious on COCO-Stuff than on CUB. This might be
because that COCO-Stuff is more challenging than CUB.

Assumption in Limitation 2 is that the fidelity of the composited content is
high enough to confuse D(ȳ|y) to mistakenly identified the innate content as the
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Fig. 4. Composited images in which the innate content is correctly identified or
misidentified by Dcc are shown on the left and right, respectively.

Fig. 5. Comparison with [27] for mask based object removal. Masks are placed in the
lower-left corner of the edited images, where the gray indicates regions to be filled.
From left to right, we show the real image, the result of [27], and our result.

composited one, which is also the motivation for us to improve the value function
in §4.2. Therefore, we select a discriminator in-between the training process, and
visualize in Fig. 4 the randomly-sampled composited images in which the innate
content is correctly identified or misidentified by our compositing discriminator
Dcc. We can see that the compositing fidelity of the misidentified images is
generally higher than that of the correctly identified images, which provides
evidence supporting the assumption.

5.3 Qualitative study

Object removal is always considered as a task for image inpainting. However, as
shown in Fig. 5, the recently proposed [27] cannot handle cases with complicated
background well. Surprisingly, our method can successfully remove the objects
despite the cost of substituting the generated content for a large portion of
content in the original images, e.g., sky and lawn in Fig. 5. In the supplementary,
we provide more analyses about this task and the limitations of our work in
handling this task, and indicate the future direction of our research.
Iterative image editing in the wild is shown on the right of Fig. 6. From
the real image in Column 5 to the final editing results in Column 8, the whole
scenes look quite different, which demonstrates the robustness and flexibility of
our method.

6 Conclusion

Targeting at a relatively new and practical task, conditional image repainting,
we propose two novel and delicate modules for addressing the weaknesses of the
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1 2 3 4 5 6 7 8

Fig. 6. Image editing in the wild. Column 1 and Column 5 show the real images.
Columns 2-4 show the alternation of input conditions. Columns 6-8 show the iterative
editing. See the supplementary for detailed input conditions for producing these images.

existing component technologies, i.e., semantic-bridge attention mechanism for
assisting using languages as conditional input, and a piecewise value function to
improve the adversarial training of the compositing model. We observe favorable
performance with both quantitative and qualitative results, and also explore
several interesting potential application scenarios of the proposed techniques.
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