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1 Architecture details

In our ‘encoder-decoder’ architecture (same for both subnets) 11 layers are used
with an latent space of dimensions M B x 2 x 2 x 1024, where M B stands for
mini-batch size. The architecture is given in Table 1. As it can be seen in this
table, an extra layer with linear activation (colored in yellow) is added to the
original decoder in order to get the final image output. In the case of RGB
image denoising the output image has 3 channels, whereas RAW image denoising
outputs 4 channels (R-G-G-B).

Layer | Filter Size |Stride Layer Filter Size |Stride
Conv. 1| 3 x 3 x 32 1 F-Conv. 1 3 x3x512 2
Conv. 2| 3 x 3 x64 2 F-Conv. 2 3 x 3 x 256 2
Conv. 3|3 x 3 x 128 2 F-Conv. 3 3 x3x128 2
Conv. 4|3 x 3 x 256 | 2 F-Conv. 4 3x3x64 2
Conv. 5|3 x 3 x512| 2 F-Conv. 5 3x3x32 2
Conv. 6|3 x 3 x 1024| 2 Extra last Conv. layer| 3 x 3 x {3,4}| 1

(a) Encoder (b) Decoder

Table 1: Details of the ‘encoder-decoder’ architecture employed in our work.
‘Filter size’ denotes the size of the filters for the convolutions; the last number
denotes the number of output filters. Conv denotes a convolutional layer. F-Conv
denotes a transposed convolutional layer with fractional-stride. An extra Conv
layer with linear activation (colored in yellow) is added to the original decoder
in order to get the final image output.

2 Motivation

Based on the bibliography [10], the primary sources of noise are shot noise, a
Poisson process with variance equal to the signal level, and read noise, an ap-
proximately Gaussian process caused by a variety of sensor readout effects. The
noise is spatially variant (non-Gaussian); hence, the assumption that noise is
spatially invariant, employed by many algorithms does not hold for real image
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Clean Reconstructed
RGB Image Clean RGB Image
PSNR = 36.5

Residual
RGB Image

Reconstructed
Clean RGB Image

PSNR = 41.7

Fig.1: Motivation of our method (picture taken from the main paper): By
characterizing directly the image spatially variant noise, the reconstruction of
the clean image is much more accurate. Instead of constraining the output of
a generator to span the target space, is better to constrain it to remove from
the noisy image only that information which spans the manifold of the residual
image.

noise. These effects are well-modeled by a signal-dependent Gaussian distribu-
tion [10]. Based on that, the variance of noise is proportional to image intensity
which means that the noise in real images is structured. Thus, a low dimen-
sional manifold of the image noise can be created. This makes sense because if a
low dimensional manifold of real image noise does not exist this means that the
same holds for the real image as well, something not true based on bibliography
((cGAN) [13)).

As it is mentioned in the main paper, by characterizing directly the image
spatially variant noise the reconstruction of the clean image is much more accu-
rate. In this way of thinking, instead of constraining the output of a generator
to span the target space, is better to constrain the generator to remove from the
noisy image only that information which spans the manifold of the residual im-
age. To justify our motivation (Fig. 1), we trained a standard ‘encoder-decoder’
type architecture with skip connections, same like Rec subnet, to:

— directly reconstruct the clean images.
— indirectly reconstruct the clean images by removing from the noisy images
the corresponding reconstructed image noise signal.

To do so, we have collected a dataset that consists of four classes of 12MP images:

— Buildings - 1010 images
— Foliage - 841 images
Text - 838 images

Misc - 815 images

In purpose, these data were collected under very low ISO conditions by using a
smartphone camera. The reason for choosing very low ISO values is to collect
clean images which could be used as clean ground truth images. On top of that,
we have removed some (very) light residual image noise to further enhance the
image quality of the clean ground truth data. The noise model parameters for
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the used camera sensor were available (like the noise model described in Section
3.1 in the main paper), thus we were able to generate a very big amount of
synthetic noisy data by adding camera sensor-based signal-dependent noise to
the clean images (one clean image could provide more than one noisy versions
because more than one different ISO values could be used to add noise to the
same clean image). To do so, we follow the same pipeline used in [8]. As a result,
each class in the dataset had ISO values in the range [40, 64000]. The ISO values
were random but uniformly sampled across each class. Some visual examples of
the real clean images are depicted in Fig. 2. Afterwards, the synthetic created
paired images were combined with real paired images to verify the generalization
ability of this experiment. To get real paired images we employed the SSID [1]
and RENOIR [2] datasets. In total, 5.5 million training patches of size 128 x 128
were extracted, while 40K patches (10K images from each class) with random
ISO values but uniformly sampled across each class were used as a validation
set.

In general, the skip connections enable deeper layers to capture more ab-
stract representations without the need of memorizing all the information. In
our ‘encoder-decoder’ type architecture, like in Rec subnet, only the lower-level
representations are propagated directly to the decoder through a (Unet style)
shortcut.

Fig. 2: Examples of images from the dataset used to justify the motivation behind
the proposed idea.

The total loss function consists of the content loss and the Deconv loss [5].
The ¢; loss between the ground-truth image and the output of the generator
was used in the case of direct image reconstruction as content loss, while the
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48.0 0.996
46.0 0.992
44.0 0.988
42.0 0.984
40.0 0,980
80 0.976
00 0.972
0.000  150.0k  300.0k  450.0k  600.0k 0.000  150.0k 300.0k  450.0k  600.0k

Fig.3: The reconstruction performance in terms of PSNR and SSIM
metrics for the ‘direct’ way of clean image reconstruction during the
training procedure. Left: PSNR values and Right: SSIM values.

4T 44
“' |
-
h « .‘J
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h L Ii.lml
Fig.4: Visual example for the ‘direct’ reconstruction of a clean vali-
dation image (example in RGB domain). First row: Ground truth clean

image patch channels, Second row: Corresponding reconstructed clean image
patch channels.

{5 loss used in the other case. Different content loss functions used because we
reported in this study the best results we got for each case. Except the different
content loss functions, during the training the same setup was used in both cases.
Adam [11] was used as the optimizer with default parameters; the learning rate is
initially set to 1073 and then halved after 10° iterations; ReLU activation used;
the network ran for 45 epochs. Regarding the training procedure, Fig. 3 shows
the reconstruction performance in terms of PSNR and SSIM metrics for the
direct way of clean image reconstruction, while Fig. 5 shows the reconstruction
performance in terms of PSNR and SSIM metrics for the indirect way of clean
image reconstruction. Regarding the validation procedure, Fig. 4 shows a visual
example for the direct way of clean image reconstruction, while Fig. 6 shows a
visual example for the indirect way of clean image reconstruction. Based on the
validation dataset, the averaged difference in PSNR was 7.5db. Based on these
results, the indirect way of clean image reconstruction is by far better than the
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75.0
1.00 °
65.0 0.996
0.992
55.0
0.988
45.0 0.984
0.000 40.00k 80.00k 120.0k 160.0k 0.000 40.00k 80.00k 120.0k 160.0k
60.0
1.00 7S
50.0 0.980
0.960
400
0.940
50.0 0.920
0.000 40.00k 80.00k 120.0k 160.0k 0.000 40.00k 80.00k 120.0k 160.0k

Fig.5: The reconstruction performance in terms of PSNR and SSIM
metrics for the ‘indirect’ way of clean image reconstruction during the
training procedure. Top-Left: PSNR values for the clean image reconstruc-
tion, Top-Right: SSIM values for the clean image reconstruction, Bottom-
Left: PSNR values for the image noise reconstruction and Bottom-Right:
SSIM values for the image noise reconstruction.

direct one (especially when a non very complex ‘encoder-decoder’ architecture is
employed (Table 1)). Thus, our motivation is experimentally justified. In short,
by using the residual learning to directly characterize the image noise makes the
task of image denoising much easier.

3 Experiments

3.1 Type of denoising

For all benchmarks, a blind and a non-blind version of our method had been
tested based on the info that ¢ represents. The blind version uses no extra con-
ditional information along with the noisy input image (empty ¢). As described
in the main paper (Section 3.3), in the non-blind version, ¢ could contain in-
formation regarding the camera noise model parameters (signal-dependent noise
variance) and/or the camera id.

In the case of non-blind denoising for the all benchmarks (Darmstadt Noise
Dataset (DnD) [15], Nam Dataset [14] and Smartphone Image Denoising Dataset
(SIDD) [1]) the camera id was provided (4 different standard consumer cameras
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Fig.6: Visual example for the ‘indirect’ reconstruction of a clean val-
idation image (example in RGB domain). First row: The three most
left images depict the clean image channels, while the three most right images
depict the corresponding noisy image channels, Second row: The three most
left images depict the reconstructed clean image channels, while the three most
right images depict the corresponding denoised image channels, Third row:
The three most left images depict the reconstructed image noise channels, while
the three most right images depict the corresponding ground truth image noise
channels.
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a) Noisy image ) BM3D | (c) CDnCNN-B [17] ) NC [12]

) MCWNNM [7 ) TWSC [16] ) CBDNet [8] ) Ours (Blind)

() Ours (Non Blind)

Fig. 7: A real noisy example from Nam dataset [14] for comparison of our method
against the state-of-the-art algorithms. Results of the proposed method shown
when ResNet [9] used as backbone network.

used for DnD, 3 for Nam and 5 for SIDD) while the noise model parameters for
each camera sensor were provided as well.

3.2 Visual results

Fig. 7 and 8 show some visual image denoising comparisons based on noisy
testing samples from Nam Dataset [14]. Fig. 9 shows a visual image denoising
comparison based on a real noisy test sample from DND dataset [15]. Fig. 10, 11,
12, 13, 14 and 15 show some image denoising results by using the proposed
method given as input the noisy validation images from our collected dataset
used to verified our motivation in Section 2. Based on all our experiments, the
proposed idea restores better the true colors which are closer to the original pixel
values than the competing methods. Also, by directly characterizing the image
noise, our method avoids in great degree the image over-smoothing.
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(b)

Fig. 10: Example of image denoising by using the proposed method and
an image (from ‘Buildings’ class) from our collected dataset. (a) Left:
Noisy image, Middle: Denoised image (PSNR: 43.76, SSIM: 0.9869), Right:
Clean image (Ground truth), (b) Left: Noisy image patch, Middle: Denoised
image patch, Right: Clean image patch (Ground truth).
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(b)

Fig.11: Example of image denoising by using the proposed method and
an image (from ‘Buildings’ class) from our collected dataset. (a) Left:
Noisy image, Middle: Denoised image (PSNR: 40.82, SSIM: 0.9809), Right:
Clean image (Ground truth), (b) Left: Noisy image patch, Middle: Denoised
image patch, Right: Clean image patch (Ground truth).
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(b)

Fig. 12: Example of image denoising by using the proposed method and
an image (from ‘Foliage’ class) from our collected dataset. (a) Left:
Noisy image, Middle: Denoised image (PSNR: 39.52, SSIM: 0.9776), Right:
Clean image (Ground truth), (b) Left: Noisy image patch, Middle: Denoised
image patch, Right: Clean image patch (Ground truth).
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(b)

Fig. 13: Example of image denoising by using the proposed method and
an image (from ‘Foliage’ class) from our collected dataset. (a) Left:
Noisy image, Middle: Denoised image (PSNR: 35.36, SSIM: 0.9769), Right:
Clean image (Groundtruth), (b) Left: Noisy image patch, Middle: Denoised
image patch, Right: Clean image patch (Groundtruth).
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Gl Al S

(b)

Fig. 14: Example of image denoising by using the proposed method and
an image (from ‘Misc’ class) from our collected dataset. (a) Left: Noisy
image, Middle: Denoised image (PSNR: 38.71, SSIM: 0.9770), Right: Clean
image (Groundtruth), (b) Left: Noisy image patch, Middle: Denoised image
patch, Right: Clean image patch (Groundtruth).
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Fig. 15: Example of image denoising by using the proposed method and
an image (from ‘Text’ class) from our collected dataset. Top: Noisy
image, Middle: Denoised image (PSNR: 47.27, SSIM: 0.9930), Bottom: Clean
image (Groundtruth).

630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674



