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1 Architecture details

In our ‘encoder-decoder ’ architecture (same for both subnets) 11 layers are used
with an latent space of dimensions MB × 2 × 2 × 1024, where MB stands for
mini-batch size. The architecture is given in Table 1. As it can be seen in this
table, an extra layer with linear activation (colored in yellow) is added to the
original decoder in order to get the final image output. In the case of RGB
image denoising the output image has 3 channels, whereas RAW image denoising
outputs 4 channels (R-G-G-B).

Layer Filter Size Stride

Conv. 1 3× 3× 32 1
Conv. 2 3× 3× 64 2
Conv. 3 3× 3× 128 2
Conv. 4 3× 3× 256 2
Conv. 5 3× 3× 512 2
Conv. 6 3× 3× 1024 2

(a) Encoder

Layer Filter Size Stride

F-Conv. 1 3× 3× 512 2
F-Conv. 2 3× 3× 256 2
F-Conv. 3 3× 3× 128 2
F-Conv. 4 3× 3× 64 2
F-Conv. 5 3× 3× 32 2

Extra last Conv. layer 3× 3× {3, 4} 1

(b) Decoder

Table 1: Details of the ‘encoder-decoder ’ architecture employed in our work.
‘Filter size’ denotes the size of the filters for the convolutions; the last number
denotes the number of output filters. Conv denotes a convolutional layer. F-Conv
denotes a transposed convolutional layer with fractional-stride. An extra Conv
layer with linear activation (colored in yellow) is added to the original decoder
in order to get the final image output.

2 Motivation

Based on the bibliography [10], the primary sources of noise are shot noise, a
Poisson process with variance equal to the signal level, and read noise, an ap-
proximately Gaussian process caused by a variety of sensor readout effects. The
noise is spatially variant (non-Gaussian); hence, the assumption that noise is
spatially invariant, employed by many algorithms does not hold for real image
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Fig. 1: Motivation of our method (picture taken from the main paper): By
characterizing directly the image spatially variant noise, the reconstruction of
the clean image is much more accurate. Instead of constraining the output of
a generator to span the target space, is better to constrain it to remove from
the noisy image only that information which spans the manifold of the residual
image.

noise. These effects are well-modeled by a signal-dependent Gaussian distribu-
tion [10]. Based on that, the variance of noise is proportional to image intensity
which means that the noise in real images is structured. Thus, a low dimen-
sional manifold of the image noise can be created. This makes sense because if a
low dimensional manifold of real image noise does not exist this means that the
same holds for the real image as well, something not true based on bibliography
((cGAN) [13]).

As it is mentioned in the main paper, by characterizing directly the image
spatially variant noise the reconstruction of the clean image is much more accu-
rate. In this way of thinking, instead of constraining the output of a generator
to span the target space, is better to constrain the generator to remove from the
noisy image only that information which spans the manifold of the residual im-
age. To justify our motivation (Fig. 1), we trained a standard ‘encoder-decoder ’
type architecture with skip connections, same like Rec subnet, to:

{ directly reconstruct the clean images.
{ indirectly reconstruct the clean images by removing from the noisy images

the corresponding reconstructed image noise signal.

To do so, we have collected a dataset that consists of four classes of 12MP images:

{ Buildings - 1010 images
{ Foliage - 841 images
{ Text - 838 images
{ Misc - 815 images

In purpose, these data were collected under very low ISO conditions by using a
smartphone camera. The reason for choosing very low ISO values is to collect
clean images which could be used as clean ground truth images. On top of that,
we have removed some (very) light residual image noise to further enhance the
image quality of the clean ground truth data. The noise model parameters for


