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Abstract. Deep Convolutional Neural Networks (CNNs) have been suc-
cessfully used in many low-level vision problems like image denoising.
Although the conditional image generation techniques have led to large
improvements in this task, there has been little effort in providing con-
ditional generative adversarial networks (cGANs) with an explicit way
of understanding the image noise for object-independent denoising re-
liable for real-world applications. The task of leveraging structures in
the target space is unstable due to the complexity of patterns in natural
scenes, so the presence of unnatural artifacts or over-smoothed image
areas cannot be avoided. To fill the gap, in this work we introduce the
idea of a cGAN which explicitly leverages structure in the image noise
variance space. By learning directly a low dimensional manifold of the
image noise variance, the generator promotes the removal from the noisy
image only that information which spans this manifold. This idea brings
many advantages while it can be appended at the end of any denoiser
to significantly improve its performance. Based on our experiments, our
model substantially outperforms existing state-of-the-art architectures,
resulting in denoised images with less over-smoothing and better detail.

1 Introduction

During image acquisition, due to the presence of noise some image corruption is
inevitable and can degrade the visual quality considerably. Therefore, noise re-
moval is essential for many digital imaging and computer vision applications [22]
and remains an important and active research topic.

Denoising algorithms can be grouped in two categories: learning-based and
model-based. Modelling the image prior from a set of noisy and ground-truth
image sets is the goal of discriminative learning. The performance of the current
learning models is limited by their inadequacy of handling all possible levels of
noise in a single model. In this category are methods such as brute force learn-
ing like MLP [11], CNNs [58, 59] or truncated inference [15]. On the other hand,
the model-based algorithms are computationally expensive, and unable to char-
acterize complex image textures. In the this category fall algorithms including
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Fig. 1: Motivation of our method: By characterizing directly the image signal
dependent noise, the reconstruction of the clean image is much more accurate.
Instead of constraining the output of a generator to span the target space, is
better to constrain it to remove from the noisy image only that information
which spans the manifold of the residual image variance.

external priors [7], Markov random field models [49, 52], gradient methods [55,
54], non-local self-similarity [33] and sparsity (e.g. MCWNNM [24]).

A denoising algorithm should be efficient, perform denoising using a single
model and handle spatially variant noise when the noise standard-deviation is
known or unknown. The physics of digital sensors and the steps of an imaging
pipeline are well-understood and can be leveraged to generate training data from
almost any image using only basic information about the target camera sensor.
Recent work has shifted to sophisticated signal-dependent single source noise
models [27] that better match the physics of image formation [38, 43, 9]. Also,
adapting a learned denoising algorithm to a new camera sensor may require
capturing a new dataset. However, capturing noisy and noise-free image pairs is
difficult, requiring long exposures or large bursts of images, and post-processing
to combat camera motion and lighting changes.

In this paper, we introduce the idea of a cGAN [44] which directly constrains
the image spatially variant noise for image denoising (Fig. 1). In this way, we
avoid the direct characterization of the space of clean images, since the com-
plexity of natural image patterns is extremely high. To do so, a combination of
supervised (regression) and unsupervised (autoencoder) ‘encoder-decoder ’ type
subnets applies implicit constraints in the residual image (the difference between
the noisy observation and the clean image) variance latent subspace. By adopt-
ing the idea of residual learning [58] in the regression subnet and using a shared
decoder, the unsupervised subnet is explicitly constrained to generate residual
image samples that span only the image noise variance manifold. Intuitively,
this can be thought of as constraining the regression subnet to subtract from the
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noisy image only the residual image that looks like realistic image noise coming
from a specific camera sensor. The proposed idea: a) allows the direct associa-
tion of one or more camera sensors with their corresponding noise statistics and
b) introduces also the idea of a discriminator operating directly in the residual
image domain. Our system: a) increases significantly the robustness of the image
denoising task, b) makes easier the model adaptation to a new camera sensor, c)
allows multi-camera noise reduction during one inference step, d) allows multi-
source noise removal during one inference step, e) utilizes all the samples in
the residual image domain even in the absence of the corresponding noisy input
samples, f) can be applied at the end of any residual learning based denoiser
improving its performance and g) deals with a wide range of noise levels.

2 Related Work

2.1 Image Prior Based Methods

Image prior based methods, e.g. NSCR [21], TWSC [56], WNNM [24], can be
employed to solve the denoising problem of unknown noise because they do not
require training data since they model the image prior over the noisy image di-
rectly. The classic BM3D [19] method is based on the idea that natural images
usually contain repeated patterns (non-local self-similarity model). In non-local
means (NLM) [10], the pixel values are predicted based on their noisy surround-
ings. Many variants of NLM and BM3D seeking self-similar patches in different
transform domains were proposed, e.g. SAPCA [33], NLB [35]. Sparsity is en-
forced by dictionary-based methods [20] by employing self-similar patches and
learning over-complete dictionaries from clean images. In contrast, Noise2Void
(N2V) [34] and Noise2Noise (N2N) [37] do not require training noisy image pairs,
nor clean target images. N2N attempts to learn a mapping between pairs of inde-
pendently degraded versions of the same training image. For image patch restora-
tion, maximum likelihood algorithms like Gaussian Mixture Models (GMMs),
were employed to learn statistical priors from image patch groups [13, 57]. Dic-
tionary learning based and basis-pursuit based algorithms such as KSVD [4],
Fields-of-Experts or TNRD [16] operated by finding image representations where
sparsity holds or statistical regularities are well-modeled [61]. In [36], an exten-
sion of non-local Bayes approach, named NC, was proposed to model the noise
of each patch group to be zero-mean correlated and Gaussian distributed. The
disadvantage of this category of methods is that external information from pos-
sible many other images taken under the same condition with the image to be
denoised cannot be used. Furthermore, the generalization capabilities are limited
because these methods are defined mostly based on human knowledge.

2.2 Discriminative Deep Learning Methods

In recent years, CNNs have achieved great success in image denoising. The first
attempt of employing CNNs for this task was made in [30]. Discriminative deep
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learning methods are trained offline, extracting information from ground truth
annotated training sets before they are applied to test data. In DnCNN [58]
and IrCNN [59] networks, stacked convolution, batch normalization and ReLU
layers were used to estimate the residual image [26]. By adding symmetric skip
connections, an improved encoder-decoder network for image denoising based
on residual learning was proposed in [41]. A densely connected denoising net-
work, named Memnet, constructed in [51] to enable memory of the network. A
multi-level wavelet CNN (MWCNN) model based on a U-Net architecture used
in [40] to incorporate large receptive field for image denoising. By incorporating
non-local operations into a recurrent neural network (RNN), a non-local recur-
rent network (NLRN) for image restoration presented in [39]. A network named
N3Net [47] employed the k-nearest neighbor matching in the denoising network to
exploit the non-local property of the image features. A fast and flexible network
(FFDNet) which can process images with non-uniform noise corruption proposed
in [60]. A residual in the residual structure (RIDNet) used in [6] to ease the flow
of low-frequency information and apply feature attention to exploit the chan-
nel dependencies. Recently, a blind denoising model for real photographs named
CBDNet [25] is composed of two subnetworks: noise estimation and non-blind
denoising. A self-guided network (SGN), which adopts a top-down self-guidance
architecture to better exploit image multi-scale information presented in [23].
FOCNet network [31] solved a fractional optimal control problem in a multi-
scale approach. Although the methods in this category achieved high denoising
quality, they cannot work in the absence of paired training data.

2.3 Generative Models

GANs were recently trained to synthesize noise [14], thus pairs of corresponding
clean and noisy images were obtained for training CNNs. Any further filtering
of the RAW image changes the real noise statistics making that task very diffi-
cult [14]. Also, is not realistic to create noisy images by adding random generated
noise to the clean images since in real images the noise variance is data depen-
dent. Noise Flow method [1] combined well-established basic parametric noise
models (e.g. signal-dependent noise) with the flexibility and expressiveness of
normalizing flow architectures to model noise distributions observed from large
datasets of real noisy images. However, it is not clear how to quantitatively assess
the quality of the generated samples.

3 Our Method

In this section, we introduce our system for the task of image denoising. The goal
is to produce a single clean (RGB or RAW) image from a corresponding single
noisy (RGB or RAW) image. Firstly, we give a brief overview of the noise signal in
real images (Section 3.1). Our method falls in the category of conditional image
generation methods, thus to make the paper self-contained we briefly describe
this category (Section 3.2) before introducing our method (Section 3.3).
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3.1 Image Noise Modeling in Real-World Images

Camera sensors output RAW data in a linear color space where pixel measure-
ments are proportional to the number of photo-electrons collected. The primary
sources of noise are shot noise, a Poisson process with variance equal to the sig-
nal level, and read noise, an approximately Gaussian process caused by a variety
of sensor readout effects. The noise is spatially variant; hence, the assumption
that noise is spatially invariant does not hold for real images. The noise is well-
modeled by a signal-dependent Gaussian distribution [27]:

xp ∼ N
(
yp, σ

2
r + σsyp

)
(1)

where xp is a noisy measurement of the true intensity yp at pixel p. The param-
eters σr and σs: a) are fixed, given a specific camera sensor, for each sensor gain
(ISO) value and varies as ISO changes and b) are different for different camera
sensors. Since the noise is structured (not random) a low-dimensional manifold
for noise variance exists. A realistic noise model is important aspect in training
CNN-based denoising methods for real photographs [25, 6].

3.2 Conditional Image Generation

In computer vision, the task of conditional image generation is dominated by
approaches similar to a GAN. The GAN consists of a generator and a discrim-
inator module commonly optimized with alternating gradient descent methods.
cGAN extend the formulation by providing the generator with additional labels.
The generator G takes the form of an encoder-decoder network where the en-
coder projects the label into a low-dimensional latent subspace and the decoder
performs the opposite mapping.

cGAN and its variants like Robust cGAN [17], were applied in the past for the
task of object-dependent image denoising. The encoder-decoder generator of Ro-
bust cGAN performs a similar regression as its counterpart in cGAN. It accepts
a sample from the source domain and maps it to the target domain by using
a second CNN in the target domain which promotes more realistic regression
outputs. Recently in non GAN-based methods, generators adopting a similar
architecture were proposed for object-dependent image denoising. In [29], a two-
tailed CNN is employed for inferring the clean image and the noise separately.
The input noisy image is decoupled to the signal and noise in a latent space,
while a decoder used to generate the signal and noise in the spatial domain.
There are two major drawbacks of all these methods: i) in the absence of skip
connections, these methods perform well only in the case of object-dependent
image denoising (i.e. face denoising [17, 53]). The need of having different mod-
els for different objects makes them unsuitable for digital devices with limited
resources (e.g. smartphones) where the run-time performance is of importance.
ii) the purpose of their unsupervised learning sub-networks, whose (hidden) lay-
ers contain representations of the input data, is to be sufficiently powerful for
compressing (and decompressing) the data while losing as little information as
possible. However, even in the presence of skip connections, this procedure of
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defining a nonlinear representation which can accurately reconstruct image pat-
terns from a variety of real complex objects/scenes is not realistic. As a result,
these methods very often hallucinate complex image structures by introducing
severe blurry effects or unusual image patterns/artifacts.

3.3 Image Denoising Based on Noise Variance Manifold
Reconstruction

To tackle the problems mentioned in Section 3.2, the proposed method intro-
duces the general idea of explicitly constraining the residual image removed by
a denoiser to lie in the low-dimensional manifold of the signal dependent image
noise variance (Section 3.1). Like cGAN, our method consists of a generator and a
discriminator. The generator includes two subnets: the first regression (Reg) sub-
net performs regression while the second reconstruction (Rec) is an autoencoder
in the residual image domain. Both subnets consist of similar encoder-decoder
networks, while a backbone network is used prior to the encoder-decoder net-
work of the Reg subnet. By sharing the weights of their decoders, the generator
adopts the residual learning strategy to remove from the noisy observation that
information which spans the image noise variance manifold. A schematic of the
proposed generator is illustrated in Fig. 2. Rather than directly outputing the
denoised image, the supervised Reg subnet is designed to predict the ground-
truth residual image v = s−y, where s and y stand for the noisy and the clean
(ground-truth) image, respectively. Thus, the unsupervised Rec subnet works as
a conditional auto-encoder in the domain of v. The Rec subnet during infer-
ence is no longer required, therefore the testing complexity remains the same
as in standard cGAN. Two Unet style skip connections from the encoder to the
decoder used in both subnets improving the learning of the residual between
the features corresponding to the image and to the residual image structures.
Also, a BEGAN style decoder skip connection [8], which creates a skip connec-
tion between the first decoder layer and each successive upsampling layer of the
decoder, used to help gradient propagation.

The reconstruction of v is an easier task compared to the reconstruction of
y as in cGAN. Thus, we can learn how to turn bad images into good images by
only looking at the structure of the residual image. This property: i) makes our
cGAN an object-independent image denoiser and ii) helps the denoiser largely
avoid image over-smoothing/artifacts, something essential for image denoising.

Noising is a challenging process to be reversed by the few convolutional layers
of the encoder in Reg subnet especially in an object-independent scenario. This
is why a backbone network used to extract complex feature representations, ϕ,
useful to preserve for later the low and high image frequencies. Different state-of-
the-art denoisers could be used as backbone networks. Thus, the proposed idea
could be applied at the end of any denoiser constraining its output improving in
that way its performance as it is experimentally verified in Section 4.

In addition, the Rec subnet enables utilization of all the samples in the do-
main of the residual image even in the absence of the corresponding noisy input
samples. In the case of a well defined image noise source, like the one described



Reconstructing the noise variance manifold for image denoising 7

Encoder DecoderFeature Extraction,

Ground Truth Clean RGB Image,

Ground Truth RGB Residual Image,

Reconstructed  Ground Truth RGB 
Residual Image,

Predicted Clean RGB Image,

Noisy RGB Image,

Global Skip Connection - Residual Learning

Reg subnet

Rec subnet

Shared Weights

Additional Camera Sensor Info,

Backbone Network

BEGAN-style Skip Connection

U
p
sa

m
p
lin

g

BEGAN-style Skip Connection

U
p
sa

m
p
lin

g

UNet-style Skip Connection

UNet-style Skip Connection

Fig. 2: Schematic of the proposed generator.

in Section 3.1, a huge amount of different residual image realizations (e.g. for
different ISOs) could be generated and used to train that subnet.

The adaptation of an existing model to a new camera sensor is an easier task
for our method. To do so, only the Rec subnet must be retrained from scratch
while the Reg subnet needs only to be fine-tuned using a small number of paired
training samples obtained using the new sensor. Also, our method can remove
more than one noise source during one inference step. To do so, a different noise
variance manifold for each noise source is obtained, thus a different Rec subnet
per noise source constrains the denoiser in a sequential manner (Fig. 4(a)).

The task of learning directly the image noise variance manifold can be greatly
benefit by any conditional information, c, related to the camera sensor. This in-
formation varies and it is provided to both subnets. c could contain the two noise
parameters σr and σs (if available) associating in that way a camera sensor with
its corresponding noise statistics. In the case of multi-camera noise reduction, c
could additionally contain a one hot vector per pixel defining the camera id used
to take each picture, thus one or more noise sources are explicitly associated with
the corresponding camera sensor. More specifically, Reg subnet gets as input c
in concatenation (denoted as [·]) with s and ϕ and outputs y−G(Reg)([s, c,ϕ]),
where G(Reg)([s, c,ϕ]) is the predicted residual image. The superscript ‘Reg’
abbreviates modules of the Reg subnet. Based on eq. 1, the noise variance for a
pixel p depends, except for the camera sensor-based parameters, on yp. Thus,
the input to Rec subnet should be v in concatenation with y and c. By giving
explicitly y as additional input, the task of the Rec subnet is not to learn the
underlying structure of a huge variety of complex image patterns, but to learn
how clean image structures are affected by the presence of structured noise.

The proposed idea deals with a wide range of noise levels in contrast to a
standard cGAN or its variants. According to [26], when the original mapping
F(s) (as in cGAN) is more like an identity mapping, the residual mapping will
be much easier to optimize. Note that s is much more like s−G(Reg)([s, c,ϕ])
than G(Reg)([s, c,ϕ]) (especially when the noise level is low). Thus, F(s) would
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be closer to an identity mapping than G(Reg)([s, c,ϕ]), and the residual learning
formulation is more suitable for image denoising [58].

In the case of image denoising in the RGB domain, s represents 3-channel
image based tensors. Regarding s in the RAW domain, each pixel in a conven-
tional camera (linear Bayer) sensor is covered by a single red, green, or blue
color filter, arranged in a 4-channel Bayer pattern (i.e. R-G-G-B). The content
loss consists of two terms that compute the per-pixel difference between the pre-
dicted clean image, and the clean (ground-truth) image. The two terms are i)
the `1 loss between the ground-truth image and the output of the generator, ii)
the `1 of their gradients; mathematically expressed as:

Lc = λc ·
N∑
n=1

||(s(n) −G(Reg)([s(n), c(n),ϕ(n)]))− y(n)||+ λcg ·
N∑
n=1

||∇(s(n) −G(Reg)([s(n), c(n),ϕ(n)]))−∇y(n)||,

(2)
where G(Reg)([s(n), c(n),ϕ(n)]) = d(Reg)(e(Reg)([s(n), c(n),ϕ(n)])), N stands for
the total number of training samples, e stands for encoder, d stands for decoder
and λc, λcg = 0.5 · λae are hyper-parameters to balance the loss terms. The
unsupervised Rec subnet contributes the following loss term:

LRec =
∑N
n=1[fd(v

(n),G(Rec)([v(n),y(n), c(n)]))] (3)

where G(Rec)([v(n),y(n), c(n)]) = d(Rec)(e(Rec)([v(n),y(n), c(n)])) is the Rec sub-
net ’s output, fd is a divergence metric (`2 loss due to the auto-encoder in the
noise domain) and the superscript ‘Rec’ abbreviates modules of the Rec subnet.

Despite sharing the weights of the decoders, the latent representations of the
two subnets are forced to span the same space using a latent loss term Llat. This
term minimizes the distance between the encoders’ outputs, i.e. the two residual
noise variance representations are spatially close. The latent loss term is:

Llat =
∑N
n=1 ||e(Reg)([s(n), c(n),ϕ(n)])− e(Rec)([v(n),y(n), c(n)])||. (4)

As a part of the vanilla cGAN, the feature matching loss [50, 28] enables the
network to match the data and the model’s distribution faster. The intuition
is that to match the high-dimensional distribution of the data with Reg subnet,
their projections in lower-dimensional spaces are encouraged to be similar. The
feature matching loss is:

Lf =
∑N
n=1 ||π(s(n) −G(Reg)([s(n), c(n),ϕ(n)]))− π(y(n))||. (5)

where π() extracts the features from the penultimate layer of the discriminator.
Skip connections enable deeper layers to capture more abstract representa-

tions without the need of memorizing all the information. The lower-level rep-
resentations are propagated directly to the decoder through the shortcut, which
makes it harder to train the longer path [48]. The Decov loss term [18] used: a)
to penalize the correlations in the representations of one or more layers, b) to im-
plicitly encourage the representations to capture diverse and useful information
and c) to maximize the variance captured by the longer path representations.
For the jth layer this loss is defined as:

Ljdecov = 1
2 (||Cj ||2F − ||diag(Cj)||22), (6)
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where diag() computes the diagonal elements of a matrix and Cj is the co-
variance matrix of the layer representations. The loss is minimized when the
covariance matrix is diagonal, i.e. it imposes a cost to minimize the covariance
of hidden units without restricting the diagonal elements that include the vari-
ance of the hidden representations.
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Fig. 3: The proposed discriminator for image denoising operates directly in the
residual image domain.

In the case of multi-camera noise reduction, let’s assume that the same scene
is captured under the same lighting conditions by different camera sensors. Let’s
also assume that an ideal denoiser per camera sensor exists. In that case, the out-
put of all the denoisers should be the same underlying clean image although the
noise statistics of each camera can be very different. This leads to the idea of a
discriminator which operates directly in the residual image domain (Fig. 3) thus
trying to distinguish between the residual image samples generated by the de-
noiser and the ground-truth residual image distributions given a specific camera
sensor. This is feasible in the proposed method because the Rec subnet con-
straints directly the denoiser to remove only that information which spans the
learned noise variance manifold of each camera sensor. The generator samples z
from a prior distribution pz, e.g. uniform, and tries to model the target distribu-
tion pd; the discriminator D tries to distinguish between the samples generated
from the model and the target image noise distributions. More specifically, the
discriminator accepts as input G(Reg)([s, c,ϕ]) along with v, c and s, while the
standard adversarial loss of cGAN is modified to:

L?adv(G(Reg),D) = Es,v∼pd(s,v)[logD(v|s, c)] + Es∼pd(s),z∼pz(z)[log(1−D(G(Reg)([s, c,ϕ])|s, c))].

(7)
by solving the following min-max problem:

min
wG

max
wD

L?adv(G(Reg),D) = min
wG

max
wD

Es,v∼pd(s,v)[logD(v|s, c,wD)]+

Es∼pd(s),z∼pz(z)[log(1−D(G(Reg)([s, c,ϕ]|wG)|s, c,wD))]
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where wG,wD denote the generator’s and the discriminator’s parameters re-
spectively. The final loss function of our method is:

Ltotal = L?adv + Lc + λπ · Lf + λae · LRec + λl · Llat + λd ·
j∑
Ljdecov,

(8)

where λπ, λae, λl and λd are extra hyper-parameters to balance the loss terms.

Reg subnet

Rec subnet

Rec subnet

Noisy Image

Predicted 
Clean 
Image

Residual Image 
From 

Noise Source  1

Ground Truth Clean image

Residual Image 
From

Noise Source  m

Additional Camera Sensor Info

Reg subnet

(a)

RAW sRGB Runtime
Method Type PSNR SSIM PSNR SSIM (ms)

GCBD [14] Blind - - 35.58 0.9217 -
FoE [49] Non-blind 45.78 0.9666 35.99 0.9042 -
TNRD [16] + VST Non-blind 45.70 0.9609 36.09 0.8883 5,200
MLP [11] + VST Non-blind 45.71 0.9629 36.72 0.9122 ∼60,000
MCWNNM [24] Non-blind - - 37.38 0.9294 208,100
EPLL [61] + VST Non-blind 46.86 0.9730 37.46 0.9245 -
KSVD [4] + VST Non-blind 46.87 0.9723 37.63 0.9287 >60,000
WNNM [24] + VST Non-blind 47.05 0.9722 37.69 0.9260 -
NCSR [21] + VST Non-blind 47.07 0.9688 37.79 0.9233 -
BM3D [19] + VST Non-blind 47.15 0.9737 37.86 0.9296 6,900
Whitenner [29] Blind 47.16 0.9737 37.88 0.9307 48
RoCGAN [17] Blind 47.17 0.9738 37.90 0.9310 49
TWSC [56] Blind - - 37.94 0.9403 195,200
CBDNet [25] Blind - - 38.06 0.9421 400
DnCNN [58] Blind 47.37 0.9760 38.08 0.9357 60
N3Net [47] Blind 47.56 0.9767 38.32 0.9384 210
RIDNet [6] Blind - - 39.23 0.9526 215
UPI [9] Blind 48.89 0.9824 40.35 0.9641 22

Ours (empty c, ResNet [26]) Blind 49.90 (+1.01) 0.9861 41.50 (+1.15) 0.9759 52
Ours (empty c, UPI) Blind 50.05 (+1.16) 0.9866 41.59 (+1.24) 0.9760 64
Ours (Non empty c, ResNet) Non-Blind 50.91 (+3.76) 0.9873 42.11 (+4.25) 0.9775 63

Ablations of Ours (empty c, ResNet [26])

Standard Discriminator [44] Blind 49.50 (+0.61) 0.9835 41.0 (+0.65) 0.9714 52
No Rec subnet Blind 47.51 (-1.38) 0.9766 38.54 (-1.81) 0.9417 52
No Rec subnet, No res. learning Blind 46.92 (-1.97) 0.9725 37.73 (-2.62) 0.9316 52

(b)

Fig. 4: (a) In the case of camera multi-source image noise, more than one Rec
subnet can be employed. Each subnet is responsible for removing noise structure
that comes from a specific noise source, and (b) the quantitative results on the
DnD benchmark of our method and its ablations. Regarding our method, in
parentheses we define the type of denosing plus the used backbone network.

4 Experimental Results

4.1 Training Settings

Synthetic noisy images were combined with real noisy data to improve the gen-
eralization ability of our method to real photographs. To generate them, we
followed the pipeline in [25]. To do so, we employed BSD500 [42], DIV2K [3],
and MIT-Adobe FiveK [12], resulting in 3.5K images while for real noisy im-
ages, we extracted cropped patches from SSID [2] and RENOIR [5]. Finally, the
data augmentation procedure results in 64× 64 image patches. In our ‘encoder-
decoder ’ architecture (same for both subnets) 11 layers were used with an latent



Reconstructing the noise variance manifold for image denoising 11

(a) Noisy image (b) BM3D [19] (c) CDnCNN-B [58] (d) NC [36] (e) MCWNNM [24]

(f) TWSC [56] (g) CBDNet [25] (h) Ours (Blind) (g) Ours (Non Blind)

Fig. 5: Example of image denoising of a DnD image. Results of the proposed
method shown when a standard ResNet used as backbone network.

space of dimensions MB×2×2×1024, where MB stands for the mini-batch size.
The values of the additional hyper-parameters are λae = 2.5 ∗ 103, λl = 0.5 and
λd = 10−6. The common hyper-parameters λπ and λc with the vanilla cGAN
remain the same. In the beginning, the two subnets were trained separately while
afterwards they were jointly trained. For both subnets: the kernel size used was
3×3; Adam [32] was used as the optimizer with default parameters; the learn-
ing rate was initially set to 10−3 and then halved after 106 iterations; ReLU
activation used; the network ran for 50 epochs.

4.2 Comparisons on Real-World Images

The most three challenging public datasets that significantly improve upon ear-
lier (and often unrealistic) benchmarks for denoising, were used to evaluate the
performance of our method: the Darmstadt Noise Dataset (DnD) [46], the Nam
Dataset [45] and the Smartphone Image Denoising Dataset (SIDD) [2]. These
datasets are multi-camera datasets (camera id is provided), thus can be used for
performing multi-camera noise reduction. To highlight the contribution of the
proposed idea, as the backbone network in our method we used: a) a standard
residual network (ResNet) [26] created by stacking three building blocks, and b)
the best deep learning-based method in the literature according to each bench-
mark, if existing, excluding the last network layer since this network acts as a
feature extractor. The pre-trained weights reported in the literature, if available,
used as initialization of the backbone network.

Evaluation on DnD: DnD is a novel benchmark dataset which consists of
realistic uncompressed photos from 50 scenes taken by 4 different standard con-
sumer cameras of natural “in the wild” scene content. In DnD: the camera meta-
data have been captured; the noise properties have been carefully calibrated; and
the image intensities are presented as RAW unprocessed linear intensities. For
each real high-resolution image, the noisy high-ISO image is paired with the
corresponding (nearly) noise-free low-ISO ground-truth image.
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The evaluation of DnD is separated in two categories: algorithms that use
linear Bayer sensor readings or algorithms that use bilinearly demosaiced sRGB
images as input. Thus, PSNR and SSIM for each technique are reported for both
categories. The quantitative results with respect to prior work of our method and
its ablations are shown in Fig. 4(b). For algorithms which have been evaluated
with and without a variance stabilizing transformation (VST), the version which
performs better is reported. The evaluation of algorithms that only operate on
sRGB inputs is also reported. The proposed idea was tested for both categories.
A blind and a non-blind version of our method had been tested for each category
based on the info that c represents. The blind version uses no extra conditional
information along with the noisy input image (empty c). As described in Sec-
tion 3.3, in the non-blind version, c could contain information regarding the
camera noise model and/or the camera id. As a backbone network for blind im-
age denoising, two variants used: a) the standard ResNet and b) the best method
in the literature named UPI [9]. In the case of RAW image domain, the first vari-
ant produced significantly higher PSNR (+1.01dB) and SSIM than UPI, while
the second one impressively boosted the performance of UPI by 1.16dB. In the
case of sRGB image domain, the first variant produced significantly higher PSNR
(+1.15dB) and SSIM than UPI, while the second one impressively boosted the
performance of UPI by 1.24dB. As a backbone network for non-blind image de-
noising, only the standard ResNet used since the best methods in the literature
are not deep learning techniques. In the case of image RAW domain, our sys-
tem produced significantly higher PSNR (+3.76dB) and SSIM compared to the
second best method named BM3D [19]+VST. In case of sRGB image domain,
the improvement over BM3D+VST was 4.25dB. Also, runtimes (mean over 100
runs) reported in the literature are presented as well in Fig. 4(b). The runtime
(excluding data transferring to GPU) of our blind model with standard ResNet
as backbone network is 52ms while for the non-blind one is 63ms given as input
512×512 images. Some qualitative results are given in Fig. 5.

Evaluation on Nam: The Nam dataset consists of 11 static scenes cap-
tured by 3 consumer cameras. For each scene, 500 JPEG noisy temporal images
were captured to compute the temporal nearly noise-free mean image and covari-
ance matrix for each pixel. The quantitative results with respect to prior work
are shown in Fig. 7(a). Both the blind and non-blind version of our method
were evaluated. As a backbone network for blind image denoising, two variants
used: a) the standard ResNet and b) the best method in the literature named
CBDNet [25]. The first variant produced significantly higher PSNR (+1.03dB)
and SSIM than CBDNet, while the second one impressively boosted the per-
formance of CBDNet by 1.18dB. CBDNet-JPEG [25] is a version of CBDNet
which specifically deals with the JPEG compression. For fair comparison, we
have retrained both variants by adopting this data augmentation technique. In
that case, the first variant produced significantly higher PSNR (+0.89dB) and
SSIM than CBDNet-JPEG, while the second one impressively boosted the per-
formance of CBDNet-JPEG by 1.07dB. As a backbone network for non-blind
image denoising, only the standard ResNet used since the best methods in bib-
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(a) Noisy image (b) RoCGAN [17] (c) BM3D [19] (d) DnCNN-B [58] (e) CBDNet-JPEG [25]

(f) RIDNet [6] (g) NC [36] (h) Ours (Blind) (g) Ours (Non Blind)

Fig. 6: Example of image denoising of a Nam image. Results of the proposed
method shown when a standard ResNet used as backbone network.

liography are not deep learning techniques. Our system produced significantly
higher PSNR (+0.97dB) and SSIM compared to the second best method named
WNNM [24]. Some qualitative results are given in Fig. 6.

Evaluation on SIDD: SIDD is real noise dataset with a large number of
available test (validation) images. The quantitative results on the SIDD bench-
mark with respect to prior work are shown in Fig. 7(b). Both the blind and
non-blind version of our method were evaluated. As a backbone network for
blind image denoising, two variants used: a) the standard ResNet and b) the
best method in the literature named RIDNet [6]. The first variant produced sig-
nificantly higher PSNR (+1.11dB) than RIDNet, while the second one impres-
sively boosted the performance of RIDNet by 1.14dB. As a backbone network
for non-blind image denoising, only the standard ResNet was used since the best
method in the literature, named BM3D [19], is not a deep learning technique.
Our system produced significantly higher PSNR (+8.93dB) compared to BM3D.
Some qualitative results are given in Fig. 8.

Since the idea behind our method favours the multi-camera noise reduc-
tion task, there is a significant improvement in terms of performance across all
datasets. Based on all our experiments, the proposed idea is general and can be
appended at the end of existing image denoising methods to significantly im-
prove their performance. In addition, the proposed idea better restores the true
colors than the competing methods. Also, by directly characterizing the image
noise, our method avoids in great degree the image over-smoothing.
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Method Type PSNR SSIM

CDnCNN-B [58] Blind 37.49 0.9272
TWSC [56] Blind 37.52 0.9292
MCWNNM [24] Blind 37.91 0.9322
RoCGAN [17] Blind 38.52 0.9517
Whitenner [29] Blind 38.62 0.9527
RIDNet [6] Blind 39.09 0.9591
BM3D [19] Non-blind 39.84 0.9657
CBDNet [25] Blind 40.02 0.9687
NC [36] Blind 40.41 0.9731
WNNM [24] Non-blind 41.04 0.9768

Ours (empty c, ResNet [26]) Blind 41.05 (+1.03) 0.9772
Ours (empty c, CBDNet) Blind 41.20 (+1.18) 0.9783
Ours (Non empty c, ResNet) Non-Blind 42.01 (+0.97) 0.9830

CBDNet-JPEG [25] Blind 41.31 0.9784

Ours (empty c, ResNet) Blind 42.20 (+0.89) 0.9855
Ours (empty c, CBDNet-JPEG) Blind 42.38 (+1.07) 0.9867

(a)

Method Type PSNR

DnCNN-B [58] Blind 26.21
FFDNet [60] Blind 29.20
CBDNet-JPEG [25] Blind 30.78
BM3D [19] Non-blind 30.88
Whitenner [29] Blind 37.57
RoCGAN [17] Blind 37.72
RIDNet [6] Blind 38.71

Ours (empty c, RIDNet) Blind 39.82 (+1.11)
Ours (empty c, ResNet [26]) Blind 39.85 (+1.14)
Ours (Non empty c, ResNet) Non-Blind 39.81 (+8.93)

(b)

Fig. 7: (a) The quantitative results on the Nam benchmark and (b) the quan-
titative results on the SIDD benchmark. Regarding our method, in parentheses
we define the type of denosing plus the used backbone network.

(a) Noisy image (b) RoCGAN [17] (c) BM3D [19] (d) FFDNet [60] (e) DnCNN-B [58]

(f) CBDNet-JPEG [25] (g) RIDNet [6] (h) Ours (Blind) (g) Ours (Non Blind)

Fig. 8: Example of image denoising of a SIDD image. Results of the proposed
method shown when ResNet used as backbone network.

5 Conclusions

In this work, we show that is easier to turn noisy images into clean images only by
looking at the structure of the residual image. We introduce the idea of a cGAN
that explicitly leverages structure in the image noise variance space. By adopting
the residual learning, the generator promotes the removal from the noisy image
only that information which spans the manifold of the image noise variance. Our
method significantly outperforms existing state-of-the-art architectures.
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