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1 Overview

In this supplementary material, we provide more detailed analysis of our ap-
proach, including 1) the sensitivity analysis of the weights for the adversarial
terms, i.e., α and β in equation (1) of the paper, 2) t-SNE visualizations of
aligned features, 3) introducing an alternative scheme for center-aware align-
ment and the comparisons, 4) ablations of the objectness map and centerness
map for CA-alignment, 5) ablations of the multi-scale alignment using VGG-16,
6) performance gains comparison of anchor-based and anchor-free detector, 7)
the results of weather adaptation using ResNet-50, 8) computational cost in GA-
and CA-alignment, and 9) more visualization examples of our predicted results
on the benchmark datasets.

2 Sensitivity Analysis

The sensitivity analysis of weights α and β is reported in Table 1. The first
group shows the result of the setting adopted in our paper, i.e., α = 0.01 and
β = 0.1. The second group displays the results of varying the value of β, i.e.,
β ∈ {0.02, 0.05, 0.2, 0.5}, while fixing α to 0.01. The third group gives the results
of varying the value of α, i.e., α ∈ {0.002, 0.005, 0.02, 0.05}, while fixing β to 0.1.

By fixing α, a small value of β slightly decreases performance. The perfor-
mance drops if the value of β becomes too large since it may mitigate the effects
of global alignment. By fixing β, increasing or decreasing the value of α leads to
a moderate drop in performance, but is still better than the ones only using the
GA module (see Table 3 of the manuscript). The results suggest that the GA
module is essential to our method, and the CA and GA modules complement
each other since combining them leads to better performance.

3 Aligned Feature Distribution

This section provides the visualization of feature distributions after applying
alignment with the proposed method. We first sample per-pixel features from
source and target domains, and then we visualize them using t-SNE in Fig. 1.
We observe that foreground and background features without applying feature
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Table 1. Sensitivity analysis of weights � and � using ResNet-101.

Sim10k ! Cityscapes

� � mAP mAPr
0:5 mAPr

0:75 mAPr
S mAPr

M mAPr
L

0:01 0:1 28.6 51.2 27.4 7.1 30.2 58.3

0:01 0:02 28.2 51.3 26.7 6.7 29.7 58.4

0:01 0:05 28.4 51.3 28.4 6.3 30.7 57.5

0:01 0:2 28.2 50.2 27.3 6.0 29.8 59.1

0:01 0:5 25.8 48.6 24.8 5.9 27.2 53.9

0:002 0:1 27.4 50.4 26.8 7.1 28.6 56.1

0:005 0:1 26.9 50.1 26.5 7.0 27.6 55.7

0:02 0:1 27.7 50.3 27.3 6.2 28.8 58.5

0:05 0:1 27.8 49.9 27.7 6.1 29.9 57.1

alignment are clustered together and thus it leads to inaccurate prediction on
the target domain. After applying our alignment, there is a clear separation for
feature distributions between foreground and background pixels.

4 CA Feature v.s. CA Loss

In this section, we propose an alternative scheme of the center-aware map for
alignment and compare it with the original scheme proposed in the paper. Note
that we follow all notations used in Section 3 of the paper.

The proposed center-aware alignment described in the paper is denoted by
Center-aware Feature, because we compute the dot product between the center-
aware map and input features during center-aware alignment. In this study, we
provide an alternative called Center-aware Loss, which also performs center-
aware alignment and utilizes the information provided by the center-aware map.
However, in this alternative, the center-aware map is utilized in the loss func-
tion, which is applied to each location of the map. That is, Center-aware Loss
estimates the importance of each pixel for alignment by referring to the center-
aware map. Accordingly, the discriminator loss for Center-aware Loss can be
modified as follows:

LCA(Is, It) = −
∑
u,v

M
(u,v)
CA z log(DGA(Fs)

(u,v))

+M
(u,v)
CA (1− z)log(1−DGA(Ft)

(u,v)). (1)

As shown in Table 2, Center-aware Feature and Center-aware Loss both
achieve competitive results. It indicates that the effectiveness of center-aware
alignment can be carried out in both schemes.
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(a) without adaptation (b) with alignment

(c) without adaptation (d) with alignment

Fig. 1. Visualization of feature distributions. (a) and (b) show the features sampled
from Sim10k ! Cityscapes, while (c) and (d) are for Cityscapes ! Foggy Cityscapes.

5 Objectness Map v.s. Centerness Map

We provide an ablation using ResNet-101 to analyze the effectiveness of the
objectness map Mobj and the centerness map Mctr in Table 3. Compares to
the baseline, i.e., ours (w/o adapt.), adding either Mobj or Mctr improves the
performance, which shows the effectiveness of the proposed alignment. Moreover,
combining the two maps obtain the best result.

6 Multi-scale Alignment

In addition to Table 5 of the manuscript, we present more results using VGG-16
in Table 4. We show that both center-aware alignment (comparing a. with c.)
and multi-level alignment (comparing b. with c.) help achieve performance gains.
Note that, adding multi-level alignment also involves center-aware alignment, in
which its contribution is consistent with the main idea of the paper. Also, our
single-level results are better than SC-DA [3]. In the end, we present another
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Table 2. Comparison of CA Feature and CA Loss using ResNet-101.

Sim10k ! Cityscapes

Methods mAP mAPr
0:5 mAPr

0:75 mAPr
S mAPr

M mAPr
L

CA Feature 28.6 51.2 27.4 7.1 30.2 58.3

CA Loss 28.6 50.9 27.1 6.8 30.2 59.0

Table 3. Ablation study of the objectness map Mobj and the centerness map Mctr

using ResNet-101.

Sim10k ! Cityscapes

Method mAP mAPr
0:5

Ours (w/o adapt.) 23.1 41.1
Ours (w/ Mobj) 25.3 50.4
Ours (w/ Mctr) 26.1 49.8
Ours (w/ Mctr +Mobj) 26.8 51.1

Table 4. Ablation study of the proposed center-aware alignment and multi-scale
alignment using VGG-16.

Cityscapes ! Foggy Sim10k ! Cityscapes KITTI ! Cityscapes

Method mAPr
0:5 mAPr

0:5 mAPr
0:5

SC-DA [3] CVPR’19 33.8 43.0 42.5
a. Ours (GA, multi-level) 33.2 45.9 39.1
b. Ours (GA+CA, single-level) 33.9 45.3 42.9
c. Ours (GA+CA, multi-level) 36.0 49.0 43.2

Table 5. Ablation study of the proposed multi-scale alignment using VGG-16.

Sim10k ! Cityscapes

Aligned Scale mAPr
0:5

w/o adapt. 41.8
F 5 45.3
F 3 � F 5 47.1
F 5 � F 7 47.2
F 3 � F 7 49.0

ablation study of multi-scale features (similar to Table 5 of the manuscript) using
VGG-16 in Table 5, which shows the effectiveness of multi-level alignment.

7 Anchor-based v.s. Anchor-free Detector

Consider that the anchor-based and anchor-free detectors might have different
characteristics, we report the oracle results of F-RCNN and performance gains
compared to the baselines in Table 6 to better analyze the performance. First,
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Table 6. Performance gains compared to the baseline using the anchor-based and
anchor-free detector. The first number in the parentheses is the performance gain com-
pared to the baseline, while the second number in the parentheses is the performance
difference compared to the oracle.

Cityscapes ! Foggy Sim10k ! Cityscapes KITTI ! Cityscapes

Method mAPr
0:5 mAPr

0:5 mAPr
0:5

F-RCNN (w/o adapt.) 18.8 30.1 30.2
SC-DA [3] CVPR’19 33.8 (+15, -9.4) 43.0 (+13, -26.4) 42.5 (+12.8, -26.9)
MAF [2] ICCV’19 34.0 (+15.2, -9.2) 41.1 (+11, -28.3) 41.0 (+11.2, -28.3)
F-RCNN (oracle) 43.2 69.4 69.4

Ours (w/o adapt.) 18.4 39.8 34.4
Ours 36.0 (+17.6, -5.5) 49.0 (+9.2, -20.7) 43.2 (+8.8, -26.5)
Ours (oracle) 41.5 69.7 69.7

Table 7. Results of adapting Cityscapes to Foggy Cityscapes using ResNet-50. Note
that results of each class are evaluated in mAPr

0:5.

Cityscapes ! Foggy Cityscapes

Method Backbone person rider car truck bus train mbike bicycle mAPr
0:5

Ours (w/o adapt.)

ResNet-50

33.8 30.7 40.3 15.7 27.0 5.4 17.0 27.6 24.2
MTOR [1] CVPR’19 30.6 41.4 44.0 21.9 38.6 40.6 28.3 35.6 35.1
Ours (GA) 39.8 39.6 57.1 22.7 45.2 22.0 27.7 32.5 35.9
Ours (CA) 39.2 40.3 57.1 27.0 45.6 35.1 26.1 34.6 38.1
Ours (GA+CA) 39.9 38.1 57.3 28.7 50.7 37.2 30.2 34.2 39.5

despite that our baseline is better, our performance gain is still competitive with
state-of-the-arts (the first number in the parentheses). Furthermore, our results
are closer to the oracle results (the second number in the parentheses), which
shows the potential of anchor-free approaches and could motivate future work
on using anchor-free detectors for domain adaptive object detection.

8 Weather Adaptation using ResNet-50

To compare with MTOR [1], we report the results of adapting Cityscapes to
Foggy Cityscapes using ResNet-50 in Table 7. After adaptation, our method
(GA + CA) improves our baseline by 15.3% and outperforms MTOR [1] by
4.4% in terms of mAPr

0.5.

9 Computational Cost in GA and CA

In Table 8, we show the MACs for our modules, given the input size as (666,
1332). Here, adding single-scale or multi-scale GA+CA does not significantly
increase the computational cost. Also, GA+CA module is only required during



6 C. Hsu et al.

Table 8. Computational cost of the proposed global alignment and center-aware
alignment using VGG-16.

Module MACs

GA+CA (F 3 ∼ F 7) 22.25G
GA+CA (F 5) 1.04G
Detector 188.03G

training, while the computational cost is the same as the original detector during
inference.

10 Qualitative Results

More visualization examples on different datasets are shown in Fig. 2 to Fig. 4.
These examples demonstrate that the proposed center-aware alignment makes
the model focus on discriminate areas of objects and produces more promising
results. Moreover, the proposed method is robust to some difficulties for object
detection, such as object overlapping, small objects, and occlusions.

For example, it can be observed that our method can handle the issue of
overlaps effectively in Fig. 3(d) and Fig. 3(j). With the aid of the multi-scale
alignment, our method is effective to detect small objects, as shown in Fig. 3(a)
and Fig. 4(a). For occlusions in Fig. 3(b) and Fig. 3(h), our method can correctly
detect the complete objects.

11 Failure Examples

We present some failure examples produced by our method in Fig. 5. In Fig. 5(a),
noisy background leads to false positives. In Fig. 5(b), the crowded scene results
in redundant predictions. In Fig. 5(c), the model falsely predicts a large object,
i.e., a truck, as multiple objects. In Fig. 5(d), due to the domain gap, our model
fails to detect the cars reflecting the sunlight. Moreover, it fails to distinguish
different instances of the same categories. In Fig. 5(e), the detector incorrectly
identifies the sign as a car, which indicates that identifying the differences among
small objects of different categories is challenging.
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