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Abstract. Learning group representation is a commonly concerned is-
sue in tasks where the basic unit is a group, set, or sequence. Previously,
the research community tries to tackle it by aggregating the elements
in a group based on an indicator either defined by humans such as the
quality and saliency, or generated by a black box such as the attention
score. This article provides a more essential and explicable view. We
claim the most significant indicator to show whether the group repre-
sentation can be benefited from one of its element is not the quality or
an inexplicable score, but the discriminability w.r.t. the model. We ex-
plicitly design the discrimiability using embedded class centroids on a
proxy set. We show the discrimiability knowledge has good properties
that can be distilled by a light-weight distillation network and can be
generalized on the unseen target set. The whole procedure is denoted
as discriminability distillation learning (DDL). The proposed DDL can
be flexibly plugged into many group-based recognition tasks without in-
fluencing the original training procedures. Comprehensive experiments
on various tasks have proven the effectiveness of DDL for both accuracy
and efficiency. Moreover, it pushes forward the state-of-the-art results on
these tasks by an impressive margin.
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1 Introduction

With the rapid development of deep learning and easy access to large-scale group
data, recognition tasks using group information have drawn great attention in
the computer vision community. The rich information provided by different ele-
ments can complement each other to boost the performance of tasks such as face
recognition, person re-identification, and action recognition [54, 68, 19, 46, 62, 35,
42]. For example, recognizing a person through a sequence of frames is expected
to be more accurate than watching only one image.

While traditional practice for group-based recognition is to either aggregate
the whole set by average pooling [32, 49], max pooling [7], or just randomly
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sampling [55], the fact that certain elements contribute negatively in recognition
tasks has been ignored. Thus, the key problem for group-based recognition is how
to define an efficient indicator to select representatives from sets.

To tackle such cases, previous methods aim at defining the “quality” or
“saliency” for each element in a group [37, 62, 42, 40]. The weight for each ele-
ment can be automatically learned by self-attention. For example, Liu et al. [37]
propose the Quality Aware Network (QAN) to learn a quality score for each
image inside an image set during network training. Other researchers adopt
the same idea and extend it to specific tasks such as video-based person re-
identification [33, 58] and action recognition [56] by learning spatial-temporal
attentions. However, the whole quality/attention learning procedures are either
manually designed or learned through a black box, which lacks explainability.
Moreover, since previous attention and quality mechanism are mostly based on
element feature, the features for all group elements need to be extracted, which
is highly computational consuming.

In this work, we explore deeper into the underlying mechanism for defining
effective elements. Assuming that a base network M has already been trained
for element-based recognition using class labels, we define the “discriminabil-
ity” of one element by how difficult it is for the network M to discriminate its
class. How to measure the difficulty and the learning preference of the network
M of elements remains an interesting problem. By considering the relationship
between intra- and inter-class distance, we identify a successful discriminability
indicator by measuring one embedding’s distance with all class centroids and
compute the ratio of between positive and hardest-negative. The positive is its
distance from its class’s corresponding centroid and the hardest-negative is its
closest counterpart.

As the acquiring procedure of the discriminability indicator is highly flexi-
ble without either human supervision or network re-training, it can be adapted
to any existing base. Though defined through trained bases, we find that the
discriminability indicator can be easily distilled by training an additional light-
weight network (Discriminability Distillation Network, DDNet). The DDNet
takes the raw images as input and regresses the regularized discriminability
indicators. We uniformly call the whole procedure discriminability distillation
learning (DDL).

During inference, all elements are firstly sent into the light-weight DDNet
to estimate their discriminability. Then element features will be weighted and
aggregated according to their discriminability scores. In addition, in order to
achieve the trade-off between accuracy and efficiency, we can filter elements
by extracting and aggregating elements of high discriminability only. Since the
base model tends to be heavy, the filtering process can save much computational
cost. We evaluate the effectiveness of our proposed DDL on several classical
yet challenging tasks including set-to-set face recognition, video-based person
re-identification, and action recognition. Comprehensive experiments show the
advantage of our method on both recognition accuracy and computational ef-
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ficiency. State-of-the-art results can be achieved without modifying the base
network.

We highlight our contributions as follows: (1) We define the discriminability
of one element within a group from a more essential and explicable view, and
propose an efficient indicator. Moreover, we demonstrate that the structure of
discriminability distribution can be easily distilled by a light-weight network. (2)
With a well-designed element discriminability learning and feature aggregating
process, both efficiency and excellent performance can be achieved. We verify the
good generalization ability of our discriminability distillation learning in many
group-based recognition tasks, including set-to-set face recognition, video-based
person re-identification, and action recognition through extensive studies.

2 Related work

Group representation learning which aims at formulating a unified representation
has been proved efficient on various tasks [68, 37, 15, 55, 70]. In this paper, we care
for three group representation learning tasks including set-to-set face recognition,
video-based person re-identification, and action recognition. In this section, we
will briefly review those related topics.
Set-to-Set Face Recognition. Set-to-set face recognition aims at perform-
ing face recognition [57, 27, 2, 29, 9, 69] using a set of images of a same person.
To tackle set-to-set face recognition, traditional methods directly estimate the
feature similarity among sets of feature vectors [1, 23, 5]. Other works seek to
aggregate element features by simply applying max-pooling [7] or average pool-
ing [32, 49] among set features to form a compact representation. However, since
most set images are under unconstrained scenes, huge variations such as blur and
occlusions will degrade the set feature discrimination. How to design a proper
aggregation method for set face representation has been the key.

Recently, a few methods explore the manually defined operator or attention
mechanism to form group representation. GhostVLAD [68] improves traditional
VLAD. While Rao et al. [41] combine LSTM and reinforcement learning to dis-
card low-quality element features. Liu et al. [37] and Yang et al. [62] introduce an
attention mechanism to assign quality scores for different elements and aggregate
feature vectors by quality weighted sum. To predict the quality score, an online
attention network module is added and co-optimized by the target set-to-set
recognition task. However, the definition of generated “quality” scores remains
unclear and they are learned through a black box, which lacks explainability.
Video-Based Person Re-Identification. It is also beneficial to perform per-
son re-identification [61, 39, 18, 16, 17, 33, 15] from videos. There are typically
three components for video-based person re-identification: an image-level fea-
ture extractor, a temporal aggregating module, and the loss function [15]. Pre-
vious works mainly focus on optimizing the temporal aggregating module for
video-based person re-identification. They can be divided into three categories,
RNN-based [39, 61], attention-based [37, 71] and 3D-Conv based [15]. Yang et
al. [61] model an RNN to encode element features and use the final hidden layer
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as the group feature representation. Liu et al. [37] use attention module to assign
each element an quality score. While Gao et al. [15] directly utilize 3D Conv to
encode the spatial-temporal feature for elements and propose a benchmark to
compare different temporal aggregating module fairly.
Action Recognition. Action representation learning is another typical case of
group-based representation learning. Real-world videos contain variable frames,
so it is not practical to put the whole video to a memory limited GPU. The most
usual approach for video understanding is to sample frames or clips and design
late fusion strategies to form the video-level prediction.

Frame-based methods [64, 14, 46, 19] firstly extract frame features and aggre-
gate them. Simonyan et al. [46] propose the two-stream network to simultane-
ously capture the appearance and motion information. Wang et al. [54] add at-
tention module and learn to discard unrelated frames. Frame-based methods are
computationally efficient, but only aggregating high-level frame features tends
to limit the model’s ability to handle complex motion.

Clip-based methods [50, 51, 13, 30] use 3D convolutional neural network to
jointly capture spatial-temporal features. However, clip-based methods highly
rely on the dense sample strategy, which introduces huge computational costs
and makes it impractical to real-world applications. In this article, we show
that by combining our DDL, the clip-based methods can achieve both excellent
performance and computational efficiency.

3 Discriminability Distillation Learning

In this section, we first formulate the problem of group representation learning in
section 3.1 and then define the discriminability in section 3.2. Next, we introduce
the whole discriminability distillation learning (DDL) procedure in section 3.3.
In sections 3.4 and 3.5, we discuss the aggregation method and the advantage
of our DDL, respectively.

3.1 Formulation of Group Representation Learning

Compared to using a single element, performing recognition with group represen-
tation can further explore the complementary information among group elements
and benefit from them. For example, recognizing a person from a group of his
photos instead of one image is sure to facilitate the result.

The most popular way to handle group-based recognition tasks is to formulate
a unified representation for a whole group of elements [37, 68, 55, 15]. Suppose a
base networkM is trained for the element-based recognition task. Define fi ∈ Rd

as the embedded feature of element Ii in group IS from M, the unified feature
representation of the whole group is

fIS = G(f1, f2, · · · , fi), (1)

where G indicates the feature aggregation module. While previous research has
revealed that conducting G with quality [37] has priority over simple aggrega-
tion, this kind of method is not explainable and computation-consuming. In this
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Fig. 1. The pipeline of group representation learning with DDL. Given a base feature
extracting model, we first compute the discriminability for each training element and
then train a light-weight discriminability distillation network (DDNet) to regress it.
The discriminability is formulated from the view of intra and inter-class distance with
class centroids for element

article, we propose discriminability distillation learning (DDL) to generate the
discriminability of feature representation.

3.2 Formulation of Discriminability

Towards learning efficient and accurate G, we propose to define the discrim-
inability of elements to replace the traditional quality or attention mechanism.

After training the base model M on the classification task, features of the
training elements from the same class are projected to hyperspace tightly in
order to form an implicit decision boundary and minimizing target loss [36]. This
statement exists when M is supervised by all kinds of loss functions (softmax-
cross entropy [47], triplet [44] or margin-based [9, 12] losses). Our key observation
is that the features embedded close to their corresponding class centroids are
normally the representative examples, while features far away or closer to other
centroids are usually the confusing ones.

Based on our motivation, we jointly consider the feature space distribution
and explicitly distill the discriminability by encoding the intra-class distance
and inter-class distance with class centroids. Let X denotes the training set with
K classes and Cm ∈ Rd,m ∈ [1,K] is the class centroid of class m, which is
the average of features. For feature fi, i ∈ [1, s] where s denotes the size of X .
Assume the positive class for fi is p, while the negatives are n ∈ [1,K], n 6= p.
The intra-class distance and inter-class distance for fi are formulated as:

distip =
fi · Cp

‖fi‖2 ‖Cp‖2
,

distin =
fi · Cn

‖fi‖2 ‖Cn‖2
, n ∈ [1,K], n 6= p.

(2)

Here we use the cosine distance as feature distance metric. Other metrics like
Euclidean distance are also applicable. Then the discriminability Di of fi can
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be defined as:

Di =
distip

max {distin | n ∈ [1,K], n 6= p}
. (3)

It is the ratio between the feature’s distance from the centroid of its own class
and the distance from the hardest-negative class. Considering the variant number
of elements in different groups, we further normalize the discriminability by:

Di = τ

(
Di − µ({Dj | j ∈ [1, s]})
σ({Dj | j ∈ [1, s]})

)
(4)

where τ(·), µ(·) and σ(·) denote the sigmoid function, the mean value and
the standard deviation value of {Dj | j ∈ [1, s]}, respectively. We denote the
normalized Di as discriminability score (D-score).

Cooperated with the feature space distribution, the discriminability Di is
more interpretable and reasonable. It can discriminate features better by explic-
itly encoding the intra- and inter-class distances with class centroids.

3.3 Discriminability Distillation Learning

From section 3.2, given a base modelM and its training dataset, the Di of fi can
be naturally computed by Eq (2)-(4). However, the score is unavailable to test
set T . In order to estimate unseen element’s discriminability, we formulate the
discriminability distillation learning (DDL) procedure for group representation.

Our idea is to distill the discriminability explicitly using a light-weight aux-
iliary network from the training samples. It is called the Discriminability Distil-
lation Network (DDNet). Denote the DDNet as N , the approximated D̂i for Di

can be given by:
D̂i = N (Ii;θ), (5)

where θ denotes the parameters of N . To train N , we apply mean squared error
between D̂i and target Di as

L =
1

2N

N∑
i

(D̂i −Di)
2, (6)

where N is the batch size. The training is conducted with the same training set
for the base model and there is no need to modify the base model M.

3.4 Feature Aggregation G

During inference, we can generate D̂i via Eq (5) for each element Ii in the given
element set IS . Then we can filter out some elements with low discriminability
in order to accelerate the feature extracting process ofM. Given the pre-defined
threshold t and base model M, the group element feature extracting process is

fi =M(Ii), D̂i > t, (7)
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Fig. 2. The pipeline of the test stage with DDL. For a group of elements, we first
predict D-score by the trained-well DDNet for each element. Then we will filter elements
by their D-scores and only extract feature for those elements with high D-scores by
the base model. Finally extracted features will be weighted sum to form the group
representation

and G in Eq (1) can be formulated as:

FIS = G(f1, f2, · · · , fn) =

n∑
i

R̂ifi

R̂i

, (8)

where n is the number of IS whose discriminability is higher than threshold t,
and R̂i is the re-scaled D-score via

R̂i = KD̂i +B. (9)

In Eq (9), we scale the D-score of element set IS between 0 and 1 to ensure
the same range for element sets with different lengths. K and B are formulated
as

K =
1

max{D̂i | i ∈ [1, n]} −min{D̂i | i ∈ [1, n]}
, (10)

B = 1−K max{D̂i | i ∈ [1, n]}. (11)

3.5 Advantage of Discriminability Distillation Learning

Different from the subjective quality judgment of an image or the attention
mechanism, we explicitly assign discriminability for each element via the fea-
ture space distribution. By jointly considering the inter- and intra-class dis-
tances with class centroids, DDL can effectively approximate how discriminative
a feature is. By aggregating more information with features with high discrim-
inability, more discriminative group representation can be formed, leading to a
significant performance boost for group-based recognition tasks. In addition, the
well-design discriminability distillation learning process needn’t modify the base
model, making it easy to be plugged into many popular recognition frameworks.
Furthermore, We can change the threshold for the discriminability filtering pro-
cess according to different application scenarios to achieve a trade-off between
accuracy and computational cost.
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4 Experiments

We evaluate our DDL on three popular group-based recognition tasks: set-to-
set face recognition, video-based person re-identification, and action recognition.
An ablation study will be conducted along with the set-to-set face recognition
experiments.

4.1 Set-to-Set Face Recognition

In this section, we evaluate DDL for set-to-set face recognition on four datasets
including two video datasets: YouTube Face (YTF) [57], iQIYI-VID-FACE [26];
and two template-based datasets: IARPA Janus Benchmark A (IJB-A) [29] and
IARPA Janus Benchmark C (IJB-C).

4.1.1 Implementation Details. For data pre-processing, RetinaFace [11] is
used to detect faces and their corresponding landmarks for all datasets. Images
are aligned to 112× 112 by similarity transformation with facial landmarks.

We train our base model and DDNet on the MS-Celeb-1M dataset [21]
cleaned by [9]. The base model we select is modified ResNet-101 [24] released
by [9]. As for the DDNet, we use a light-weight channel reduced ResNet-18
network, whose channels for 4 stages are {8, 16, 32, 48}, respectively. It only
introduces 81.9 Mflops, which is super-efficient.

The loss function for the base model training is ArcFace [9] and the total
training step is 180k with initial learning rate 0.1 on 8 NVIDIA Tesla V100
GPUs. The training process for our DDNet is similar to the base model. The
default discriminability threshold we select is 0.15, empirically.

4.1.2 Evaluation on YouTube Face. The YouTube Face [57] dataset in-
cludes 3425 videos of 1595 identities with an average of 2.15 videos per identity.
The videos vary from 48 frames to 6,070 frames. We report the 1:1 face verifica-
tion accuracy of the given 5,000 video pairs in our experiments.

As shown in Table 1, our DDL achieves state-of-the-art performance on the
YouTube Face benchmark [57]. It outperforms [9] by 0.16% and other set-to-set
face recognition methods by impressive margins. For comparison with differ-
ent aggregation strategies like average pooling, DDL can boost performance by
0.21%, which indicates DDL has learned a meaningful pattern for discriminabil-
ity. As a post-training module, DDL can cooperate with any existing base. Note
that if we only select the top-1 discriminability frame, DDL can also achieve
97.08%, which achieves above 130x acceleration. The computation complexity
for the base model is 11 Gflops (ResNet-101) while our DDNet only introduces
81.9 Mflops. By filtering most frames, great computational cost is saved.

4.1.3 Evaluation on IQIYI-VID-FACE. Since the results on YouTube
Face benchmark tend to be saturated, we test our DDL on the challenging
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Table 1. Video face verification performance on YouTube Face dataset, compared with
state-of-the-art methods and baseline methods

Method Accuracy(%) Method Accuracy(%)

Li et al. [32] 84.8 DeepFace [49] 91.4

FaceNet [44] 95.52 NAN [62] 95.72

DeepID2 [48] 93.20 QAN [37] 96.17

C-FAN [20] 96.50 Rao et al. [42] 96.52

Liu et al. [38] 96.21 Rao et al. [41] 94.28

CosFace [53] 97.65 ArcFace [9] 98.02

Average 97.97 Top 1 97.08

DDL 98.18

Table 2. Comparison with different participants and aggregation strategy on the
IQIYI-VID-FACE challenge. By combining with PolyNet, DDL achieves state-of-the-
art performance

Method TPR@FPR=1e-4(%) Method TPR@FPR=1e-4(%)

MSRA 71.59 Alibaba-VAG 71.10

Insightface 67.00 DDL (PolyNet) 72.98

Average 65.84 Top 1 65.22

DDL w/o re-scale 67.38 DDL 69.05

video face verification benchmark IQIYI-VID-FACE [10], The IQIYI-VID-FACE
dataset aims to identify the person in entertainment videos by face images. It
is the largest video face recognition test benchmark so far, containing 643,816
video clips of 10,034 identities. The test protocol is 1:1 verification, and the True
Accept Rate (TAR) under False Accept Rate (FAR) at 1e-4 is reported.

As shown in Table 2, compared with the average pooling, DDL improves
performance by 3.21%. Even only aggregating the top-1 discriminability score
frame can still achieve an equal performance of average aggregation for all frames.
It shows that our DDL has selected the most discriminative element of the set.
By combining stronger base model PolyNet [65], our DDL achieves state-of-the-
art performance on the IQIYI-VID-FACE challenge.

4.1.4 Evaluation on IJB-A and IJB-C. The IARPA Janus Benchmark A
(IJB-A) [29] and IARPA Janus Benchmark C (IJB-C) are unconstrained face
recognition benchmarks. They are template-based test benchmarks where both
still images and video frames are included in templates. IJB-A containing 25,
813 faces images of 500 identities while IJB-C has 140, 740 faces images of 3, 531
subjects. Since the images in IJB-C dataset have large variations, it is regarded
as a challenging set-to-set face recognition benchmark.
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Table 3. Performance comparisons on IJB-A verification benchmark. The True Accept
Rates (TAR) vs. False Accept Rate (FAR) are reported

Method
IJB-A (TAR@FAR)

FAR=1e-3(%) FAR=1e-2(%) FAR=1e-1(%)

Template Adaptation [8] 83.6 ± 2.7 93.9 ± 1.3 97.9 ± 0.4

TPE [43] 81.30 ± 2.0 91.0 ± 1.0 96.4 ± 0.5

Multicolumn [60] 92.0 ± 1.3 96.2 ± 0.5 98.9 ± 0.2

QAN [37] 89.31 ± 3.92 94.2 ± 1.53 98.02 ± 0.55

VGGFace2 [4] 92.1 ± 1.4 96.8 ± 0.6 99 ± 0.2

NAN [62] 88.1 ± 1.1 94.1 ± 0.8 97.8 ± 0.3

GhostVLAD [68] 93.5 ± 1.5 97.2 ± 0.3 99.0 ± 0.2

Liu et al. [38] 93.61 ± 1.51 97.28 ± 0.28 98.94 ± 0.31

ArcFace [9] 97.89 ± 1.5 98.51 ± 0.3 99.05 ± 0.2

Average 97.71 ± 0.6 98.43± 0.4 99.01± 0.2

DDL 98.44 ± 0.3 98.79 ± 0.2 99.13 ± 0.1

Table 4. Performance comparisons on IJB-C verification benchmark. The True Accept
Rates (TAR) vs. False Accept Rate (FAR) are reported

Method
IJB-C (TAR@FAR)

1e-6(%) 1e-5(%) 1e-4(%) 1e-3(%) 1e-2(%)

Yin et al. [63] - - - 0.1 83.8

Xie et al. [59] - - 88.5 94.7 98.3

Zhao et al. [66] - 82.6 89.5 93.5 96.2

multicolumn [60] - 77.1 86.2 92.7 96.8

VGGFace2 [4] - 74.7 84.0 91.0 96.0

PFE [45] - 89.64 93.25 95.49 97.17

ArcFace [9] 86.25 93.15 95.65 97.20 98.18

Average 86.69 92.72 94.89 96.62 97.90

DDL 92.39 94.89 96.41 97.47 98.33

Tables 3 and 4 show the results on the IJB-A and IJB-C benchmark for
different methods. From the two tables, we can see that our DDL improves
verification performance by a convincing margin with average pooling for both
two benchmarks, especially under severe FAR at 1e-5 by 0.73% on IJB-A and
FAR at 1e-6 by 5.7% on IJB-C. Compared with IJB-A, IJB-C has more images
and covers more variations among images, such as pose, blur, resolution, and
conditions. So the performance gain with DDL is larger.

Compared with the state-of-the-art methods, our DDL improves IJB-A by
0.55% when FAR =1e-3 and IJB-C by 6.14% when FAR = 1e-6. These results
indicate the effectiveness and robustness of our DDL. What’s more, unlike many
previous methods that need fine-tune with the base model on set-to-set recog-
nition training datasets [37, 68], the only supervision for DDL training is the
discriminability generated with the base model on the same training set, which
is highly flexible.
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Fig. 3. The visualization results of discriminability for images of Template ID 17762
and 16800 from IJB-C dataset

To qualitatively evaluate the discriminability pattern learned by our DDL, we
visualize the discriminability score distribution for two template images in IJB-C
datasets. As shown in Figure 3, DDL can effectively identify image discriminabil-
ity. Images with large poses, visual blur, occlusion, and incomplete content are
regarded to be low discriminative. The efficient discriminability judgment ability
for our DDL leads to an extraordinary performance on set-to-set face recognition
problems.

4.1.5 Ablation Study

The architecture of DDNet and base model. In the above experiments,
we have adopted the channel reduced version of ResNet-18 as the backbone for
DDNet. When inference, all test samples will be sent to DDNet firstly to predict
discriminability. Therefore, the test computational cost is very sensitive to the
architecture of DDNet. We design it as light-weight as possible. We also conduct
experiments with wider and deeper DDNet and test on IJB-C. As shown in
Table 5, the wider and deeper networks have not brought significant performance
gains.

As for the base model, we also experiment DDL with MobileFaceNet [6], a
popular backbone for mobile devices. From Table 5, we can see that by combin-
ing will DDL, a consistent performance gain can be achieved on set-to-set face
recognition task for MobileFaceNet.

Train on other datasets. In the aforementioned experiments, we use the
MS-Celeb-1M dataset for the base model and DDNet training. To demonstrate
the good generalization of our method, we also train the base model and DDNet
with IMDB-Face [52] dataset. IMDb-Face is a new large-scale noise-controlled
dataset for face recognition. The dataset contains about 1.7 million faces, 59k
identities, which is manually cleaned from 2.0 million raw images. The results on
IJB-C are shown in Table 5, DDL improves set-to-set face recognition by a huge
margin compared with simple average pooling, up to 15.23% at FPR=1e-6. The
model trained on IMDB-Face tends to be weaker than MS-Celeb-1M and more
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Table 5. Ablation study with different DDNet architecture, base model architecture
and training datasets. Results are reported on IJB-C benchmark. ’CD’ means channel
reduced

Method IJB-C (TAR@FAR)

DDNet Base Model Train Datasets 1e-6 1e-5 1e-4 1e-3 1e-2

ResNet-18-CD ResNet-101 MS-Celeb-1M 91.14 95.75 96.94 97.72 98.36
ResNet-34-CD ResNet-101 MS-Celeb-1M 91.13 95.74 96.90 97.72 98.33

ResNet-18 ResNet-101 MS-Celeb-1M 90.93 95.74 96.92 97.73 98.35

ResNet-18-CD MobileFaceNet MS-Celeb-1M 87.32 91.45 94.30 96.24 97.82
- MobileFaceNet MS-Celeb-1M 79.88 88.21 92.08 95.22 97.24

ResNet-18-CD ResNet-101 IMDB-Face 88.35 92.26 95.09 96.71 98.05
- ResNet-101 IMDB-Face 73.12 86.44 92.44 94.70 97.40

Table 6. Ablation study with loss function. Results are reported on YouTube Face
benchmark

Method
Accuracy(%)

DDL loss function

X ArcFace 98.18
× ArcFace 97.97

X CosFace 97.91
× CosFace 97.68
X SphereFace 97.12
× SphereFace 96.83

easily confused by hard negative pairs, thus DDL achieves a more significant
improvement.

The influence of re-scale. In Eq (9), we re-scale the discriminability scores
of element set between 0 and 1 to ensure the same range for element sets with
different lengths. In this part, we compare the re-scale strategy and origin scale
on IQIYI-VID-FACE benchmark. As shown in Table 2, re-scale can boost perfor-
mance for 1.67%. For video face recognition, which contains various frames from
dozens of to thousands of, it is necessary to re-scale the predicted discriminability
scores at the test stage.

Combined with more loss functions. There are many successful loss func-
tion these years for face recognition task, such as ArcFace [9], CosFace [53] and
SphereFace [34]. We combine DDL with more loss functions and test on YouTube
Face benchmark. As shown in Table 6, all loss functions achieve constant per-
formance gain with DDL. DDL is not sensitive to the base model training loss
function and can easily cooperate with any existing base.

4.2 Video-Based Person Re-Identification

In this section, we will evaluate our DDL with the video-based person re-identification
task on Mars [67]. It the largest video-based person re-identification dataset. The
train and test set are followed official split.
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Table 7. Results for video-based person re-identification on Mars

mAP CMC-1 CMC-5 CMC-20

Zheng et al.[67] 45.6 65.0 81.1 88.9
Li et al. [31] 56.1 71.8 86.6 93.1

QAN [37] 51.7 73.7 84.9 91.6
Hermans et al.[25] 67.7 79.8 91.4 -

3D conv [15] 70.5 78.5 90.9 95.9
Atttention [15] 76.7 83.3 93.8 97.4

RNN [15] 73.9 81.6 92.8 96.3

average 74.1 81.3 92.6 96.7
DDL 77.7 84.0 94.8 97.4

To train the base model, triplet loss function and softmax cross-entropy loss
function are used. The similarity metric is L2 distance. Standard ResNet-50
pre-trained on ImageNet is used and video frames are resized to 224×112. We
will report mean average precision score (mAP) and cumulative matching curve
(CMC) at rank-1, rank-5 and rank-20. Note that re-rank is not applied in the
comparison.

The results are shown in Table 7, DDL boosts the performance consistently.
Compared with average pooling, DDL achieves performance gain for 3.6% mAP.
For more complicated aggregation strategies like RNN and the state-of-the-art
attention mechanism, DDL also improves performance. The good performance
of video-based person re-identification further demonstrates the efficiency of our
DDL in group representation learning.

4.3 Action Recognition

In this section, we will evaluate our DDL on two most popular action recognition
datasets ActivityNet-1.2 [3] and Kinetics-700 [28]. The ActivityNet-1.2 contains
4,819 training videos and 2,383 validation videos for 100 action class. It is an
untrimmed video dataset, namely more temporal variance and noises there are.
The Kinetics-700 is a well-trimmed action recognition datasets, which contains
over 650k videos from 700 classes.

All video frames are extracted by FFmpeg with 30fps then resized and center
crop to 112×112. We select three clip-based action recognition baseline method,
the 3D-ResNet-50 [22], SlowFast-50 [13] and R(2+1)D-50 [51]. The training con-
fig for those base models follows SlowFast [13]. In the original approach, all
three methods rely on dense sampling during testing. To be more specific, they
oversampling both spatially and temporally to capture target activation.

The DDNet architecture for action recognition is the same with image task,
but replace all 2D-Conv to 3D-Conv. A video will firstly be divided into many
clips, and each clip’s discriminability will be generated by DDNet, only top-K
clips will be extracted feature and aggregated. The K we select for ActivityNet-
1.2 and Kinetics is 9 and 5, respectively. We select random and uniform sampling
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Table 8. Video action recognition results(%) on ActivityNet-1.2 dataset. Accuracy is
reported by top-1 on the validation set

Model DDL Random Uniform Dense

clip number 9 60

3D-RS-50 86.38 82.83 83.14 83.92
R(2+1)D-RS-50 89.08 84.51 84.89 85.46
SlowFast-RS-50 90.21 85.92 86.14 87.72

Table 9. Video action recognition results(%) on Kinetics-700 dataset. Accuracy is
reported on the validation set and is the average of top1 and top 5 accuracy

Model DDL Random Uniform Dense

clip number 5 30

3D-RS-50 71.01 68.26 67.43 68.83
R(2+1)D-RS-50 72.51 69.24 68.79 70.94
SlowFast-RS-50 74.23 72.39 72.05 73.77

K clips for comparison with sampling by DDL. A dense sampling experiment is
also conducted.

From Table 8, DDL improves recognition performance for all baseline models
on ActivityNet-1.2. For the state-of-the-art clips-based model SlowFast, combin-
ing it with DDL can achieve around 4% accuracy gain compared with random or
uniform sampling on ActivityNet-1.2. What’s more, DDL can even outperform
dense sampling by 2.49%, while the dense sampling strategy sample above 5x
more clips (estimated by the average duration 120s for ActivitNet-1.2).

For Kinetics-700, the results are in Table 9. DDL outperforms random sam-
pling by 1.84% and uniform sampling by 2.18%. For dense sampling, DDL can
achieve 0.46% gain with 6x speed up. Since the Kinetics-700 is trimmed by
human and video quality is under control, combining with DDL can also signif-
icantly boost recognition performance and save computational consumption.

5 Conclusion

In this paper, we have proposed a novel post-processing module called Discrim-
inability Distillation Learning (DDL) for all group-based recognition tasks. We
explicitly define the discriminability with observations on feature embedding,
then apply a light-weight network for discriminability distillation and feature
aggregation. We identify the advantage of our proposed methods in the fol-
lowing aspects: (1) The entire discriminability distillation is performed without
modifying the pre-trained based network, which is highly flexible comparing with
existing quality-aware or attention methods. (2) Our distillation network is ex-
tremely light-weighted which saves great computational cost. (3) With our DDL
and feature aggregation, we achieve state-of-the-art results on multiple group-
based recognition tasks including set-to-set face recognition, video-based person
re-identification, and action recognition.
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