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Fig. 1. Illustration of the discriminator in our method. The numbers along with each
feature map represent its spatial size and depth. ”Conv (k,s,p)” denotes the convolution
operation with kernel size k × k, stride s and padding p.

1 Network Architecture

As introduced in the maintext, our proposed method is composed of three parts,
including a denoiser (R), a generator (G) and a discriminator (D). In this section,
we will describe the detailed architecture for all of them.

1.1 Discriminator

The discriminator, aiming at distinguishing the real example and fake example
and guiding the generator to the right direction, plays an important role of
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Fig. 2. The UNet backbone for the denoiser R and generator G in our method. The
numbers along with each feature map represent its spatial size and depth. ”Conv
(k,s,p)” denotes the convolution operator with kernel size k × k, stride s and padding
p. Similarly, ”TransConv (k,s,p)” denotes the transposed convolution operator with
kernel size k× k, stride s and padding p. For denoiser R, c=3, and c = 4 for generator
G.

Gan [1]. In our proposed framework, we adopt the widely used discriminator
architecture as in [2, 3], which includes five stride convolution layers to reduce
the feature size and one fully connected layer to fuse the extracted features.
Fig. 1 shows the detailed configuration. It inputs the concatenated image pairs
(x,y) with size 128× 128× 6 and outputs a scalar.

1.2 Denoiser and Generator

UNet Backbone: For both of R and G, we use UNet [4] architecture due to its
fast speed and little GPU usage. It contains one down-path and one up-path and
the skip connections between them. The down-path reduce the feature size step
by step using stride convolution, while the up-path enlarge the feature size to
the origianl image size gradually through transposed convolution. The concrete
structure is displayed in Fig. 2. Inspired by [5], the redidual learning strategy is
employed for both of R and G, i.e.,

R(y) = y − U(y), (1)

G(x, z) = x + U([x, z]), z ∼ N (0, I), (2)

where U(·) denotes the forword propagation of UNet, [·, ·] represents the con-
catenation operation.
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Table 1. The PSNR and SSIM results of different methods on the Nam benchmark.
The best results are highlighted in bold.

Metrics
Methods

CBM3D WNNM DnCNN CBDNet RIDNet VDN GDANet GDANet+
PSNR↑ 35.36 35.33 35.68 39.20 39.33 38.66 39.91 39.79
SSIM↑ 0.8708 0.8812 0.8811 0.9676 0.9623 0.9613 0.9693 0.9689

(a): Noisy

(f ): CBDNet

(d): WNNM

(i): GDANet

(e): DnCNN

(j): GDANet+

(b): GroundTruth

(g): RIDNet

(c): BM3D

(h): VDN

Fig. 3. One typical denoising example of Nam benchmark by different methods.

2 Additional Experimental Results

2.1 Results on Nam Benchmark

This benchmark contains 11 real static scenes and the corresponding noise-free
images, which are obtained by averaging 500 noisy images of the same scenes. We
cropped these images into 512×512 patches, and randomly selected 100 of them
for the purpose of evaluation. The quantitative PSNR and SSIM results are given
in Table 1. It is easy to see that our proposed GDANet performs better than the
other compared methods. Note that VDN does not achieve good performance
since the noisy images in this benchmark are JPEG compressed, which is not
considered in VDN. For easy comparison, we also display one typical denoised
example by different methods in Fig. 3, and the better visual performance of our
methods can be observed.

Different from the results on DND benchmark (see the maintext), GDANet
performs more stably than GDANet+ as shown in Table 1, especially on SSIM
metric. That’s because the noise types simulated by the generator G, which
are mainly determined by the training data set, does not match well with that
contained in the testing set. Therefore, GDANet is suggested to be used in such
general real-world denoising task with uncertain noise types, while DANet+ is
more suitable in the scenario that provides similar training and testing data sets.
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Table 2. Running time (in seconds) of different
methods for denoising images with size 256×256,
512× 512 and 1024× 1024.

Methods Device
Image size

256 512 1024

CBM3D CPU 3.115 12.964 53.601

DnCNN GPU 0.011 0.038 0.142

VDN GPU 0.011 0.030 0.115

DANet GPU 0.007 0.014 0.055

Table 3. Running time (in seconds) of differ-
ent methods for generating noisy images with size
256× 256, 512× 512 and 1024× 1024.

Methods Device
Image size

256 512 1024

CBDNet CPU 0.059 0.249 1.017

ULRD CPU 0.068 0.266 1.502

GRDN GPU 0.149 0.617 2.313

DANet GPU 0.008 0.017 0.069

2.2 Running Time

In this part, we compare the running time of different methods for both the noise
remove and noise generation tasks. The evaluation was performed on a computer
with 6-cores Inter(R) Core(TM) i7-8700K CPU @ 3.3GHz and an Nvidia GTX
1080Ti GPU.

Table 2 lists the running time of CBM3D, DnCNN, VDN and DANet for de-
noising task. Benifiting from the GPU computation, DnCNN, VDN and DANet
are much faster than CBM3D. Even though both implemented on GPU, our
proposed DANet is still about two times faster than DnCNN due to the sim-
ple UNet [4] architecture. As for the noise generation task, the running time
of different methods are listed in Table 3. Firstly, DANet is much faster than
all the other methods, expecially GRDN, which also uses deep neural network
as generator. Secondly, CBDNet and ULRD both unfolded the in-camera pro-
cessing pipelines, and had fewer computation burden than deep neural network.
The lower speed of them is mainly limited by the computing power of CPU. No
mattter considering denoising or generation task, DANet is very competitive for
real applications.
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