Weighing Counts: Sequential Crowd Counting
by Reinforcement Learning

Liang Liu'*, Hao Lu?, Hongwei Zou!, Haipeng Xiong?,
Zhiguo Cao'**, and Chunhua Shen?

1 School of Aritifical Intelligence & Automation, Huazhong University of Science &
Technology, China
2 The University of Adelaide, Australia
{wings, zgcao}Chust.edu.cn

Abstract. We formulate counting as a sequential decision problem and
present a novel crowd counting model solvable by deep reinforcement
learning. In contrast to existing counting models that directly output
count values, we divide one-step estimation into a sequence of much
easier and more tractable sub-decision problems. Such sequential decision
nature corresponds exactly to a physical process in reality—scale weighing.
Inspired by scale weighing, we propose a novel ‘counting scale’ termed
LibraNet where the count value is analogized by weight. By virtually
placing a crowd image on one side of a scale, LibraNet (agent) sequentially
learns to place appropriate weights on the other side to match the crowd
count. At each step, LibraNet chooses one weight (action) from the weight
box (the pre-defined action pool) according to the current crowd image
features and weights placed on the scale pan (state). LibraNet is required
to learn to balance the scale according to the feedback of the needle (Q
values). We show that LibraNet exactly implements scale weighing by
visualizing the decision process how LibraNet chooses actions. Extensive
experiments demonstrate the effectiveness of our design choices and report
state-of-the-art results on a few crowd counting benchmarks, including
ShanghaiTech, UCF_CC_50 and UCF-QNRF. We also demonstrate good
cross-dataset generalization of LibraNet. Code and models are made
available at https://git.io/libranet

Keywords: Crowd Counting - Reinforcement Learning

1 Introduction

Counting is sequential decision process by nature. Dense object counts are not
inferred by humans with a simple glance [4]. Instead humans count objects in
a sequential manner, with initial fast counting on apparent objects (large sizes
and clear appearance) and gradually slow counting on objects that are hard to
recognize (small sizes or blurred appearance). Such a sequential decision behavior

* L. Liu and H. Lu contributed equally
** Corresponding author

2 Liu et al.

My Wy \\H My \\\‘l’ll/

Q

| I
O . \p QO & o ==t=—0 o o
Ol @b 8[h &[0 &4

) €N €N

|
N €N

Fig. 1: Counting scale. We implement crowd counting as scale weighing. By
virtually placing a crowd image (with 7 people) on the scale, if placing a 10 g
weight on the scale pan, the scale will lean to the right; if exchanging the 10 g
weight to 5 g, the scale instead will lean to the left. Finally by adding another
2 g weight, the scale is balanced. The total weights on the scale can therefore
indicate the number of crowd.

can be modeled by a physical process in reality—scale weighing. In scale weighing,
it is easy to choose a weight when the weights placed on the scale are far from
the true weight of the stuff. When placed weights are close to the true weight,
small and light weights are carefully chosen until the needle indicates the balance.
This process decomposes a difficult problem into a series of much more tractable
sub-problems.

Following the same spirit of human counting and scale weighing, we formulate
counting as a sequential decision problem and implement it as scale weighing.
Indeed counting objects is like weighing stuff. In the context of crowd counting
shown in Fig. 1, the ‘stuff’ is a crowd image, and the ‘weights’ are a series of pre-
defined value operators. We repeatedly choose counting ‘weights’ to approximate
the ground-truth counts until the scale is balanced. The final image count is
simply a summation of placed ‘weights’.

The sequential decision nature of scale weighing makes it suitable to be
described by a reinforcement learning (RL) task. We hence propose a Deep
Q-Network (DQN) [29]-based solution, LibraNet?, to implement scale weighing
and apply it to crowd counting as a ‘counting scale’. In particular, given a ‘stuff’,
LibraNet outputs a combination of weights step by step. In each step, a weight
(action) is chosen from the weight box (the pre-defined action pool) or removed
from the scale pan according to the feedback of the needle (Q values that indicate
how to choose the next action). The weighing process continues until LibraNet
chooses the ‘end’ operator. The ‘stuff’ is the image feature encoded from a
crowd image, and the ‘end’ condition meets when the summation of the weights
equals/approximates to the ground-truth people count.

We visualize how LibraNet works and illustrate that LibraNet exactly imple-
ments scale weighing. We show through extensive experiments why our choices in
designing reward function work well, that LibraNet can be used as a plug-in to
existing local counts models [47,19], and that LibraNet achieves state-of-the-art
performance on three crowd counting datasets, including ShanghaiTech [52],
UCF_CC.50 [11], and UCF-QNRF [12]. We also report cross-dataset performance
to verify the generalization of LibraNet.

3 The naming of LibraNet is inspired by the zodiac sign.

Weighing Counts: Sequential Crowd Counting by Reinforcement Learning 3

In summary, we show that counting can be interpreted as scale weighing and
we implement scale weighing with LibraNet. To our knowledge, LibraNet is the
first approach that uses RL techniques to solve crowd counting.

1.1 Related Work

Crowd Counting. Crowd counting is often tackled as a dense prediction task
[24, 25]. Solutions range from early attempts that detect pedestrians [7], regress
image counts [3], estimate density maps [16], predict localized counts [5], to recent
deep learning-based density maps estimation [17], redundant counts regression [6,
23], instance blobs localization [15] and count intervals classification [19, 48].

Since detection typically failed on small and dense people, regression-based
approaches [3,32] were proposed. While early methods alleviated the issues of
occlusion and clutter, they ignored spatial information because only the global
image count was regressed. This situation eased when the concept of density map
was introduced in [16]. Chen et al. [5] also introduced localized count regression
by mining local feature importance and sharing visual information among spatial
regions.

With the success of Deep Convolutional Neural Networks (DCNNs), deep
crowd counting models emerged. [45] applied a CNN to crowd counting by global
count regression. [51] presented a switchable training scheme to estimate the
density map and the global count. By contrast, works of [6, 23] adopted redundant
counting where local patches were densely sampled in a sliding-window manner
during training, and the image count was obtained by normalizing redundant
local counts at inference time. Authors of [20] employed a CRF-based structured
feature enhancement module and a dilated multiscale structural similarity loss
to address scale variations of crowd. To alleviate perspective distortion, the work
in [35] integrated perspective information into density regression and proposed
a PACNN for efficient crowd counting. In [15] a network is trained to output a
single blob for each person for localization. The work in [44] optimized a residual
signal to refine the density map. Instead of direct regression, authors of [19,
48] reformulated it as a classification problem by discretizing local counts and
classifying count intervals.

Most existing models generate crowd counts in one step. This renders diffi-
culties in correcting under- or over-estimated counts. Despite that there exists a
method that recurrently refines density map with a spatial transformer network
[21], it does not decompose a hard task into a sequence of easy sub-tasks and
does not fully leverage the advantage of sequential counting.

Deep Reinforcement Learning. RL [8,31] is one of the fundamental machine
learning paradigms. It includes several elements, namely, agent, environment,
policy, state, action, and reward. It aims to learn policies such that an agent can
receive the maximum reward when interacting with the environment. Since the
work of [28] introduced deep learning into RL, it has received extensive studies [27,
29,34, 46]. In particular, RL achieved breakthroughs in a few areas such as go [37]
and real-time strategy games [30,43]. Recently some deep RL-based methods

4 Liu et al.

W il i) W
+—0 +-0) i
d-—d--—2@®~ -é-:——-l———v@-v -§-+--~:———$———>@+i

| AmMaxi | ArgMax 1 ArgMax ©): Concatenate
s s —
L MNeedle i Needle .| i Needle ______ : ®): Update
A A
— E—PHHH.Q.—P DQN —PEEE.Q.—P E—P-
1 1
1 1
v v
Image Feature Map Feature Vectors Action Vectors Action Map Count Map

Fig. 2: Overview of LibraNet. A CNN backbone first extracts the feature map
FV; of an input image I, then each element FV} of FV is sent to a DQN. In
DQN, FV/ and a weighing vector W, are concatenated and sent to a 2-layer MLP.
The output of MLP is a 9-dimensional @) value vector. We choose an action with
the maximum Q value, and update W/, per Eq. (4). This process repeats until
the model chooses ‘end’ or exceeds the predefined maximum step. The output
action vectors can be converted to count intervals by Eq. (5), and the intervals
are further remapped to a count map with inverse discretization [19]. The image
count of | is acquired by summing the count map.

were also proposed to tackle computer vision tasks, such as object localization [2]
and instance segmentation [1]. However, these RL practices in computer vision
cannot be directly transferred to crowd counting. A main reason is that there
is no principled way to reformulate counting into a sequential decision problem
suitable for RL. Inspired by scale weighing, we fill this gap and present the first
deep RL-based approach to crowd counting.

2 Sequential Crowd Counting by Reinforcement Learning

Here we explain LibraNet in detail. Sec. 2.1 introduces the formulation of sequen-
tial counting. Sec. 2.2 shows how to deal with this sequential task with Q-learning.
Sec. 2.3 explains the network architecture, and Sec. 2.4 presents implementation
details. An overview of our method is shown in Fig. 2.

2.1 Generalized Local Count Modeling

Despite that most deep counting networks treat density maps as the regression
target [12,26,33,45,52], there is another line of works pursuing the idea of
local count modeling and also reporting promising results [6, 19, 23,48]. LibraNet
follows this local count paradigm but operates in a sequential manner. In what
follows, we present a generalized perspective of local count modeling and show
how we reformulate them into sequential learning.

Weighing Counts: Sequential Crowd Counting by Reinforcement Learning 5

Local Count Regression. Some previous works [6,23,47] consider counting a
problem of local count regression, which densely samples an image into a series
of local patches then estimates the per-patch count directly. It amounts to the
following optimization problem
>
min G(i) NZ(i) ; (1)
o ar
where | is the input image and i denotes the local patch sampled from I,
G (i) returns the ground truth count given i, and NY is a regression network
parameterized by

Local Count Classi cation. Inspired by local count regression, counting is
further formulated as a classification problem [19, 48] where local patch counts
are discretized into count intervals. This process is defined by
X
mein G(i) ID argmaxNZ (i;c) ; (2)
i2l ¢

where Ng is a classification network parameterized by , € is the number of count
intervals, and ID() defines an inverse-discretization procedure that recovers the
count value from the count interval [19]. More details about discretization and
inverse-discretization can be referred to Supplementary Materials.

Local Counting by Sequential Decision. Motivated by scale weighing, count-
ing can be transformed into a sequential decision task. We call this a weighing
task. Instead of estimating a count value or a count interval directly, the weighing
task sequentially chooses a value operation in each step from a pre-defined action
pool. The sequential process terminates when the agent chooses the ‘ending’
operation or exceeds the maximum step allowed. This task is defined by

Te
mgin Z G (i) — Zargmax Ng (i;Wf;a)
t=0 @

121

; (3)

where Ng is a sequential decision network parameterized by , a is one of the
pre-defined value operations. T, = min (t,,; t.) is the ending step, where t,, is
the maximum step, t. is the step that chooses the ending operation. W/ is the
weight vector that represents the chosen weights, which is initialized by a full-zero
vector. W/ takes the form

; _ T0;0;0;:mg ift=0 (@)
t+17 W/Ja otherwise’

where @, is the operation chosen at the step t, and] is a weight updating operator
(see also Eq. (7)). In step T the count V/ of the patch i takes the form

Vi = arg max Ng iW/a = Wy ; (5)
t=0 @ t=0

6 Liu et al.

where W forms W/ such that
W) = wi;wis w500 (6)

Overall, the working flow of this weighing task is akin to scale weighing. In each
step, the network N% (scale) evaluates the value difference between the image
patch i and the value associated with the weight vector W,/ (weights); according
to the output of the network (needle), the agent chooses an action (add or remove
a weight) to adjust V- to approximate the ground-truth patch count G (i) until
they are equal (the scale is balanced). We present more details in the sequel.

2.2 Crowd Counting as Sequential Scale Weighing

We implement Eq. (3) within the framework of Q-leaning [29]. The elements of
Q-learning include state, action, reward and Q value. They correspond to the
scale pan, weights, designed rewards and needle in scale weighing.

State (Scale Pan). The state depicts the status of ‘two scale pans’—the weight
vector W/ and the image feature FV;}. Formally, the state s = fFV}; W/qg.
According to [19], the data distribution is often long-tailed in crowd counting
datasets with imbalanced samples. Liu et al. [19] shows that this issue could
be alleviated by quantizing local counts and treating the count intervals as the
learning target. We follow this idea to check the balancing condition of the scale.

Action (Weights). In Q-learning, an action is defined to modify the state.
Since FV/ is fixed in s once it is extracted, the action is designed to only change
W/. We design an action pool in a way similar to the scale weighing system
and the money system [42], i.e., a=F 10; 5; 2; 1;41;+2;+5;+10;endg. It
includes 8 value operations and one ending operation (indicating the scale is
balanced). Given a new action a;, W/ is modified by an updating operator]

W/ Ja; = fwi;nwl 150;0;:mg] a = fw; wl 4;a,0;:00: (7)
W/ records what weights are placed/removed from the scale pan before step t 1.

Reward Function. A reward scores the value of each action. We define two
types of reward: ending reward and intermediate reward. In particular, we use a
conventional ending reward and further design three counting-specific rewards—
force ending reward, guiding reward, and squeezing reward.

Ending Reward. Following [2], we employ a conventional ending reward to evaluate
the value of the ‘end’ action, defined by

+ . ifjEs, 1] 1.

Re (B, 1) = . otherwise

(8)
where t. is the step that the agent chooses the ‘end’ action, E;, ; is the absolute
value error between the ground-truth count G(i) and the accumulated value
Vii 15 and 1 is the error tolerance. Here .=5, and 1=0.

Weighing Counts: Sequential Crowd Counting by Reinforcement Learning 7

Algorithm 1 Training Procedure of LibraNet

1: Initialize a Buffer < [], the Q-network N§, and the backbone network N,
2: for epoch + 0 to NumEpochs do

Update the Q-network N(% — Ng

4 for all image | in the training dataset do

5 Compute the image feature FVy <— Ny (1)

6: for all patch i in image | do
7.

8

Initialize W¢ <= {0;0;:::}
: Fetch the ground-truth patch count G (i)
9: fort+ 0to T. do

10: Obtain the state s; «+ {FV/; W/}

11: Compute the Q value Q: «+ N% (st)

12: Choose an action a; with -greedy policy
13: Compute the reward r according to Sec. 2.2
14: Update W/, ; per Eq. (4)

15: Obtain the next state S;11 + {FV};WJH}
16: Buffer < (S¢;as;Se41;T)

17: end for

18: end for

19: Sample a batch B from the Buffer to train N§ per Eq. (16)
20: end for

21: end for

Considering that the agent is hard to choose the ‘end’ action because of huge
searching space, the agent is forced to stop when it exceeds the maximum step
allowed. This is described by the force ending reward

+ o ifjE..] 1

Rfe (Bt) = . otherwise ; ®)

where E; _, is the absolute value error at the maximum step t,,.

Intermediate Reward. In previous works [2,14] that employ deep RL to deal
with object localization, an intermediate reward is simply given according to
the change of IoU. In counting, an optimal action can be computed to reach the
balancing state faster. We thus introduce a guiding reward to push the agent to
choose the optimal action, defined by

8
<,y if a; = af

Ry (EvE: 1jagaf)=_ + B <E 1] (10)
- otherwise

where @; is the action chosen in the step t, and aJ is the optimal action, given by
al =argmin G(i) V/,+a : (11)
a
In our implementation, ,=+3, ;=+1,and = 1.

In our experiments, we find that, at the first several training epochs, the agent
tends to choose large value operators that lead to overestimation. A possible

8 Liu et al.

explanation is that, because of the huge searching space, the agent cannot search
for actions smoothly. To reach the balancing state faster, we propose a squeezing
reward to constrain the estimated value, defined by

R, (E4; E: 1;a84) if S V,5G(i) =1

R.= Rsg (Et; Bt 1584 8y) otherwise

: (12)

where R, is the guiding reward (Eq. (10)). S V/;G (i) decides whether V' is
out of the tolerance range as

S V,;G(i) =sign G(i) o V! G(i) ; (13)

where 5 is a tolerance range set to 0:5 in this paper. If S V/;G (i) = 1, we
leverage a squeezed guiding reward to squeeze the estimation within the tolerance
range, defined by

sg ifay =af,

Reg (B Er vjaia) = s otherwise’

(14)

where 4,= 1,and ,= 3. Notice that, in this reward function, all rewards are
set to be negative such that the agent is encouraged to avoid choosing an action
sequence that leads to overestimation.

Q Values (Needle). In Q learning, the @ value of an action is an estimation
of the accumulated reward after this action is taken, which takes the form

r ifa, =‘end’ ort=1t,, . (15)
r+ max,Q (s;11;a") otherwise '

Q (s ar) =

where r is the reward coming from either R., Rfe, Ry or Ryg, the next state S;41
is acquired after the action a; is taken at the present state S;, and is the reward
discount factor set to 0:9 in our experiments. The Q value of each action is the
output of DQN. It guides action selection and implies how the agent judges the
scale balance. Hence Q value can be seen as the ‘needle’ of the ‘counting scale’.

2.3 LibraNet

Here we give an overview of LibraNet (Fig. 2). LibraNet consists of two parts: a
feature extraction backbone and a DQN. The backbone includes 5 convolutional
blocks of VGG16 [38]. It aims to extract the feature map FVy of an image I.
Each spatial feature vector FV} in FV; and its weight vector W, correspond
to a 32 32 block in the original image. The backbone uses the model trained
by [19] and is then fixed when training the DQN.

The core of LibraNet is the DQN. Its input is FV; and W/ In each step of the
training stage, FV; and W/ are concatenated and sent to a two-layer multi-layer
perception (MLP) with 1024-dimensional hidden units in each layer, and the
DQN outputs a 9-dimensional Q value Q;. An action a; chosen by -greedy policy

Weighing Counts: Sequential Crowd Counting by Reinforcement Learning 9

(Sec. 2.4) is then concatenated with W/ to obtain W/ ; (Eq. (4)). The estimation
repeats until the ‘end’ action is reached or exceeds t,, steps. The output of DQN
is the weighing vector W}e for each patch i. When the weighing task terminates,
V%e is computed according to Eq. (5).

In the inferring stage, the agent chooses the action with the maximal @Q value
to obtain the weighing vector W, and the weighing value V7, of each patch.
Notice that Vf«e is still the quantized count interval. It needs to be further mapped
to a counting value with a class-count look-up table [19]. Finally we can sum all
patch counts to obtain the image count.

2.4 Implementation Details

Following [29], we use a replay memory buffer [18] to remove correlations in
the weighing process. We follow the standard DQN [29] structure which has a
Q-network and a target network. The target network computing the target Q
value (maxq0Q (S¢41;a")+r) is fixed when training the Q-network, and we update
the target network at the beginning of each epoch with the parameters of the
Q-network. ‘1 loss is used for optimization. The overall loss is defined by

X .
o _ r+ max Ng (Stt1; ao) Ng (st;ar) =N ; (16)
(st,at,st+1,7)2U(B)

where Ng is LibraNet, and ~ are the parameters of the Q-network and the
target network, respectively, r is the reward, and is the discount factor.

During training, we follow the -greedy policy: a random action is chosen
either with a probability of or according to the maximum Q value. starts
from 1 and decreases to 0:1 with a step of 0:05. To reduce computation cost, we
update the model when every 100 samples are sent to the buffer. Considering
that, the maximum quantized count interval is less than 80, the maximum step
t,, is set to 8 (the maximum value operation is +10). Algorithm 1 summarizes
the training flow. We use SGD with a constant learning rate of 1e °.

Following [17], we crop 9 -resolution patches. These patches are mirrored
to double the training set. For the UCF-QNRF dataset [12], we follow BL [26]
to limit the shorter side of the image to be less than 2048 pixels and to crop
512 512 patches for training.

3 Experimental Results

Here we validate the effectiveness of LibraNet, visualize the weighing process,
compare it against other state-of-the-art methods, demonstrate its cross-dataset
generalization, justify each design choice, and show its generality as a plug-in.
We report the mean absolute error (MAE) and (root) mean square error (MSE).

10 Liu et al.

Counting
Interval

Fig. 3: Visualization of the inferring process of LibraNet. (upper right) Visualiza-
tions of action selection. We estimate the count interval for each 32 32 patch of
the image. The weighing process is shown from t=0 to t=7, and the ground truth
count intervals are shown in the right. For each patch, the lower green number is
the accumulated value (the count interval), and the upper number is the value
operator, including the value-increased operator (blue), the value-decreased oper-
ator (dull-red), and the ending operator ‘E’ (yellow). (bottom right) Estimated
Q values in each step of the upper left patch. The red point in each step is the Q
value of the chosen action.

3.1 Visualization of the Weighing Process

To understand how LibraNet works, we visualize the inferring process of one
sample in Fig. 3. It can be seen that, in the first several steps, LibraNet tends
to choose the action such that the estimation increases rapidly to approximate
the ground truth. This is consistent with the target of guiding reward (Eq. (10)).
When the accumulated value is close to the ground truth, LibraNet begins to
choose actions with small values. This is similar to how we weight a stuff using
a scale. Once the accumulated value equals to the ground truth, the weighing
process terminates. Notice that, even if the maximum step is reached, LibraNet
still produces a relatively accurate estimation due to force ending reward (Eq. (9)).
Interestingly, we find that the agent chooses positive actions more frequently
than negative ones, because i) the initial value is 0, and the target count is either
0 or positive. Thus, the agent tends to choose positive actions to approximate
the ground truth, and ii) we design a squeeze guide reward (Eq. (14)) to avoid
overestimation. This reward penalizes overestimation and further decreases the
frequency of selecting negative actions.

To further analyze why the agent chooses certain actions, we visualize Q
values of the top left patch. The ground truth count interval is 45, and the

