
Thanks for Nothing:
Predicting Zero-Valued Activations with

Lightweight Convolutional Neural Networks

Gil Shomron1, Ron Banner2, Moran Shkolnik1,2, and Uri Weiser1

1 Faculty of Electrical Engineering — Technion, Haifa, Israel
{gilsho@campus, uri.weiser@ee}.technion.ac.il

2 Habana Labs — An Intel Company, Caesarea, Israel
{rbanner, mshkolnik}@habana.ai

Abstract. Convolutional neural networks (CNNs) introduce state-of-
the-art results for various tasks with the price of high computational
demands. Inspired by the observation that spatial correlation exists in
CNN output feature maps (ofms), we propose a method to dynamically
predict whether ofm activations are zero-valued or not according to their
neighboring activation values, thereby avoiding zero-valued activations
and reducing the number of convolution operations. We implement the
zero activation predictor (ZAP) with a lightweight CNN, which imposes
negligible overheads and is easy to deploy on existing models. ZAPs are
trained by mimicking hidden layer ouputs; thereby, enabling a paral-
lel and label-free training. Furthermore, without retraining, each ZAP
can be tuned to a different operating point trading accuracy for MAC
reduction.

Keywords: Convolutional neural networks, dynamic pruning

1 Introduction

In the past decade, convolutional neural networks (CNNs) have been adopted for
numerous applications [39][37][27], introducing state-of-the-art results. Despite
being widely used, CNNs involve a considerable amount of computations. For
example, classification of a 224x224 colored image requires billions of multiply-
accumulate (MAC) operations [4][42]. Such computational loads have many im-
plications, from execution time to power and energy consumption of the under-
lying hardware.

CNN output feature maps (ofms) have been observed to exhibit spatial corre-
lation, i.e., adjacent ofm activations share close values [32][38]. This observation
is particularly true for zero-valued activations, as it is common practice to use
the ReLU activation function [33], which squeezes all negative values to zero. If
it were possible to predict which of the convolution operations will result in a
negative value, they could be skipped, their corresponding ofm activations could
be set to zero, and many multiply-accumulate (MAC) operations could be saved.

2 G. Shomron et al.

Fig. 1. Exploiting spatial correlation for zero-value prediction of ofm activations with
CNN-based predictor. Bright white pixels represent a predicted zero-valued ofm acti-
vation.

Prediction mechanisms are at the heart of many general-purpose processors
(GPPs), leveraging unique application characteristics, such as code semantics
and temporal locality, to predict branch prediction outcomes and future mem-
ory accesses, for example. Prediction mechanisms may similarly be employed for
CNNs. In this paper, we propose a prediction method for CNNs that dynam-
ically classifies ofm activations as zero-valued or non-zero-valued by leveraging
the spatial correlation of ofms. The zero activation predictor (ZAP) works in
three-steps: first, only a portion of the ofm is fully computed; then, the remain-
ing activations are classified as zero-valued or non-zero-valued using a lightweight
convolutional neural network; and finally, the predicted non-zero-valued activa-
tions are computed while the zero-valued activations are skipped, thereby saving
entire convolution operations (Figure 1). ZAP imposes negligible overheads in
terms of computations and memory footprint, it may be plugged into pretrained
models, it is trained quickly, in parallel, and does not require labeled data.

ZAP may be considered as a CNN-based, dynamic, unstructured, and magnitude-
based ofm activations pruning strategy. However, as opposed to many pruning
techniques, ZAP is tunable on-the-fly. Therefore, ZAP captures a wide range of
operating points, trading accuracy for MAC savings. For example, by strictly
focusing on zero-valued ofm activations, ZAP can capture a range of operating
points that does not require retraining. ZAP is also capable of pruning when
set to high speculation levels, as more mispredictions of non-zero-valued activa-
tions as zero-valued activations take place. Interestingly, we observe that these
mispredictions usually occur with small activation values, which is practically a
magnitude-based pruning strategy.

This paper makes the following contributions:

– Zero activation predictor (ZAP). We introduce a dynamic, easy to de-
ploy, CNN-based zero-value prediction method that exploits the spatial cor-
relation of output feature map activations. Compared with conventional con-
volution layers, our method imposes negligible overheads in terms of both
computations and parameters.

Thanks for Nothing: Predicting Zero-Valued Activations 3

– Trade-off control. We estimate the model’s entire accuracy-to-savings trade-
off curve with mostly local statistics gathered by each predictor. This pro-
vides a projection of the model and the predictor performance for any oper-
ating point.

– Accuracy to error linearity. We show, both analytically and empirically,
that the entire model accuracy is linear with the sum of local misprediction
errors, assuming they are sufficiently small.

– Local tuning given global constraints. We consider layers variability by
optimizing each ZAP to minimize the model MAC operations subject to a
global error budget.

2 ZAP: Zero Activation Predictor

In this section, we describe our prediction method and its savings potential. We
analyze its overheads in terms of computational cost and memory footprint and
show that both are negligible compared with conventional convolution layers.

2.1 Preliminary

A convolution layer consists of a triplet 〈Xi, Xo,W 〉, where Xi and Xo cor-
respond to the input and output activation tensors, respectively, and W cor-
responds to the set of convolution kernels. Each activation tensor is a three-
dimensional tensor of size w × h × c, where w, h and c represent the tensor
width, height, and depth, respectively. For convenience, the dimensions of Xi

and Xo are denoted by [wi×hi× ci] and [wo×ho× co]. Finally, the set of convo-
lution kernels W is denoted by a four-dimensional tensor [k× k× ci× co], where
k is the filter width and height. The filter width and height are not necessarily
equal, but it is common practice in most conventional CNNs to take them a such.
Given the above notations, each output activation value Xo[x, y, z] is computed
from the input tensor Xi and weights W as follows:

Xo(x, y, z) =

k−1∑
i,j=0

ci−1∑
c=0

Xi[x+ i, y + j, c] ·W [i, j, c, z], (1)

where the bias term is omitted for simplicity’s sake. We use the above notations
throughout this paper.

2.2 Three-Step Method

Conventional convolution layers compute their ofm by applying Equation (1) for
each [x, y, z]. It has been observed that ofms accommodate many zero-valued ac-
tivations due to the widespread usage of the ReLU activation function [34][42][2].
For example, with ResNet-18 [13], almost 50% of the ofm activations are zero-
valued; therefore, 50% of the MAC operations may be potentially skipped. More-
over, ofm activations exhibit spatial correlation [32][38], meaning that a group
of activation values testifies about other adjacent activation values.

4 G. Shomron et al.

𝑋𝑜 𝐼𝑠

T

T

F

T

T

F

T

F

T

T

T

T

𝑀𝜎 𝐼𝑡

0
0

1
2

0

𝑀 𝐼𝑡

.1

σ

𝑋𝑖

𝑊

0

0

C

0

0

C

0

C

0

0

0

0

𝑋𝑜 𝐼𝑡ZAP

-1
.1

.9

F = False, T = True

𝑋𝑜

-2

.1

3-

C = Convolution

Fig. 2. Illustration of a single ofm channel convolution with ZAP. Xo[Is] is computed
based on a pre-defined pattern. Xo[Is] is then subjected to ZAP, which produces a
prediction map M [It], followed by a thresholding step to form the binary prediction
map Mσ[It]. Xo[It] is created according to Mσ[It] — a portion of the It ofm activa-
tions are predicted as zero-valued and skipped, whereas the rest are computed using
Equation (1).

We suggest a three-step dynamic prediction mechanism that locates zero-
valued ofm activations by exploiting the spatial correlation inherent in CNNs
to potentially skip them and reduce the computational burden of the model.
Given an ofm, Xo, we divide its indices into two subsets (Is, It) according to
a pre-defined pattern. Then, the following three steps are carried out (as illus-
trated in Figure 2): (i) the values that belong to indices Is are fully computed in
the conventional manner, resulting in a sparse ofm, Xo[Is]; (ii) this partial ofm
(Xo[Is]) is passed through our predictor to yield a binary map, Mσ[It], which
is used to predict the zero values in Xo[It]; and (iii) all values predicted to be
non-zero by Mσ[It] are computed. We describe this process in detail next.

Computation pattern. Xo[Is] is computed based on a pre-defined pattern
as depicted in Figure 3. Since our predictor exploits spatial correlation, we par-
tially compute the ofm so that activations that are not computed in the first
step will reside next to a number of computed activations. We use α to denote
the ratio between the number of activations computed in the partial ofm and

the ofm dimensions. This may be formally formulated as α ≡ |Is|
wohoco

, where |Is|
is the set cardinality.

By decreasing α, less ofm activations are computed prior to the prediction,
which may potentially lead to the saving of more operations. For example, for
α = 40%, 60% of the activations may potentially be saved. Less prior data
about the ofm may, however, lead to higher misprediction rates, which in turn
may decrease model accuracy.

Prediction process via lightweight CNN. Given the partial ofm, Xo[Is],
our goal is to produce an output computation mask that predicts which of the
remaining activations are zero-valued and may be skipped. Recall that ofm acti-
vations are originally computed using Equation (1) and so the prediction process
must involve less MAC operations than the original convolution operation with
as minimal memory footprint as possible.

Thanks for Nothing: Predicting Zero-Valued Activations 5

(A) α = 60% (D) α = 33%(C) α = 40%(B) α = 50%

Fig. 3. Partial ofm convolution patterns. Black pixels represent computed activations.

We use a CNN to implement ZAP. We exploit the spatial correlation inherent
in CNNs [32][38][21][9] and use only depthwise convolution (DW-CONV) layers
[16], i.e., only spatial filters with no depth (k × k × 1× co). As such, we obtain
a lightweight model in terms of both MAC operations and parameters (further
analyzed in Section 2.3). Our CNN comprises a 3x3 DW-CONV layer followed by
a batch normalization (BN) layer [20] followed by ReLU, twice. DW-CONV layer
padding and stride are both defined as 1 to achieve equal dimensions throughout
the CNN predictor. During training, the last ReLU is capped at 1 [24], whereas
during inference we discard the last ReLU activation and use a threshold.

Thresholding. Altough ZAP is trained to output a binary classifier (de-
scribed in Section 4.1), ZAP naturally outputs M [It], which is not a strict binary
mask but rather a range of values that corresponds to a prediction confidence
[11][43] of whether the ofm activation is zero-valued or not. To binarize ZAP’s
output, we define a threshold σ that sets the level of prediction confidence;
therefore, Mσ[It] = M [It] > σ (boolean operation).

According to Mσ[It], part of the ofm activations in Xo[It] are predicted to be
non-zero-valued and are computed, whereas the others are predicted to be zero-
valued and are skipped. When an ofm activation is predicted to be zero-valued,
two types of misprediction may occur. First, an actual zero-valued activation may
be predicted as a non-zero-valued activation and so redundant MAC operations
may take place. Second, an actual non-zero-valued activation may be predicted as
zero. The latter misprediction increases the model error, potentially decreasing
model accuracy.

The motivation behind ZAP is clear — reducing computations by skipping
convolution operations. Its impact on the model accuracy, number of compu-
tations, and amount of parameters has yet, however, to be discussed. We next
discuss the overhead of ZAP, and in Section 4, we show empirically how ZAP
affects the accuracy of different model architectures.

2.3 Overhead Analysis

ZAP is a CNN by itself, which means that it introduces additional computations
and parameters. To be beneficial, it must execute less operations per ofm acti-
vation than the original convolution operation. A conventional convolution layer
requires k2ci MAC operations per ofm activation. On the other hand, the num-
ber of MAC operations required by a two-layered DW-CONV ZAP for a single
ofm activation is K2, where K is the filter width and height. Note that ZAP’s

6 G. Shomron et al.

first layer needs only to consider |Is| values for computation since, according
to the pre-defined pattern, the remaining |It| values are zero; the second layer
needs only to compute |It| ofm activations.

Compared with a standard convolution operation, and for the case of K = k,

ZAP ops.

standard convolution ops.
=

1

ci
. (2)

ci is usually greater than 102 [13][40][26], in which case 1/ci ≈ 0 and ZAP
overhead is, therefore, negligible.

Regarding the parameters, a conventional convolution layer requires k2cico
parameters and a two-layered DW-CONV requires 2K2co parameters. Given ci
conventional sizes and K = k, ZAP’s memory footprint is negligible as well.

3 Trade-Off Control

The threshold hyperparameter, σ, represents the prediction confidence of whether
an ofm activation is zero or non-zero. Users should, however, address the accu-
racy and MAC reduction terms rather than using σ, since it is not clear how a
specific σ value affects accuracy and savings. In this section, we show that, given
some statistics, we can estimate the entire model accuracy and predictor MAC
savings, thereby avoiding the need to address the threshold value directly and
providing the user with an accuracy-MAC savings trade-off control “knob”.

3.1 Accuracy, MAC Savings, and Threshold

Accuracy and threshold. Consider a DNN with L layers. Each layer i com-
prises weights wi, an ifm xi, and an ofm yi. When predictions are avoided, layer
i+ 1 input, xi+1, is given by

xi+1 = yi = max(xiwi, 0) , (3)

where max(·, 0) is the ReLU activation function.
Our predictor is not perfect and may zero out non-zero elements with a small

probability εi. Therefore, non-zero inputs to layer i+ 1 have a probability εi of
becoming zero and a probability 1 − ε of remaining yi. Using yπi to denote the
prediction of output yi, we obtain the following error in the expected activation:

E(yπi) = (1− εi) · E(yi) . (4)

In other words, the prediction at each layer i introduces a multiplicative error of
(1 − εi) with respect to the true activation. This multiplicative error builds up
across layers. For an L-layer network, the expected network outputs are scaled
down with respect to the true network outputs as follows:

Scale Error =

L∏
i=1

(1− εi) . (5)

Thanks for Nothing: Predicting Zero-Valued Activations 7

1 - Sum of εi

A
cc
.
D
ec
.
[%

]

Mask A Mask B Mask C Mask D

0.8 0.85 0.9 0.95 1

0.0

0.2

0.4

0.6

0.8

0.8 0.9 1

0

0.5

1

0.6 0.8 1

0

2

4

0.4 0.6 0.8 1

0

2

4

6

Fig. 4. AlexNet + CIFAR-100 top-1 accuracy decrease as a function of 1−∑L
i=1 εi(σ).

Each dot represents a measurement with a different threshold: the leftmost and right-
most thresholds are 0 and 0.5, respectively. Measurements were taken in steps of 0.02.

Note that for a sufficiently small ε, 1− ε = e−ε. Therefore, assuming sufficiently
small misprediction probabilities, {εi}, we obtain the following expression

Scale Error =

L∏
i=1

(1− εi) ≈
L∏
i=1

e−εi

= e−
∑L

i=1 εi ≈ 1−
L∑
i=1

εi ,

(6)

where the approximations can easily be extracted from a Taylor expansion to
e−x. Equation (6) shows that the final error due to small mispredictions accumu-
lates along the network in a linear fashion when the errors due to mispredictions
are small enough.

Denoting the output of layer i for a threshold σ by yπ,σi , the error is associated
with a threshold σ as follows:

Scale Error (σ) ≈ 1−
L∑
i=1

εi(σ)

= 1−
L∑
i=1

(
1−

∑
x,y,z y

π,σ
i [x, y, z]∑

x,y,z yi[x, y, z]

)
,

(7)

where Equation (4) is used for the last transition. Figure 4 shows that this
analytical observation is in good agreement with our empirical results.

Ideally, we would like to have a scale error that is as close as possible to
1 so as to avoid shifting the network statistics from the learned distribution.
When the scale error is 1, network outputs remain unchanged and no accuracy
degradation associated with mispredictions occurs. Yet, as σ increases, more ofm
activations are predicted as zero-valued, decreasing the scale error below 1, as
exhibited by Equation (7). This scale error decreases monotonically with σ and
introduces an inverse mapping, which enables us to define a threshold value for
any desired accuracy degradation.

8 G. Shomron et al.

MAC Reduction [%]

A
cc
.
D
ec
re
a
se

[%
]

AlexNet

MAC Reduction [%]

ResNet-18

10 20 30 40

0.0

0.5

1.0

1.5

2.0

0 10 20

0

2

4

6

Estimated Measured

Fig. 5. Estimated top-5 accuracy-MAC savings trade-off curve using mask B and
ILSVRC-2012 dataset. The measured operating points correspond to thresholds of
0 to 0.5, in steps of 0.1.

MAC savings and threshold. Recall that M [It] represents the collection
of values predicted by ZAP for a given layer before applying the threshold. For
readability, assume m(x) is the probability density function of M [It] values (i.e.,
continuous). Then, the number of ofm activations predicted as zeros relative to
It can be expressed as follows:

Zero Prediction Rate (σ) =

∫ σ

−∞
m(x)dx . (8)

To achieve the actual MAC reduction in layer i, the layer dimensions, α, and
ZAP overhead should be considered. Clearly, the total MAC reduction equals the
sum of the contributions from all layers. Note that the zero prediction rate, and
therefore the MAC reduction, increases monotonically, and for a certain range
it may be considered a strictly monotonic function. Inverse mapping from MAC
reduction to σ is, therefore, possible.

Putting it all together. Given the derivations so far, it is possible to
make an a priori choice of any operating point, given estimates about the de-
sired accuracy and MAC reduction, without directly dealing with the threshold.
Assume a pre-processing step that consists of collecting statistical information
about the prediction values M [It] and at least two accuracy measurements of
the entire model, to obtain the linear accuracy-error relationship. With this sta-
tistical information, we can effectively estimate the desired operating point, as
demonstrated in Figure 5.

3.2 Non-Uniform Threshold

Thus far, for the sake of simplicity, σ was set uniformly across all layers. Layers,
however, behave differently, and so ZAP error and savings may differ between
layers for a given threshold. This is evident in Figure 6 in which we present
the error and total MAC operations of four layers in ResNet-18. Notice how the

Thanks for Nothing: Predicting Zero-Valued Activations 9

Threshold

E
rr
o
r
(ε

i
)

Threshold

M
A
C

o
p
s.

[×
1
0
8
]

−2 −1 0 1 2

0.0

0.2

0.4

−2 −1 0 1 2

0.6

0.8

1.0

1.2

L0 L1 L6 L11

Fig. 6. ResNet-18 + ILSVRC-2012 example of different layers behavior in terms of
error and MAC operations as a function of ZAP threshold.

error of layer 6 (L6) increases earlier than the other layers, for example. Ideally,
given L layers, we would like to choose a threshold per layer, σi, to save as many
MAC operations as possible, given an error (or accuracy) constraint, ε, i.e.,

minimize

L∑
i=1

MAC ops.i (σi)

subject to

L∑
i=1

εi(σi) ≤ ε ∝ Accuracy.

(9)

We use curve fitting to define a parameterized sigmoid function for the error and
for the MAC operations of each layer and apply standard non-linear optimization
methods to solve Equation (9) (see supplementary material for curve fitting
results). It is worth mentioning that Equation (9) can also be written the other
way around, that is, minimizing the error given a computation budget.

4 Experiments

In this section, we evaluate ZAP performance in terms of MAC savings and ac-
curacy degradation using various model architectures and datasets, and compare
our results to previous work.

4.1 ZAP Training

ZAPs are deployed at each desired convolution layer and are trained indepen-
dently. By training in isolation [14][8], ZAPs can be plugged into a model without
altering its architecture and trained parameters and may be trained in parallel.
First, a batch is fed forward bypassing all predictors. During the feedforward
phase, each ZAP saves a copy of its local input feature map (ifm) and corre-
sponding local ofm. Then, each ZAP computes its M [It], using its ifm followed

10 G. Shomron et al.

1

1
0

Ground
Truth

MSE Loss

ZAP

1

1
0

0

𝑀𝑖𝑑𝑒𝑎𝑙 𝐼𝑡

𝑀 𝐼𝑡𝑋𝑜 𝐼𝑠

.2

Layer 𝑖

𝑋𝑜

Ground
Truth

MSE Loss

ZAP

𝑀𝑖𝑑𝑒𝑎𝑙 𝐼𝑡

𝑀 𝐼𝑡𝑋𝑜 𝐼𝑠

Layer 𝑖 + 1

𝑋𝑜

Model Input

Fig. 7. Illustration of ZAP training. Each ZAP is trained independently in a teacher-
student manner, enabling a parallel label-free training. The ground truth is the original
layer ofm after a binary threshold operation (>0). The CNN predictor is used with the
ReLU activation function capped at 1.

by a ReLU activation function which is capped at 1. The ground truth, Mideal,
of each ZAP is its local ofm passed through a zero-threshold boolean operation
at indices It. Finally, the MSE loss is used to minimize each of the predictor
errors, as follows:

min
∑

(x,y,z)∈It
(M −Mideal)

2
. (10)

Notice that no labeled data is needed. ZAP training is illustrated in Figure 7.

4.2 Experimental Setup

We evaluated our method using CIFAR-100 [25] and ILSVRC-2012 [36] datasets,
and AlexNet [26], VGG-16 [40], and ResNet-18 [13] CNN architectures. The
source code is publicly available3.

ZAPs were trained using the Adam [22] optimizer for 5 epochs. When the
ILSVRC-2012 dataset was used for ZAPs training, only 32K training set images
were used. After ZAPs were trained, we recalibrated the running mean and
variance of the model BN layers; this is not considered fine-tuning since it does
not involve backpropagation. BN recalibration was noticeably important with
ResNet-18, which has multiple BN layers. When fine-tuning was considered, it
was limited to 5 epochs with CIFAR-100 and to 1 epoch with ILSVRC-2012.
We did not deploy ZAPs on the first layers of any of the models, since it is not
beneficial in terms of potential operation savings.

AlexNet with CIFAR-100 was trained from scratch using the original hyper-
parameters, achieving top-1 accuracy of 64.4%. AlexNet, VGG-16, and ResNet-
18 with ILSVRC-2012 were used with the PyTorch pretrained parameters, achiev-

3 https://github.com/gilshm/zap

Thanks for Nothing: Predicting Zero-Valued Activations 11

MAC Reduction [%]

A
cc
.
D
ec
.
[%

]

Mask A

0.0
0.1 0.20.3

0.4

0.5

Mask B Mask C Mask D

15 20 25

0

1

2

3

4

20 25 30 35

0

1

2

3

4

20 30 40

0

1

2

3

4

10 20 30 40 50

0

1

2

3

4

w/o FT w/ FT

Fig. 8. Demonstrating the different operating points of AlexNet + CIFAR-100 with
(w/) and without (w/o) fine-tuning (FT). Accuracy measurements are top-1. Threshold
range is set between 0 to 0.5, in steps of 0.1. Each measurement corresponds to a
threshold, as presented in “Mask B” plot.

ing top-1/top-5 accuracies of 56.5%/79.1%, 71.6%/90.6%, and 69.8%/89.1%, re-
spectively.

We experimented with four different prediction patterns (Figure 3). The same
prediction pattern was used across all layers and channels. Mixing patterns in
layer and channel granularity is an option we leave for future work.

Throughout this section, MAC reduction is defined as (1− after/before) and
accuracy degradation is defined as (before − after). When discussing MAC re-
duction, we consider only the relative savings from convolution layers.

4.3 CIFAR-100

Operating points. We demonstrate different operating points as measured
with different masks and uniform thresholds across all layers with AlexNet using
the CIFAR-100 dataset. For each operating point, we report the entire model
top-1 accuracy degradation and MAC operation savings, with and without fine-
tuning (Figure 8). For example, considering a 1% top-1 accuracy degradation
cap, ZAP achieves a 32.4% MAC reduction with 0.7% accuracy degradation at
mask B with a 0.4 threshold. In addition, by fine-tuning the model, our predictor
achieves 40.3% MAC reduction with 0.8% accuracy degradation at mask D with
a 0.3 threshold.

Masks with greater α values lead to ofms with relatively more computed
activations, i.e., larger |Is|. We observe that these masks show better accuracy
results in the low degradation region (e.g., mask A versus mask D at 20% MAC
reduction), whereas for higher MAC reduction requirements, masks with lower
α values are preferred. In order to achieve high MAC reductions with the former
masks (for example, mask A), σ would have to be cranked up. Since the pre-
diction potential of these masks is low to begin with (for example, the best-case
scenario with mask A is 40% activations savings with mask A), high thresholds

12 G. Shomron et al.

Misprediction Values Distribution

%

σ = 0.0 σ = 0.2 σ = 0.4

0 0.5 1 1.5

0.0

0.2

0.4

0.6

0.8

0 0.5 1 1.5 0 0.5 1 1.5

Fig. 9. AlexNet + CIFAR-100 histograms of non-zero values that were predicted as
zero using mask B and different uniform thresholds.

will lead to pruning of relatively significant values and, as a result, to signifi-
cant accuracy degradation. On the other hand, for conservative MAC reductions,
these masks are preferred, since their speculation levels are lower and prediction
confidence is higher.

Misprediction breakdown. The model accuracy is not solely dependent on
how many non-zeros were predicted as zero, but also which values were zeroed
out. The notion that small values within DNN are relatively ineffectual is at
the core of many pruning techniques. In Figure 9 we present the mispredicted
activation values distribution, normalized to the number of ofm activations for
value steps of 0.1. For example, when using σ = 0, 0.15% of ofm activations
with original values between 0 to 0.1 were zeroed out. Increasing the threshold
level increases the number of predicted and mispredicted ofm activations. It is
apparent that insignificant values are more prone to be mispredicted — it is
easier to be mistaken about zeroing out a small value than a large value —
attesting to the correlation between σ and the prediction confidence level.

4.4 ILSVRC-2012

Comparison with previous work. In Table 1 we compare our method with
previous works. Shomron and Weiser [38], and Kim et al. [21] focus on predicting
zero-valued activations according to nearby zero-valued activations. Figurnov et
al. [9], on the other hand, mainly use “nearest neighbor” to interpolate missing
activation values. Dong et al. [7] present a network structure with embedded low-
cost convolution layers that act as zero-valued activation masks for the original
convolution masks.

Using AlexNet and VGG-16, our method shows better results across the
board (besides a small difference of 0.07 with VGG-16 top5 compared to Kim et
al.) — for more MAC savings, a smaller accuracy drop is observed. Regrading
ResNet-18, our method shows better results compared with Shomron and Weiser
but falls short when compared with Dong et al. Notice though that the method
Dong et al. introduced involves an entire network training with hundreds of
epochs. Therefore, even though there is some resemblance between our method
and theirs, the results themselves are not necessarily comparable.

Thanks for Nothing: Predicting Zero-Valued Activations 13

Table 1. MAC reduction and accuracy with and without fine-tuning (ft) compared
with previous work. Thresholds are set by solving Equation 9 (see supplementary ma-
terial for execution details). The accuracy columns represent the decrease in accuracy.
The MAC columns represent the MAC operations reduction. The minus (’-’) symbol
represents unpublished data.

Related Work Ours
Net

Paper Top1 ft Top5 ft MAC Top1 ft Top5 ft MAC

Figurnov et al. - - 8.50 2.0 50.0% 4.63 1.97 3.04 1.17 51.1%
Kim et al. 0.48 - 0.40 - 28.6% 0.34 0.33 0.24 0.14 32.4%AlexNet
Shomron et al. 4.00 1.6 2.90 1.3 37.8% 1.28 0.78 0.84 0.42 38.0%
Figurnov et al. - - 15.6 1.1 44.4% 11.02 1.27 7.02 0.71 44.5%
Kim et al. 0.68 - 0.26 - 25.7% 0.54 0.24 0.33 0.11 26.2%VGG-16
Shomron et al. 3.60 0.7 2.00 0.4 30.7% 1.71 0.31 0.87 0.19 31.3%

Dong et al. * - 3.6 - 2.3 34.6% 12.35 7.22 8.37 4.66 34.0%
ResNet-18

Shomron et al. 11.0 2.7 7.60 1.7 22.7% 2.96 1.86 1.70 1.13 23.8%

All MAC saving measurements reported in Table 1 are theoretical, that is,
they are not actual speedups. However, it is apparent that the potential of ZAP
is greater than the other previous works. We discuss related hardware imple-
mentations and related work next.

5 Discussion and Related Work

Hardware. It is not trivial to attain true benefits from mainstream compute en-
gines, such as GPUs, when dealing with compute intensive tasks, such as CNNs,
and using a conditional compute paradigm of which only a portion of the MAC
operations are conducted and the rest are performed or skipped according to
the previously computed results. However, the implementation of CNN accel-
erators, which are capable of doing so and gain performance, has already been
demonstrated. Kim et al. [21] present an architecture based on SCNN [34] which
is capable of skipping computations of entire ofm activations based on already
computed zero-valued ofm activations. Moreover, Hua et al. [18], Akhlaghi et al.
[1] and Asadikouhanjani et al. [3] propose hardware that is capable of saving a
portion of the MAC operations needed per ofm activation based on the accumu-
lated partial sum. Akhlaghi et al. also suggest a method to do so in a speculative
manner.

Speculative execution. GPPs make extensive use of speculative execution
[15]. They leverage unique application characteristics, such as code semantics and
temporal locality, to better utilize the GPP’s internal structure to achieve better
performance. Researchers have also studied the speculative execution of CNNs
to decrease their compute demands. Song et al. [41], Lin et al. [30], and Chang
et al. [5] predict whether an entire convolution result is negative according to a
partial result yielded by the input MSB bits. Huan et al. [19] avoid convolution
multiplications by predicting and skipping near-zero valued data, given certain
thresholds. Chen et al. [6] predict future weight updates during training based

14 G. Shomron et al.

on Momentum [35] parameters. Zhu et al. [44] use a fully connected layer to
predict each ofm activation sign and low-rank approximation to decrease the
weight matrix.

Spatial correlation. The correlation between neighboring activations in
CNN feature maps is an inherent CNN characteristic that may be exploited.
The works by Shomron and Weiser [38], Kim et al. [21], and Figurnov et al. [9]
were described at Section 4.4. In addition, Kligvasser et al. [23] propose nonlinear
activations with learnable spatial connection to enable the network capture more
complex features, and Mahmoud et al. [32] operate on reduced precision deltas
between adjacent activations rather than on true values.

Dynamic pruning. As opposed to static pruning [12][17][31][31][28], dy-
namic pruning is input-dependent. Dong et al. [7] present a network structure
with embedded low-cost convolution layers that act as zero-valued activation
masks for the original convolution masks. In a higher granularity, Lin et al. [29]
use reinforcement learning for channel pruning, Gao et al. [10] prune channels
according to a channel saliency map followed by a fully connected layer, and He
et al. [14] propose a two-step channel pruning algorithm with LASSO regression
and fine-tuning. All these works, except [14], involve extensive model training.

Our work is most closely related to the work of Dong et al., Shomron and
Weiser, Kim et al., and Figurnov et al., with which we have also compared our
results. However, our work provides the user with a continuous range of operating
points and offers a prior estimate of the model accuracy degradation and MAC
savings. Specifically, in contrast to Dong et al., our approach does not require
labeled data (yet, it can be used for fine-tuning) and does not require hundreds
of epochs for training. As for Shomron and Weiser, Kim et al., and Figurnov et
al., we create the binary prediction masks using a CNN-based approach.

6 Conclusions

We propose a zero activation predictor (ZAP) that dynamically identifies the
zero-valued output feature map (ofm) activations prior to their computation,
thereby saving their convolution operations. ZAP exploits the spatial correla-
tion of ofm activations inherent in convolution neural networks, meaning that
according to a sparsely computed ofm, ZAP determines whether the remaining
activations are zero-valued or non-zero-valued. ZAP is a lightweight CNN that
imposes negligible computation and parameter overheads and its deployment
and training does not require labeled data or modification of the baseline model
architecture and parameters. In addition, ZAP speculation level is tunable, al-
lowing an efficient a priori control of its accuracy-savings trade-off.

Acknowledgments We acknowledge the support of NVIDIA Corporation for
its donation of a Titan V GPU used for this research.

Thanks for Nothing: Predicting Zero-Valued Activations 15

References

1. Akhlaghi, V., Yazdanbakhsh, A., Samadi, K., Gupta, R.K., Esmaeilzadeh, H.: Sna-
PEA: Predictive early activation for reducing computation in deep convolutional
neural networks. In: International Symposium on Computer Architecture (ISCA).
pp. 662–673. IEEE (2018)

2. Albericio, J., Judd, P., Hetherington, T., Aamodt, T., Jerger, N.E., Moshovos, A.:
Cnvlutin: Ineffectual-neuron-free deep neural network computing. In: International
Symposium on Computer Architecture (ISCA). pp. 1–13. IEEE (2016)

3. Asadikouhanjani, M., Ko, S.B.: A novel architecture for early detection of negative
output features in deep neural network accelerators. Transactions on Circuits and
Systems II: Express Briefs (2020)

4. Canziani, A., Paszke, A., Culurciello, E.: An analysis of deep neural network models
for practical applications. arXiv preprint arXiv:1605.07678 (2016)

5. Chang, J., Choi, Y., Lee, T., Cho, J.: Reducing MAC operation in convolutional
neural network with sign prediction. In: International Conference on Information
and Communication Technology Convergence (ICTC). pp. 177–182. IEEE (2018)

6. Chen, C.C., Yang, C.L., Cheng, H.Y.: Efficient and robust parallel dnn training
through model parallelism on multi-gpu platform. arXiv preprint arXiv:1809.02839
(2018)

7. Dong, X., Huang, J., Yang, Y., Yan, S.: More is less: A more complicated network
with less inference complexity. In: Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 5840–5848. IEEE (2017)

8. Elthakeb, A.T., Pilligundla, P., Esmaeilzadeh, H.: Divide and conquer: Leveraging
intermediate feature representations for quantized training of neural networks. In-
ternational Conference on Machine Learning (ICML) Workshop on Understanding
and Improving Generalization in Deep Learning (2019)

9. Figurnov, M., Ibraimova, A., Vetrov, D.P., Kohli, P.: PerforatedCNNs: Acceleration
through elimination of redundant convolutions. In: Advances in Neural Information
Processing Systems (NIPS). pp. 947–955 (2016)

10. Gao, X., Zhao, Y., Dudziak, L., Mullins, R., Xu, C.z.: Dynamic channel pruning:
Feature boosting and suppression. International Conference on Learning Repre-
sentations (ICLR) (2018)

11. Geifman, Y., El-Yaniv, R.: Selective classification for deep neural networks. In:
Advances in Neural Information Processing Systems (NIPS). pp. 4878–4887 (2017)

12. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. In: International
Conference on Learning Representations (ICLR) (2016)

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 770–778.
IEEE (2016)

14. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural
networks. In: International Conference on Computer Vision (ICCV). pp. 1389–
1397. IEEE (2017)

15. Hennessy, J.L., Patterson, D.A.: Computer architecture: a quantitative approach.
Elsevier (2011)

16. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: MobileNets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

16 G. Shomron et al.

17. Hu, H., Peng, R., Tai, Y.W., Tang, C.K.: Network trimming: A data-driven
neuron pruning approach towards efficient deep architectures. arXiv preprint
arXiv:1607.03250 (2016)

18. Hua, W., Zhou, Y., De Sa, C., Zhang, Z., Suh, G.E.: Boosting the performance
of CNN accelerators with dynamic fine-grained channel gating. In: International
Symposium on Microarchitecture (MICRO). pp. 139–150. ACM (2019)

19. Huan, Y., Qin, Y., You, Y., Zheng, L., Zou, Z.: A multiplication reduction tech-
nique with near-zero approximation for embedded learning in IoT devices. In:
International System-on-Chip Conference (SOCC). pp. 102–107. IEEE (2016)

20. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. International Conference on Machine Learning
(ICML) (2015)

21. Kim, C., Shin, D., Kim, B., Park, J.: Mosaic-CNN: A combined two-step zero
prediction approach to trade off accuracy and computation energy in convolutional
neural networks. Journal on Emerging and Selected Topics in Circuits and Systems
8(4), 770–781 (2018)

22. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. International
Conference on Learning Representations (ICLR) (2014)

23. Kligvasser, I., Rott Shaham, T., Michaeli, T.: xUnit: Learning a spatial activation
function for efficient image restoration. In: Conference on Computer Vision and
Pattern Recognition (ECCV). pp. 2433–2442 (2018)

24. Krizhevsky, A., Hinton, G.: Convolutional deep belief networks on CIFAR-10. Un-
published manuscript 40(7), 1–9 (2010)

25. Krizhevsky, A., Nair, V., Hinton, G.: CIFAR-10 and CIFAR-100 datasets.
http://www.cs.toronto.edu/ kriz/cifar.html

26. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Systems
(NIPS). pp. 1097–1105 (2012)

27. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor
policies. Journal of Machine Learning Research 17(1), 1334–1373 (2016)

28. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for effi-
cient ConvNets. In: International Conference on Learning Representations (ICLR)
(2017)

29. Lin, J., Rao, Y., Lu, J., Zhou, J.: Runtime neural pruning. In: Advances in Neural
Information Processing Systems (NIPS). pp. 2181–2191 (2017)

30. Lin, Y., Sakr, C., Kim, Y., Shanbhag, N.: PredictiveNet: An energy-efficient con-
volutional neural network via zero prediction. In: International Symposium on
Circuits and Systems (ISCAS). pp. 1–4. IEEE (2017)

31. Luo, J.H., Wu, J., Lin, W.: ThiNet: A filter level pruning method for deep neural
network compression. In: International Conference on Computer Vision (ICCV).
pp. 5058–5066. IEEE (2017)

32. Mahmoud, M., Siu, K., Moshovos, A.: Diffy: a déjà vu-free differential deep neural
network accelerator. In: International Symposium on Microarchitecture (MICRO).
pp. 134–147. IEEE (2018)

33. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: International Conference on Machine Learning (ICML). pp. 807–814
(2010)

34. Parashar, A., Rhu, M., Mukkara, A., Puglielli, A., Venkatesan, R., Khailany, B.,
Emer, J., Keckler, S.W., Dally, W.J.: SCNN: An accelerator for compressed-sparse
convolutional neural networks. In: International Symposium on Computer Archi-
tecture (ISCA). pp. 27–40. IEEE (2017)

Thanks for Nothing: Predicting Zero-Valued Activations 17

35. Qian, N.: On the momentum term in gradient descent learning algorithms. Neural
Networks 12(1), 145–151 (1999)

36. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: ImageNet large scale visual recog-
nition challenge. International Journal of Computer Vision (IJCV) 115(3), 211–252
(2015)

37. Sainath, T.N., Mohamed, A.r., Kingsbury, B., Ramabhadran, B.: Deep convo-
lutional neural networks for LVCSR. In: International Conference on Acoustics,
Speech and Signal Processing (ICASSP). pp. 8614–8618. IEEE (2013)

38. Shomron, G., Weiser, U.: Spatial correlation and value prediction in convolutional
neural networks. Computer Architecture Letters (CAL) 18(1), 10–13 (2019)

39. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Master-
ing the game of Go with deep neural networks and tree search. Nature 529(7587),
484 (2016)

40. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. International Conference on Machine Learning (ICML) (2015)

41. Song, M., Zhao, J., Hu, Y., Zhang, J., Li, T.: Prediction based execution on deep
neural networks. In: International Symposium on Computer Architecture (ISCA).
pp. 752–763. IEEE (2018)

42. Sze, V., Chen, Y.H., Yang, T.J., Emer, J.S.: Efficient processing of deep neural
networks: A tutorial and survey. Proceedings of the IEEE 105(12), 2295–2329
(2017)

43. Yazdani, R., Riera, M., Arnau, J.M., González, A.: The dark side of DNN prun-
ing. In: International Symposium on Computer Architecture (ISCA). pp. 790–801.
IEEE (2018)

44. Zhu, J., Jiang, J., Chen, X., Tsui, C.Y.: Sparsenn: An energy-efficient neural net-
work accelerator exploiting input and output sparsity. In: Design, Automation and
Test in Europe Conference (DATE). pp. 241–244. IEEE (2018)

