
Supplementary Material: Graph convolutional
networks for learning with few clean and many

noisy labels

Ahmet Iscen1, Giorgos Tolias2, Yannis Avrithis3, Ondřej Chum2, and Cordelia
Schmid1

1 Google Research
2 VRG, Faculty of Electrical Engineering, Czech Technical University in Prague

3 Inria, Univ Rennes, CNRS, IRISA

A The role of base classes

The proposed method is applicable with any given feature extractor. Herein, we de-
scribe the learning of the feature extractor on a set of base classes according to a
standard few-shot learning setup and benchmark [12]. Then, we describe the extended
classifiers to the union of all classes, i.e. base classes and novel classes, which are the
ones used in Section 5.

A.1 Representation learning on base classes

We are given a set XB ⇢ X of examples, each having a clean label in a set of base classes
CB with |CB| = KB. Base classes CB are disjoint from C, which are also known as novel
classes. These data are used to learn a feature representation, i.e. a feature extractor
g✓, by learning a KB-way base-class classifier for unseen data in X . The parameters ✓
of the feature extractor and WB of the classifier are jointly learned by minimizing the
cross entropy loss

LB(CB, XB; ✓,WB) = �
X

c2CB

1
|Xc

B|
X

x2Xc
B

log(�(sŴ>
B ĝ✓(x))c). (1)

The learned feature extractor parameters ✓ and the learned scale parameter s are used
by our method as described Sections 4 and 5.

A.2 Classification on all classes

The classifier parameters WB are used, combined with classifier parameters W learned
as described in Section 5, for classification on all classes CA = C [CB.

Class prototypes. The concatenated parameter matrix WA = [WB,W] is used for
KA-way prediction on all (base and novel) classes by ⇡✓,WA , where KA = K+KB. WB
is learned according to LB(CB, XB; ✓,WB) (1), while W is learned according to (5).

Cosine classifier learning. Prediction on all classes is made as in the previous case,
but W is learned according to (6).

Deep network fine-tuning. We now assume that base class examples are accessible
too and, given all examples XA = XB [XE , we jointly learn the parameters ✓ of the

2 A. Iscen et al.

Method Top-5 accuracy on all classes

k=1 2 5 10 20

ResNet-10 – Few Clean Examples

Proto.-Nets [33]† 49.5 61.0 69.7 72.9 74.6

Logistic reg. w/ H [41]† 54.4 61.0 69.0 73.7 76.5

PMN w/ H [41]† 40.8 49.9 64.2 71.9 76.9
Class proto. [9] 57.0±0.36 64.7±0.16 72.5±0.18 75.8±0.16 77.4±0.19
Class proto. w/ Att. [9] 58.1±0.48 65.2±0.15 72.9±0.25 76.6±0.18 78.8±0.16

ResNet-10 – Few Clean & Many Noisy Examples

Ours - class proto. (5) 70.3±0.05 72.1±0.18 74.1±0.12 75.6±0.13 76.9±0.09
Ours - cosine (6) 72.4±0.07 73.4±0.21 77.2±0.20 78.8±0.21 79.2±0.17
Ours - fine-tune 76.0±0.10 77.3±0.13 78.7±0.19 80.7±0.25 82.2±0.14

ResNet-50 – Few Clean Examples

Proto.-Nets [33]† 61.4 71.4 78.0 80.0 81.1

PMN w/ H [41] † 65.7 73.5 80.2 82.8 84.5

ResNet-50 – Few Clean & Many Noisy Examples

Ours - class proto. (5) 73.8±0.33 76.6±0.36 78.9±0.19 80.8±0.21 82.2±0.14
Ours - cosine (6) 78.2±0.25 79.6±0.23 80.4±0.18 82.4±0.19 84.1±0.09
Ours - fine-tune 81.6±0.20 83.2±0.16 84.3±0.23 86.2±0.17 87.8±0.03

Table 1. Comparison to the state of the art on the Low-shot ImageNet benchmark.
We report top-5 accuracy on all classes. We use class prototypes (5), cosine classifier
learning (6) and deep network fine-tuning for classification with our GCN-based data
addition method. † denotes numbers taken from the corresponding papers. All other
experiments are re-implemented by us.

feature extractor and WA = [WB,W] of the KA-way cosine classifier for all classes by
minimizing loss function

LA(CA, XA; ✓,WA) = LB(CB, XB; ✓,WB) + L(C,XE ; ✓,W). (2)

Note that in contrast to (6), the last term of (2) optimizes parameters ✓ too. As
mentioned earlier, such learning is typically avoided in a few-shot learning setup. In
few cases, it takes the form of fine-tuning including all base class data [26], or only
lasts for a few iterations when the base class data is not accessible [6].

A.3 Results on all classes

We report the accuracy over all classes in Table 1. When fine-tuning the network by (2),
the learned W is used to initialize the corresponding part of WA and we train all layers
for 10 epochs with learning rate 0.01. The results indicate that our method still brings
significant improvements when all classes are used.

B Results on Mini-Imagenet

We evaluate the proposed method on another popular benchmark, i.e. few-shot learning
on Mini-ImageNet [38]. The dataset is a subset of ImageNet [32], and contains 100

Title Suppressed Due to Excessive Length 3

Method k=1 k=5

Few Clean Examples

Class proto. [9] 54.2±0.77 71.2±0.61

Class proto. w/ Att. [9] 56.2±0.81 72.9±0.62

Few Clean & Many Noisy Examples - Class proto. (5)

�-weighting, � = 1 63.5±0.77 65.2±0.81

Label Propagation 67.0±0.74 74.8±0.61

MLP 65.9±0.78 73.9±0.63

Ours 68.2±0.76 74.7±0.59

Table 2. Comparison with baselines using noisy examples on the Mini-ImageNet
dataset. We report the accuracy for 5-way k-shot experiments where k = 1 and k = 5.

di↵erent classes, split into 64 base, 16 validation and 20 test classes [27]. Each class
contains 600 images that are re-sized to a resolution of 84⇥ 84. We use the ConvNet-
128 model with cosine classifier, following [9]. Novel categories are classified using class
prototypes (5).

Table 2 shows the accuracy on Mini-Imagenet for the 5-way k-shot classification
scenario with k = 1 and k = 5. We report the average accuracy over 600 trials along
with the confidence interval. Our method brings significant improvements for k = 1,
showing its generalization across di↵erent few-shot datasets and benchmarks.

