Supplementary Material: Graph convolutional networks for learning with few clean and many noisy labels

Ahmet Iscen¹, Giorgos Tolias², Yannis Avrithis³, Ondřej Chum², and Cordelia Schmid¹

¹ Google Research

² VRG, Faculty of Electrical Engineering, Czech Technical University in Prague ³ Inria, Univ Rennes, CNRS, IRISA

A The role of base classes

The proposed method is applicable with any given feature extractor. Herein, we describe the learning of the feature extractor on a set of base classes according to a standard few-shot learning setup and benchmark [12]. Then, we describe the extended classifiers to the union of all classes, *i.e.* base classes and novel classes, which are the ones used in Section [5]

A.1 Representation learning on base classes

We are given a set $X_{\mathcal{B}} \subset \mathcal{X}$ of examples, each having a clean label in a set of *base classes* $C_{\mathcal{B}}$ with $|C_{\mathcal{B}}| = K_{\mathcal{B}}$. Base classes $C_{\mathcal{B}}$ are disjoint from C, which are also known as novel classes. These data are used to learn a feature representation, *i.e.* a feature extractor g_{θ} , by learning a $K_{\mathcal{B}}$ -way base-class classifier for unseen data in \mathcal{X} . The parameters θ of the feature extractor and $W_{\mathcal{B}}$ of the classifier are jointly learned by minimizing the cross entropy loss

$$L_{\mathcal{B}}(C_{\mathcal{B}}, X_{\mathcal{B}}; \theta, W_{\mathcal{B}}) = -\sum_{c \in C_{\mathcal{B}}} \frac{1}{|X_{\mathcal{B}}^c|} \sum_{x \in X_{\mathcal{B}}^c} \log(\boldsymbol{\sigma}(s \hat{W}_{\mathcal{B}}^\top \hat{g}_{\theta}(x))_c).$$
(1)

The learned feature extractor parameters θ and the learned scale parameter s are used by our method as described Sections [4] and [5].

A.2 Classification on all classes

The classifier parameters $W_{\mathcal{B}}$ are used, combined with classifier parameters W learned as described in Section 5 for classification on all classes $C_{\mathcal{A}} = C \cup C_{\mathcal{B}}$.

Class prototypes. The concatenated parameter matrix $W_{\mathcal{A}} = [W_{\mathcal{B}}, W]$ is used for $K_{\mathcal{A}}$ -way prediction on all (base and novel) classes by $\pi_{\theta, W_{\mathcal{A}}}$, where $K_{\mathcal{A}} = K + K_{\mathcal{B}}$. $W_{\mathcal{B}}$ is learned according to $L_{\mathcal{B}}(C_{\mathcal{B}}, X_{\mathcal{B}}; \theta, W_{\mathcal{B}})$ (1), while W is learned according to (5).

Cosine classifier learning. Prediction on all classes is made as in the previous case, but W is learned according to (6).

Deep network fine-tuning. We now assume that base class examples are accessible too and, given all examples $X_{\mathcal{A}} = X_{\mathcal{B}} \cup X_{\mathcal{E}}$, we jointly learn the parameters θ of the

2 A. Iscen et al.

Method	TOP-5 ACCURACY ON ALL CLASSES				
	k = 1	2	5	10	20
	ResNet-10 -	FEW CLEAN E	XAMPLES		
ProtoNets 33] [†]	49.5	61.0	69.7	72.9	74.6
Logistic reg. w/ H 41 [†]	54.4	61.0	69.0	73.7	76.5
РМN w/ Н [41] [†]	40.8	49.9	64.2	71.9	76.9
Class proto. 9	57.0 ± 0.36	$64.7 {\pm} 0.16$	$72.5 {\pm} 0.18$	$75.8 {\pm} 0.16$	$77.4 {\pm} 0.19$
Class proto. w/ Att. 9	58.1 ± 0.48	65.2 ± 0.15	72.9 ± 0.25	76.6 ± 0.18	78.8 ± 0.16
	ResNet-10 – Few Clean & Many Noisy Examples				
Ours - class proto. (5 Ours - cosine (6 Ours - fine-tune	$70.3 {\pm} 0.05$ $72.4 {\pm} 0.07$ $76.0 {\pm} 0.10$	72.1 ± 0.18 73.4 ± 0.21 77.3 ± 0.13	74.1 ± 0.12 77.2 ± 0.20 78.7 ± 0.19	$75.6 {\pm} 0.13$ $78.8 {\pm} 0.21$ $80.7 {\pm} 0.25$	$76.9 {\pm} 0.09 \ 79.2 {\pm} 0.17 \ 82.2 {\pm} 0.14$
	ResNet-50 -	Few Clean E	XAMPLES		
ProtoNets 33	61.4	71.4	78.0	80.0	81.1
PMN w/ H [41] [†]	65.7	73.5	80.2	82.8	84.5
	Few Clean &	à Many Noisy Examples			
Ours - class proto. 5 Ours - cosine 6 Ours - fine-tune	$73.8 {\pm} 0.33$ $78.2 {\pm} 0.25$ $81.6 {\pm} 0.20$	$76.6 {\pm} 0.36$ $79.6 {\pm} 0.23$ $83.2 {\pm} 0.16$	$78.9 {\pm} 0.19 \\ 80.4 {\pm} 0.18 \\ 84.3 {\pm} 0.23$	$80.8 {\pm} 0.21 \\ 82.4 {\pm} 0.19 \\ 86.2 {\pm} 0.17$	$82.2 {\pm} 0.14 \\ 84.1 {\pm} 0.09 \\ 87.8 {\pm} 0.03$

Table 1. Comparison to the state of the art on the Low-shot ImageNet benchmark. We report top-5 accuracy on all classes. We use class prototypes (5), cosine classifier learning (6) and deep network fine-tuning for classification with our GCN-based data addition method. † denotes numbers taken from the corresponding papers. All other experiments are re-implemented by us.

feature extractor and $W_{\mathcal{A}} = [W_{\mathcal{B}}, W]$ of the $K_{\mathcal{A}}$ -way cosine classifier for all classes by minimizing loss function

$$L_{\mathcal{A}}(C_{\mathcal{A}}, X_{\mathcal{A}}; \theta, W_{\mathcal{A}}) = L_{\mathcal{B}}(C_{\mathcal{B}}, X_{\mathcal{B}}; \theta, W_{\mathcal{B}}) + L(C, X_{\mathcal{E}}; \theta, W).$$
(2)

Note that in contrast to (6), the last term of (2) optimizes parameters θ too. As mentioned earlier, such learning is typically avoided in a few-shot learning setup. In few cases, it takes the form of fine-tuning including all base class data [26], or only lasts for a few iterations when the base class data is not accessible (6).

A.3 Results on all classes

We report the accuracy over all classes in Table 1 When fine-tuning the network by (2), the learned W is used to initialize the corresponding part of $W_{\mathcal{A}}$ and we train all layers for 10 epochs with learning rate 0.01. The results indicate that our method still brings significant improvements when all classes are used.

B Results on Mini-Imagenet

We evaluate the proposed method on another popular benchmark, *i.e.* few-shot learning on Mini-ImageNet [38]. The dataset is a subset of ImageNet [32], and contains 100

Title Suppressed Due to Excessive Length

Method	k=1	k=5			
	Few Clean Examples				
Class proto. 9 Class proto. w/ Att. 9	$54.2_{\pm 0.77}$ $56.2_{\pm 0.81}$	$71.2{\scriptstyle\pm0.61}\atop72.9{\scriptstyle\pm0.62}$			
Few Clean & Many Noisy Examples - Class proto. (5)					
β -weighting, $\beta = 1$ Label Propagation MLP Ours	$\begin{array}{c} 63.5{\scriptstyle\pm0.77} \\ 67.0{\scriptstyle\pm0.74} \\ 65.9{\scriptstyle\pm0.78} \\ 68.2{\scriptstyle\pm0.76} \end{array}$	$\begin{array}{c} 65.2 {\scriptstyle \pm 0.81} \\ 74.8 {\scriptstyle \pm 0.61} \\ 73.9 {\scriptstyle \pm 0.63} \\ 74.7 {\scriptstyle \pm 0.59} \end{array}$			

Table 2. Comparison with baselines using noisy examples on the Mini-ImageNet dataset. We report the accuracy for 5-way k-shot experiments where k = 1 and k = 5.

different classes, split into 64 base, 16 validation and 20 test classes [27]. Each class contains 600 images that are re-sized to a resolution of 84×84 . We use the ConvNet-128 model with cosine classifier, following [9]. Novel categories are classified using class prototypes (5).

Table 2 shows the accuracy on Mini-Imagenet for the 5-way k-shot classification scenario with k = 1 and k = 5. We report the average accuracy over 600 trials along with the confidence interval. Our method brings significant improvements for k = 1, showing its generalization across different few-shot datasets and benchmarks.