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Abstract. For semantic segmentation, most existing real-time deep mod-
els trained with each frame independently may produce inconsistent re-
sults when tested on a video sequence. A few methods take the corre-
lations in the video sequence into account, e.g., by propagating the re-
sults to the neighbouring frames using optical flow, or extracting frame
representations using multi-frame information, which may lead to in-
accurate results or unbalanced latency. In contrast, here we explicitly
consider the temporal consistency among frames as extra constraints
during training and process each frame independently in the inference
phase. Thus no computation overhead is introduced for inference. Com-
pact models are employed for real-time execution. To narrow the per-
formance gap between compact models and large models, new temporal
knowledge distillation methods are designed. Weighing among accuracy,
temporal smoothness and efficiency, our proposed method outperforms
previous keyframe based methods and corresponding baselines which are
trained with each frame independently on benchmark datasets including
Cityscapes and Camvid.
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1 Introduction

Semantic segmentation, a fundamental task in computer vision, aims to assign a
semantic label to each pixel in an image. In recent years, the development of deep
learning has brought significant success to the task of image semantic segmenta-
tion [37, 31, 5] on benchmark datasets, but often with a high computational cost.
This task becomes computationally more expensive when extending to video. For
a few real-world applications, e.g., autonomous driving and robotics, it is chal-
lenging but crucial to build a fast and accurate video semantic segmentation
system.

Previous works for semantic video segmentation can be categorized into two
groups. The first group focuses on improving the performance for video seg-
mentation by performing post-processing among frames [18], or employing extra
modules to use multi-frames information during inference [8]. The high compu-
tational cost makes it difficult for mobile applications. The second group uses
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Fig. 1: (a) Visualization results on consecutive frames: Keyframe: Accel18 [13] propa-
gates and fuses the results from the keyframe (k) to non-key frames (k + 1, . . . ), which
may lead to poor results on non-key frames. Baseline: PSPNet18 [37] trains the model
on single frames. Inference on single frames separately can produce temporally inconsis-
tent results. Ours: training the model with the correlations among frames and inferring
on single frames separately lead to high quality and smooth results. (b) Comparing
our enhanced MobileNetV2 model with previous keyframe based methods: Accel [13],
DVSN [32], DFF [39] and CC [27]. The inference speed is evaluated on a single GTX
1080Ti.

keyframes to avoid processing of each frame, and then propagate [39, 38, 32] the
outputs or the feature maps to other frames (non-key frames) using optical flows.
Keyframe based methods indeed accelerate inference. However, it requires differ-
ent inference time for keyframes and non-key frames, leading to an unbalanced
latency, thus being not friendly for real-time processing. Moreover, accuracy
cannot be guaranteed for each frame due to the cumulative warping error, for
example, the first row in Figure 1(a).

Efficient semantic segmentation methods on 2D images [20, 34, 23] have draw
much attention recently. Clearly, applying compact networks to each frame of
a video sequence independently may alleviate the latency and enable real-time
execution. However, directly training the model on each frame independently
often produces temporally inconsistent results on the video as shown in the sec-
ond row of Figure 1(a). To address the above problems, we explicitly consider
the temporal consistency among frames as extra constraints during the train-
ing process and employ compact networks with per-frame inference to ease the
problem of latency and achieve real-time inference.

A motion guided temporal loss is employed with the motivation of assigning
a consistent label to the same pixel along the time axis. A motion estimation
network is introduced to predict the motion (e.g., optical-flow) of each pixel from
the current frame to the next frame based on the input frame-pair. Predicted
semantic labels are propagated to the next frame to supervise predictions of the
next frame. Thus, the temporal consistency is encoded into the segmentation
network through this constraint.
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To narrow the performance gap between compact models and large models,
we design a new temporal consistency knowledge distillation strategy to help
the training of compact models. Distillation methods are widely used in image
recognition tasks [19, 11, 16], and achieve great success. Different from previous
distillation methods, which only consider the spatial correlations, we embed the
temporal consistency into distillation items. We extract the pair-wise frames de-
pendency by calculating the pair-wise similarities for different locations between
two frames, and further encode the multi-frames dependency into a latent embed-
ding by using a recurrent unit, ConvLSTM [28]. The new distillation methods
not only improve temporal consistency but also boost segmentation accuracy.
We also include the spatial knowledge distillation methods [19] of single frames
in training to further improve the accuracy.

We evaluate the proposed methods on semantic video segmentation bench-
marks: Cityscapes [6] and Camvid [3]. A few compact backbone networks, i.e.,
PSPNet18 [37], MobileNetV2 [26] and a lightweight HRNet [30], are included
to verify that the proposed methods can empirically improve the segmentation
accuracy and the temporal consistency, without any extra computation and post-
processing during inference. The proposed methods also show superiority in the
trade-off of accuracy and the inference speed. For example, with the per-frame
inference fashion, our enhanced MobileNetV2 [26] can achieve higher accuracy
with a faster inference speed compared with state-of-the-art keyframe based
methods as shown in Figure 1(b). We summarize our main contributions as
follows.

– We process semantic video segmentation with compact models by per-frame
inference, without introducing post-processing and computation overhead,
enabling real-time inference without latency.

– We explicitly consider the temporal consistency in the training process by
using a temporal loss and newly designed temporal consistency knowledge
distillation methods.

– Empirical experiment results on Cityscapes and Camvid show that with the
help of proposed training methods, the compact models outperform previ-
ous state-of-the-art semantic video segmentation methods weighing among
accuracy, temporal consistency and inference speed.

1.1 Related Work

Semantic Video Segmentation. Semantic video segmentation requires dense
labeling for all pixels in each frame of a video sequence into a few semantic
categories. Previous work can be summarized into two streams.

The first one focuses on improving the accuracy by exploiting the tem-
poral relations and the unlabelled data in the video sequence. Nilsson and
Sminchiesescu [22] employ a gated recurrent unit to propagate semantic labels
to unlabeled frames. Other works like NetWarp [8], STFCN [7], and SVP [18]
also employ optical-flow or recurrent units to fuse the results of several frames
during inferring to improve the segmentation accuracy. Recently, Zhu et al. [40]
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propose to use a motion estimation network to propagate labels to unlabeled
frames as data augmentation and achieve state-of-the-art performance with the
segmentation accuracy. These methods can achieve significant performance but
can be difficult to be deployed on mobile devices.

The second line of works pay attention to reduce the computational cost by
re-using the feature maps in the neighbouring frames. ClockNet [27] proposes to
copy the feature map to the next frame directly, thus reducing the computational
cost. DFF [39] employs the optical flow to warp the feature map between the
keyframe and non-key frames. Xu et al. [32] further propose to use an adaptive
keyframe selection policy while Zhu et al. [38] find out that propagating partial
region in the feature map can get better performance. Li et al. [17] propose a low-
latency video segmentation network by optimizing both the keyframe selection
and the adaptive feature propagation. Accel [13] proposes a network fusion policy
to use a large model to predict the keyframe and use a compact one in non-
key frames. Keyframe based methods require different inference time and may
produce different quantity results between keyframes and other frames. In this
work, we solve the real-time video segmentation by per-frame inference with
a compact network and propose a temporal loss and the temporal consistency
knowledge distillation to ensure both good accuracy and temporal consistency.
Temporal Consistency. Applying image processing algorithms to each frame
of a video may lead to inconsistent results. The temporal consistency problem
has draw much attention in low-level and mid-level applications, such as task-
specific methods including colorization [15], style transfer [9], and video depth
estimation [2, 1] and task agnostic approaches [14, 33]. Temporal consistency is
also essential in semantic video segmentation. Miksik et al. [21] employ a post-
processing method that learns a similarity function between pixels of consecutive
frames to propagate predictions across time. Nilsson and Sminchiesescu [22] in-
sert the optical flow estimation network into the forward pass and employ a
recurrent unit to make use of neighbouring predictions. Our method is more
efficient than theirs as we employ per-frame inference. The warped previous
predictions work as a constraint only during training.
Knowledge Distillation. The effectiveness of knowledge distillation has been
verified in classification [12, 25, 35]. The output of the large teacher net, including
the final logits and the intermediate feature maps, are treated as soft targets to
supervise the compact student net. Previous knowledge distillation methods in
semantic segmentation [11, 19] design distillation strategies only for improving
the segmentation accuracy. To our knowledge, to date no distillation methods
consider to improve temporal consistency. In this work, we focus on encoding
the motion information into the distillation terms to make the segmentation
networks more suitable for the semantic video segmentation tasks.

2 Approach

In this section, we show how we exploit the temporal information during training.
As shown in Figure 2(a), we introduce two terms: a simple temporal loss (Fig-
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Fig. 2: (a) Overall of proposed training scheme: We consider the temporal infor-
mation by the temporal consistency knowledge distillation (c and d) and the temporal
loss (b) during training. (b) Temporal loss (TL) encode the temporal consistency
through motion constraints. Both the teacher net and the student net are enhanced
by the temporal loss. (c) Pair-wise frame dependency (PF): encode the motion
relations between two frames. (d) multi-frame dependency (MF): extract the cor-
relations of the intermediate feature maps among multi-frames. We only show the
forward pass of the student net here and apply the same operations on the teacher net
to get the dependency cross frames as soft targets. (e) The inference process. All
the proposed methods are only applied during training. We can improve the tempo-
ral consistency as well as the segmentation accuracy without any extra parameters or
post-processing during inference.

ure 2(b)) and newly designed temporal consistency knowledge distillation strate-
gies (Figure 2(c) and Figure 2(d)). The temporal consistency of the single-frame
models can be significantly improved by employing temporal loss. However, if
compact models are employed for real-time execution, there is still a performance
gap between large models and small ones. We design new temporal consistency
knowledge distillation to transfer the temporal consistency from large models to
small ones. With the help of temporal information, the segmentation accuracy
can also be boosted.

2.1 Motion Guided Temporal Consistency

Training semantic segmentation networks independently on each frame of a video
sequence often leads to undesired inconsistency. Conventional methods include
previous predictions as an extra input, which introduces extra computational
cost during inference. We employ previous predictions as supervised signals to
assign consistent labels to each corresponding pixel along the time axis.

As shown in Figure 2(b), for two input frames It, It+k from time t and t+ k,
we have:

`tl(It, It+k) =
1

N

N∑
i=1

V
(i)
t⇒t+k

∥∥qi
t − q̂i

t+k⇒t

∥∥2
2

(1)

where qi
t represents the predicted class probability at the position i of the seg-

mentation map Qt, and q̂i
t+k⇒t is the warped class probability from frame t+ k

to frame t, by using a motion estimation network(e.g., FlowNet) f(·). Such an
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f(·) can predict the amount of motion changes in the x and y directions for
each pixel: f(It+k, It) = Mt→t+k, where δi = Mt→t+k(i), indicating the pixel
on the position i of the frame t moves to the position i+ δi in the frame t+ k.
Therefore, the segmentation maps between two input frames are aligned by the
motion guidance. An occlusion mask Vt⇒t+k is designed to remove the noise

caused by the warping error: Vt⇒t+k = exp(−
∣∣∣It − Ît+k

∣∣∣), where Ît+k is the

warped input frame. We employ a pre-trained optical flow prediction network as
the motion estimation net in implementation. We directly consider the tempo-
ral consistency during the training process through the motion guided temporal
loss by constraining a moving pixel along the time steps to have a consistent
semantic label. Similar constraints are proposed in image processing tasks [14,
33], but rarely discussed in semantic segmentation. We find that the straightfor-
ward temporal loss can improve the temporal consistency of single-frame models
significantly.

2.2 Temporal Consistency Knowledge Distillation

Inspired by [19], we build a distillation mechanism to effectively train the com-
pact student net S by making use of the cumbersome teacher net T. The teacher
net T is already well trained with the cross-entropy loss and the temporal loss
to achieve a high temporal consistency as well as the segmentation accuracy.
Different from previous single frame distillation methods, two new distillation
strategies are designed to transfer the temporal consistency from T to S: pair-
wise-frames dependency (PF) and multi-frame dependency (MF).
Pair-wise-Frames Dependency. Following [19], we denote an attention (AT)
operator to calculate the pair-wise similarity map AX1,X2

of two input tensors
X1,X2, where AX1,X2

∈ RN×N×1 and X1,X2 ∈ RN×C . For the pixel aij in A,

we calculate the cosine similarity between xi
1 and xj

2 from X1 and X2, respec-

tively: aij = xi
1
>xj

2/(‖xi
1‖2‖x

j
2‖2). It is an efficient and easy way to encode the

correlations between two input tensors.
As shown in Figure 2(c), we encode the pair-wise dependency between the

prediction of every two neighbouring frame pairs by using the AT operator, and
get the similarity map AQt,Qt+k

, where Qt is the segmentation map of frame t
and aij of AQt,Qt+k

denotes the similarity between the class probabilities on the
location i of the frame t and the location j of the frame t+ k. If a pixel on the
location i of frame t moves to location j of frame t+k, the similarity aij may be
higher. Therefore, the pair-wise dependency can reflect the motion correlation
between two frames.

We align the pair-wise-frame (PF) dependency between the teacher net T
and the student net S,

`PF (Qt,Qt+k) =
1

N2

N∑
i=1

N∑
j=1

(aSij − aTij)2, (2)

where ∀aSij ∈ AS
Qt,Qt+k

and ∀aTij ∈ AT
Qt,Qt+k

.
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Multi-Frame Dependency. As shown in Figure 2(d), for a video sequence I =
{. . . It−1, It, It+1 . . . }, the corresponding feature maps F = {. . .Ft−1,Ft,Ft+1 . . . }
are extracted from the output of the last convolutional block before the classifi-
cation layer. Then, the self-similarity map, AFt,Ft , for each frame are calculated
by using AT operator in order to: 1) capture the structure information among
pixels, and 2) align the different feature channels between the teacher net and
student net.

We employ a ConvLSTM unit to encode the sequence of self-similarity maps
into an embedding E ∈ R1×De , where De is the length of the embedding space.
For each time step, the ConvLSTM unit takes AFt,Ft and the hidden state which
contains the information of previous t − 1 frames as input and gives an output
embedding Et along with the hidden state of the current time step. We align
the final output embedding 4 at the last time step, ET and ES from T and S,
respectively. The output embedding encodes the relations of the whole input
sequence, named multi-frame dependency (MF). The distillation loss based on

multi-frame dependency is termed as: `MF (F) =
∥∥ET −ES

∥∥2
2
.

The parameters in the ConvLSTM unit are optimized together with the
student net. To extract the multi-frame dependency, both the teacher net and
the student net share the weight of the ConvLSTM unit. Note that there exists a
model collapse point when the weights and bias in the ConvLSTM are all equal
to zero. We clip the weights of ConvLSTM between a certain range and enlarges
the ET as a regularization to prevent the model collapse.

2.3 Optimization

We pre-train the teacher net with the segmentation loss and the temporal loss
to attain a segmentation network with a high semantic accuracy and temporal
consistency. When optimizing the student net, we fix the weight of the motion
estimation net (FlowNet) and the teacher net. These two parts are only used
to calculate the temporal loss and the distillation terms, which can be seen
as extra regularization terms during the training of the student net. During
training, we also employ conventional cross-entropy loss, and the single frame
distillation method (SF) proposed in [21] on every single frame to improve the
segmentation accuracy. Details can be found in Section S1.1 in supplementary
materials. The whole objective function for a sampled video sequence consists
of the conventional cross-entropy loss `ce, the single-frame distillation loss `SF ,
temporal loss, and the temporal consistency distillation terms:

` =

T ′∑
t=1

`(t)ce + λ(

T∑
t=1

`
(t)
SF +

T−1∑
i=1

`tl(Qt,Qt+1) +

T−1∑
i=1

`PF (Qt,Qt+1) + `MF ), (3)

where T is the number of all the frames in one training sequence, and T ′ is
the number of labeled frames. Due to the high labeling cost in semantic video

4 The details of calculations in ConvLSTM is referred in [28], and we also include the
key equations in Section S1.2 in supplementary materials.
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segmentation tasks [6, 3], most of the datasets are only annotated with sparse
frames. Our methods can be easily applied to the sparse-labeled dataset, because
1) we can make use of large teacher models to generate soft targets; and 2) we
care about the temporal consistency between two frames, which can be self-
supervised through motion. The loss weight for all regularization terms λ is set
to 0.1.

After training the compact network, all the motion-estimation net, teacher
net, and the distillation modules can be removed. We only keep the student net as
the semantic video segmentation network. Thus, both the segmentation accuracy
and the temporal consistency can be improved with no extra computational cost
in the per-frame inference process.

3 Implementation details

Dataset. We evaluate our proposed method on Camvid [3] and Cityscapes [6],
which are standard benchmarks for semantic video segmentation [13, 27, 22].
More details of the training and evaluation can be found in Section S2 of the
supplementary materials. Network structures. Different from the keyframe
based method, which takes several frames as input during inferring, we apply
our training methods to a compact segmentation model with per-frame inference.
There are three main parts while training the system:

– A light-weight segmentation network. We conduct most of the experiments
on ResNet18 with the architecture of PSPnet [37], namely PSPNet18. We
also employ MobileNetV2 [26] and a light-weight HRNet-w18 [30] to verify
the effectiveness and generalization ability.

– A motion estimation network. We use a pre-trained FlowNetV2 [24] to pre-
dict the motion between two frames. Because this module can be removed
during inferring, we do not need to consider employing a lightweight flownet
for acceleration, like in DFF [39] and GRFP [22].

– A teacher network. We adopt widely-used segmentation architecture PSP-
Net [37] with a ResNet101 [10] as the teacher network, namely PSPNet101,
which is used to calculate the soft targets in distillation items. We train the
teacher net with the temporal loss to enhance the temporal consistency of
the teacher.

Random sampled policy. In order to reduce the computational cost while
training video data, and make use of more unlabeled frames, we randomly sam-
ple frames in front of the labelled frame, named ’frame f’ and behind of the la-
belled frame, named ’frame b’ to form a training triplet (frame f, labelled frame,
frame b), instead of only using the frames right next to the labelled ones. The
random sampled policy can take both long term and short term correlations into
consideration and achieve better performance. Training on a longer sequence may
show better performance with more expensive computation.
Evaluation metrics. We evaluate our method on three aspects: accuracy,
temporal consistency, and efficiency. The accuracy is evaluated by widely-used
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Table 1: Accuracy and temporal consistency on Cityscapes validation set. SF: single-
frame distillation methods, PF: our proposed pair-wise-frame dependency distillation
method. MF: our proposed multi-frame dependency distillation method, TL: the tem-
poral loss. The proposed distillation methods and temporal loss can improve both the
temporal consistency and accuracy, and they are complementary to each other.

Scheme index SF PF MF TL mIoU Pixel accuracy Temporal consistency

a 69.79 77.18 68.50

b X 70.85 78.41 69.20

c X 70.32 77.96 70.10

d X 70.38 77.99 69.78

e X 70.67 78.46 70.46

f X X 71.16 78.69 70.21

g X X 71.36 78.64 70.13

h X X X 71.57 78.94 70.61

i X X X 72.01 79.21 69.99

j X X X X 73.06 80.75 70.56

mean Intersection over Union (mIoU) and pixel accuracy for semantic segmen-
tation [19]. We report the model parameters (#Param) and frames per second
(fps) to show the efficiency of employed networks. We follow [14] to measure the
temporal stability of a video based on the mean flow warping error between every
two neighbouring frames. Different from [14], we use the mIoU score instead of
the mean square error to evaluate the semantic segmentation results, and more
details can be found in the supplementary materials.

4 Experiments

4.1 Ablations

All the ablation experiments are conducted on the Cityscapes dataset with the
PSPNet18.

Effectiveness of proposed methods. In this section, we verify the effective-
ness of the proposed training scheme. Both the accuracy and temporal consis-
tency are shown in Table 1. We build the baseline scheme a, which is trained on
every single labelled frame. Then, we apply three distillation terms: the single-
frame dependency (SF), the pair-wise-frame dependency (PF) and multi-frame
dependency (MF), separately, to get the scheme b, c and d. The temporal loss is
employed in the scheme e. Compared with the baseline scheme, all the schemes
can improve accuracy as well as temporal consistency. To compare scheme b with
c and d, one can see that the newly designed distillation scheme across frames
can improve the temporal consistency to a greater extent. From the scheme e,
we can see the temporal loss is most effective for the improvement of temporal
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Table 2: Impact of the random sample policy. RS: random sample policy, TC: temporal
consistency, TL: temporal loss, Dis: distillation terms, ALL: combine TL with Dis. The
proposed random sample policy can improve the accuracy and temporal consistency.

Method RS mIoU TC

PSPNet18 + TL 70.04 70.21
PSPNet18 + TL X 70.67 70.46

PSPNet18 + Dis 71.24 69.48
PSPNet18 + Dis X 72.01 69.99

PSPNet18 + ALL 72.87 70.05
PSPNet18 + ALL X 73.06 70.56

consistency. To compare scheme f with i, we can see that single frame distil-
lation methods [19] can improve the segmentation accuracy but may harm the
temporal consistency.

To further improve the performance, we combine the distillation terms with
the temporal loss and achieve the mIoU of 73.06% and temporal consistency of
70.56%. We do not increase any parameters or extra computational cost with
per-frame inference. Both the distillation terms and the temporal loss can be
seen as regularization terms, which can help the training process. Such regular-
ization terms introduce extra knowledge from the pre-trained teacher net and
the motion estimation network. Besides, performance improvement also benefits
from temporal information and unlabelled data from the video.

Impact of the random sample policy. We apply the random sample (RS)
policy when training with video sequence in order to make use of more unlabelled
images, and capture the long-term dependency. Experiment results are shown
in Table 2. By employing the random sampled policy, both the temporal loss
and distillation terms can benefit from more sufficient training data in the video
sequences, and obtain an improvement on mIoU from 0.24% to 0.69% as well
as the temporal consistency from 0.19% to 0.63%. We employ such a random
sampled policy considering the memory cost during training.

Table 3: Influence of the teacher net. TL: temporal loss. TC: temporal consistency.
We use the pair-wise-frame distillation to show our design can transfer the temporal
consistency from the teacher net.

Method Teacher Model mIoU TC

PSPNet101 None 78.84 69.71

PSPNet101 + TL None 79.53 71.68

PSPNet18 None 69.79 68.50

PSPNet18 PSPNet101 70.26 69.27

PSPNet18 PSPNet101 + TL 70.32 70.10
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Table 4: We compare our methods with recent efficient image/video semantic seg-
mentation networks on three aspects: accuracy (mIoU,%), smoothness (TC, %) and
inference speed (fps, Hz). TL: temporal loss, ALL: all proposed terms, TC: temporal
consistency, #Param: parameters of the networks.

Method Backbone #Params
Cityscapes Camvid

mIoU TC fps mIoU TC fps

Video-based methods: Train and infer on multi frames

CC [27] VGG16 - 67.7 71.2 16.5 - - -
DFF [39] ResNet101 - 68.7 71.4 9.7 66.0 78.0 16.1
GRFP [22] ResNet101 - 69.4 - 3.2 66.1 - 6.4
DVSN [32] ResNet101 - 70.3 - 19.8 - - -
Accel [13] ResNet101/18 - 72.1 70.3 3.6 66.7 76.2 7.1

Single frame methods: Train and infer on each frame independently

PSPNet [37] ResNet101 68.1 78.8 69.7 1.7 77.6 77.1 4.1
SKD-MV2 [19] MobileNetV2 8.3 74.5 68.2 14.4 - - -
SKD-R18 [19] ResNet18 15.2 72.7 67.6 8.0 72.3 75.4 13.3
PSPNet18 [37] ResNet18 13.2 69.8 68.5 9.5 - - -
HRNet-w18 [29, 30] HRNet 3.9 75.6 69.1 18.9 - - -
MobileNetV2 [26] MobileNetV2 3.2 70.2 68.4 20.8 74.4 76.8 27.8

Ours: Train on multi frames and infer on each frame independently

Teacher Net ResNet101 68.1 79.5 71.7 1.7 79.4 78.6 4.1
PSPNet18+TL ResNet18 13.2 71.1 70.0 9.5 - - -
PSPNet18+ALL ResNet18 13.2 73.1 70.6 9.5 - - -
HRNet-w18+TL HRNet 3.9 76.4 69.6 18.9 - - -
HRNet-w18+ALL HRNet 3.9 76.6 70.1 18.9 - - -
MobileNetV2+TL MobileNetV2 3.2 70.7 70.4 20.8 76.3 77.6 27.8
MobileNetV2+ALL MobileNetV2 3.2 73.9 69.9 20.8 78.2 77.9 27.8

Impact of the teacher net. The temporal loss can improve the temporal
consistency of both cumbersome models and compact models. We compare the
performance of the student net training with different teacher net (i.e., with
and without the proposed temporal loss) to verify that the temporal consistency
can be transferred with our designed distillation term. The results are shown
in Table 3. The temporal consistency of the teacher net (PSPNet101) can be
enhanced by training with temporal loss by 1.97%. Meanwhile, the mIoU can
also be improved by 0.69%. By using the enhanced teacher net in the distillation
framework, the segmentation accuracy is comparable (70.26 vs. 70.32), but the
temporal consistency has a significant improvement (69.27 vs. 70.10), indicating
that the proposed distillation methods can transfer the temporal consistency
from the teacher net.

Discussions. We focus on improving the accuracy and temporal consistency
for real-time models by making use of temporal correlations. Thus, we do not
introduce extra parameters during inference. A series of work [36, 34, 23] fo-
cus on designing network structures for fast segmentation on single images and
achieve promising results. They do not contradict to our work. We will verify
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Fig. 3: The temporal consistency between neighbouring frames in one sampled se-
quence on Cityscapes. The keyframe based method Accel shows severe jitters between
keyframes and others.

that our methods can generalize to different network structures, e.g. ResNet18,
MobileNetV2 and HRNet in the next session. Besides, large models [37, 40] can
achieve high segmentation accuracy but have low inference speed. The temporal
loss is also effective when applying to large models, e.g., our teacher net.

4.2 Results on Cityscapes

Comparison with single-frame based methods. Single-frame methods are
trained and inferred on each frame independently. Directly apply such meth-
ods to video sequences will produce inconsistent results. We apply our train-
ing schemes to several efficient single-frame semantic segmentation networks:
PSPNet18 [37], MobileNetV2 [26] and HRNet-w18 [30, 29]. Metrics of mIoU,
temporal consistency, inference speed, and model parameters are shown in Ta-
ble 4. As Table 4 shows, the proposed training scheme works well with a few
compact backbone networks (e.g., PSPNet18, HRNet-w18 and MobileNetV2).
Both temporal consistency and segmentation accuracy can be improved using
the temporal information among frames.

We also compare our training methods with the single-frame distillation
method [19]. According to our observation, GAN based distillation methods
proposed in [19]can produce inconsistent results. For example, with the same
backbone ResNet18, training with the GAN based distillation methods (SKD-
R18) achieves higher mIoU: 72.7 vs. 69.8, and a lower temporal consistency:
67.6 vs. 68.5 compared with the baseline PSPNet18, which is trained with cross-
entropy loss on each single frame. We replace the GAN based distillation term
with our temporal consistency distillation terms and the temporal loss, denoted
as “PSPNet18+ALL”. Both accuracy and smoothness are improved. Note that
we also employ a smaller structure of the PSPNet with half channels than in [19].
Comparison with video-based methods. Video-based methods are trained
and inferred on multi frames, we list current methods including keyframe based
methods: CC [27], DFF [39], DVSN [32], Accel [13] and multi-frame input
method: GRFP [22] in Table 4. The compact networks with per-frame inference
can be more efficient than video-based methods. Besides, with per-frame infer-
ence, semantic segmentation networks have no unbalanced latency and can han-
dle every frame independently. Table 4 shows the proposed training schemes can
achieve a better trade-off between the accuracy and the inference speed compared
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Fig. 4: Qualitative outputs. (a): PSPNet18, training on multi frames and inferring
on each frame. (b): PSPNet18, training and inferring on each frame. (c): Accel-18 [13],
training and inferring on multiple frames. The keyframe is selected in every five frames.
For better visualization, we zoom the region in the red and orange box. The proposed
method can give more consistent labels to the moving train and the trees in the red
box. In the orange boxes, we can see our methods have similar quantity results in each
frame while the keyframe based methods may generate worse results in the frame (e.g.,
k + 3) which is far from the keyframe (i.e., k).

with other state-of-the-art semantic video segmentation methods, especially the
MobileNetV2 with the fps of 20.8 and mIoU of 73.9. Although keyframe methods
can achieve a high average temporal consistency score, the predictions beyond
the keyframe are in low quality. Thus, the temporal consistency will be quiet low
between keyframe and non-key frames, as shown in Figure 3. The high average
temporal consistency score is mainly from the low-quality predictions on non-
key frames. In contrast, our method can produce stable segmentation results on
each frame.

Qualitative visualization. Qualitative visualization results are shown in Fig-
ure 4, in which, we can see, the keyframe-based method Accel-18 will produce
unbalanced quality segmentation results between the keyframe (e.g., the orange
box of k) and non-key frames (e.g., the orange box of k + 1 and k + 3 ), due to
the different forward-networks it chooses. By contrast, ours can produce stable
results on the video sequence because we use the same enhanced network on all
frames. Compared with the baseline method trained on single frames, we can see
our proposed method can produce more smooth results, e.g., the region in red
boxes. Video results can be found in the supplementary materials. The improve-
ment of temporal consistency is more clearly shown in the video comparison
results. Moreover, we show a case of the temporal consistency between neigh-
bouring frames in a sampled frame sequence in Figure 3. Temporal consistency
between two frames is evaluated by the warping pixel accuracy. The higher, the
better. The keyframe based method will produce jitters between keyframe and
non-key frames, while our training methods can improve the temporal consis-
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tency for every frame. The temporal consistency between non-key frames are
higher than our methods, but the segmentation performance is lower than ours.

4.3 CamVid

We provide additional experiments on CamVid. We use MobileNetV2 as the
backbone in the PSPNet. In Table 4, the segmentation accuracy, and the tem-
poral consistency are improved compared with the baseline method. We also
outperform current state-of-the-art semantic video segmentation methods with
a better trade-off between the accuracy and the inference speed. We use the
pre-trained weight from cityscapes following VideoGCRF [4], and achieve better
segmentation results of 78.2 vs. 75.2. VideoGCRF [4] can achieve 22 fps with
321× 321 resolution on a GTX 1080 card. We can achieve 78 fps with the same
resolution. The consistent improvements on both datasets verify the value of our
training schemes for real-time semantic video segmentation.

5 Conclusions

In this work, we have developed real-time video segmentation methods that
consider not only accuracy but also temporal consistency. To this end, we have
proposed to use compact networks with per-frame inference. We explicitly con-
sider the temporal correlation during training by using: the temporal loss and
the new temporal consistency knowledge distillation. For inference, the model
processes each frame separately, which does not introduce latency and avoids
post-processing. The compact networks achieve considerably better temporal
consistency and semantic accuracy, without introducing extra computational
cost during inference. Our experiments have verified the effectiveness of each
component that we have designed. They can improve the performance individ-
ually and are complement to each other.
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