
TexMesh: Reconstructing Detailed Human
Texture and Geometry from RGB-D Video

Supplementary Material

Tiancheng Zhi1?, Christoph Lassner2, Tony Tung2, Carsten Stoll2,
Srinivasa G. Narasimhan1, and Minh Vo2

1 Carnegie Mellon University, {tzhi,srinivas}@cs.cmu.edu
2 Facebook Reality Labs, {classner,tony.tung,carsten.stoll,minh.vo}@fb.com

1 UV Mapping

v = (x3D , y3D , z3D ,u,v)

Image Space

p = (x2 D , y2 D )

x

y UV Space

t = (u,v)

v

u

Mesh Albedo converted from
image space to UV space

Partial texture

Fig. 1. The mesh bridges image space and UV space. Assume point v on the
mesh is associated with its 3D position (x3D, y3D, z3D) and UV coordinates
(u, v). The corresponding point p = (x2D, y2D) in image space can be obtained
via camera projection. It also corresponds to point t = (u, v) in UV space.
To convert features from image space to UV space, for each t, we first obtain
its 3D position (x3D, y3D, z3D) by barycentric interpolation, project it to image
coordinates (x2D, y2D), and finally sample features from the image.

We follow the common practice in graphics where texture is stored using a
UV mapping [3]. This map unwraps a mesh into 2D space, called UV space.
Each pixel t = (u, v) in UV space corresponds to a point v on the mesh. Its
3D position is defined by the barycentric interpolation of the vertices of the face
where the point is on. With the 3D position, we can project it to the image space
of a calibrated camera. Thus, we can sample image features and convert them
into UV space. Fig. 1 shows an example of converting albedo to UV space. It is
further converted into a partial texture by masking with visibility.

2 Visibility Map

To calculate visibility, as shown in Fig. 2, we rasterize a image with UV co-
ordinates, then sample that to UV space, and compare with the correct UV

? Work was done during TZ internship at Facebook Reality Labs, Sausalito, CA, USA.



2 T. Zhi et al.

UV coordinates
meshgrid

Rasterize

UV coodinates
in image space

UV coodinates
in UV space

Visibility
in UV space

Sample

⊖
Compare

Partial texture

Fig. 2. Visibility and partial texture generation. By rasterizing UV coordinates
to image space and sample it back to UV space, we obtain a UV coordinates map
where only the visible parts are ”correct”. By comparing it with the ground truth
UV meshgrid, we obtain the visibility map in UV space. We further calculate
partial texture by masking the sampled albedo.

coordinates. The pixels whose sampled UVs are consistent with its position in
UV space are visible. By masking the sampled albedo with visibility, we obtain
the partial texture.

3 Augment MeshRef Features

In addition to VGG [8] features, we can further augment the features by including
vertex position information. Specifically, we can rasterize coarse vertex position
into both image spcae and UV space, to become a vertex position image Ivp and
a vertex position map Tvp. We append Ivp to the input of VGGNet, and append
Tvp to the input of the UV space CNN.

4 Implementation Details

Network Architecture. All the CNNs are U-Net sharing similar architectures,
except for the VGG16 Network [8] in MeshRef module. See Tab. 1 for the shared
components and Tab. 2, 3, and 4 for architectures of AlbeNorm, TexGen, and
MeshRef CNNs. Specially, the CNN in TexGen predicts the residual between the
coarse texture and the fine texture.

Hyperparameters. We use K = 30 for the number of selected frames, and
λana = 1, λann = 1, λtgL1 = 20, λtgpct = 1, λtglap = 10, λmr1

L1 = 1, λmr1
ssim = 1, λmr1

lap =

20, λmr2
pct = 1, λmr2

sil = 100, λmr2
temp = 10, λmr2

pos = 10, λmr2
lap = 10, λmr2

deform = 10 for

the loss weights. We use learning rate 10−5 for pretraining AlbeNorm, 10−4 for
pretraining MeshRef, 3× 10−4 for optimizing TexGen, and 5× 10−5 for finetun-
ing MeshRef. We use batch size 4 for pretraining AlbeNorm, 1 for pretraining
MeshRef, 1 for optimizing TexGen, and 3 for finetuning MeshRef (as a triplet for
motion smoothness loss). VGGNet is trained from scratch with MeshRef CNN,



TexMesh 3

Table 1. Network Components. We use ReLU [6] for activation, and Instance
Normalization [9] for normalization

Type Components

inconv [Conv3×3 + ReLU + InstanceNorm]×2
down [Conv3×3 + ReLU + InstanceNorm]×2 + MaxPool2×2
up Upsample + [Conv3×3 + ReLU + InstanceNorm]×2
outconv Conv1×1

Table 2. Network Architecture of AlbeNorm CNN

Name Type Input Output Channels

inc inconv RGB+SH lighting 64
down1 down inc 128
down2 down down1 256
down3 down down2 512
down4 down down3 512
up1a up down4, down3 256
up2a up up1a, down2 128
up3a up up2a, down1 64
up4a up up3a, inc 64
outca (Normal Output) up up4a 3
up1b up down4, down3 256
up2b up up1b, down2 128
up3b up up2b, down1 64
up4b up up3b, inc 64
outcb (Albedo Output) outconv up4b 3

Table 3. Network Architecture of TexGen CNN

Name Type Input Output Channels

inc inconv Coarse Texture 64
down1 down inc 128
down2 down down1 256
down3 down down2 512
down4 down down3 512
up1 up down4, down3 256
up2 up up1, down2 128
up3 up up2, down1 64
up4 up up3, inc 64
outc outconv up4 3



4 T. Zhi et al.

Table 4. Network Architecture of MeshRef CNN. “feat0”, “feat1”, “feat2”,
“feat3”, “feat4” are features converted from VGGNet input, conv1 2, conv2 2,
conv3 3, and conv4 3 features

Name Type Input Output Channels

inc inconv feat0 64
down1 down inc, feat1 128
down2 down down1, feat2 256
down3 down down2, feat3 512
down4 down down3, feat4 512
up1 up down4, down3 256
up2 up up1, down2 128
up3 up up2, down1 64
up4 up up3, inc 64
outc outconv up4 3

and kept fixed during finetuning. To speed up finetuning, we use a smaller im-
age size 480 × 270 for photometric losses, but the image features are from the
960 × 540 original image.

Adaptive Robust Perceptual Loss. We use the adaptive robust loss [2] for
perceptual losses [4]. We use VGG16 conv1 2, conv2 2, conv3 3, and conv4 3
features for TexGen, and conv3 3, and conv4 3 features for MeshRef. We use
learning rate 3 × 10−4 for the adaptive robust function.

5 Qualitative Texture Generation Results

See Fig. 3 and 4 for qualitative results. Our method provides clearer texture,
better contrast, and less baked-in shading.

6 Handle Different Human Models and Camera
Parameters

We establish a mapping between SMPL [5] and Our Human Model, so that we
can replace the initial meshes of DeepHuman [10] and HMD [11] by our coarse
mesh. Besides, DeepHuman and HMD use different camera parameters from
ours, and the cropping makes it hard to simply transform the mesh from one
setting to the other. Thus, we adopt an approximate way to do this: We transform
our coarse mesh to match the position and scale of their original initial mesh.
Similarly, after obtaining their reconstruction result, we transform the mesh to
match the position and scale of our coarse mesh, for DeepHuman, HMD, and
their variants.



TexMesh 5

(a) Albedo (b) SBM [1] (c) TNA [7] (d) Ours

Fig. 3. Comparing texture generation by visualizing no-shading image on real
data. (a) is albedo image from AlbeNorm, which can be seen as “ground truth”.
Our result has clearer texture, and less baked-in shading.

(a) Albedo (b) SBM [1] (c) TNA [7] (d) Ours

Fig. 4. Comparing texture generation by visualizing no-shading image on syn-
thetic data. (a) is ground truth albedo image. Our result has better contrast and
clearer texture.



6 T. Zhi et al.

References

1. Alldieck, T., Magnor, M., Xu, W., Theobalt, C., Pons-Moll, G.: Video based re-
construction of 3d people models. In: CVPR (2018)

2. Barron, J.T.: A general and adaptive robust loss function. In: CVPR (2019)
3. Blinn, J.F., Newell, M.E.: Texture and reflection in computer generated images.

Communications of the ACM 19(10), 542–547 (1976)
4. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and

super-resolution. In: ECCV (2016)
5. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: Smpl: A skinned

multi-person linear model. TOG 34(6), 1–16 (2015)
6. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-

chines. In: ICML (2010)
7. Shysheya, A., Zakharov, E., Aliev, K.A., Bashirov, R., Burkov, E., Iskakov, K.,

Ivakhnenko, A., Malkov, Y., Pasechnik, I., Ulyanov, D., et al.: Textured neural
avatars. In: CVPR (2019)

8. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: ICLR (2015)

9. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: The missing in-
gredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

10. Zheng, Z., Yu, T., Wei, Y., Dai, Q., Liu, Y.: Deephuman: 3d human reconstruction
from a single image. In: ICCV (2019)

11. Zhu, H., Zuo, X., Wang, S., Cao, X., Yang, R.: Detailed human shape estimation
from a single image by hierarchical mesh deformation. In: CVPR (2019)


