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Abstract. Active learning (AL) combines data labeling and model train-
ing to minimize the labeling cost by prioritizing the selection of high
value data that can best improve model performance. In pool-based ac-
tive learning, accessible unlabeled data are not used for model training in
most conventional methods. Here, we propose to unify unlabeled sample
selection and model training towards minimizing labeling cost, and make
two contributions towards that end. First, we exploit both labeled and
unlabeled data using semi-supervised learning (SSL) to distill informa-
tion from unlabeled data during the training stage. Second, we propose a
consistency-based sample selection metric that is coherent with the train-
ing objective such that the selected samples are effective at improving
model performance. We conduct extensive experiments on image classi-
fication tasks. The experimental results on CIFAR-10, CIFAR-100 and
ImageNet demonstrate the superior performance of our proposed method
with limited labeled data, compared to the existing methods and the al-
ternative AL and SSL combinations. Additionally, we also study an im-
portant yet under-explored problem – “When can we start learning-based
AL selection?”. We propose a measure that is empirically correlated with
the AL target loss and is potentially useful for determining the proper
starting point of learning-based AL methods.

Keywords: Active Learning, Semi-supervised Learning, Consistency-
based Sample Selection.

1 Introduction

Deep learning models are improved when trained with more labeled data [19].
A standard deep learning procedure involves constructing a large-scale labeled
dataset and optimizing a model on it. Yet, in many real-world scenarios, large-
scale labeled datasets can be very costly to acquire, especially when expert anno-
tators are required, as in medical diagnosis. An ideal framework would integrate
data labeling and model training to improve model performance with minimal
amount of labeled data.
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Active learning (AL) [2] assists the learning procedure by judicious selection
of unlabeled samples for human labeling, with the goal of maximizing the model
performance with minimal labeling cost. We focus on practically-common pool-
based AL, where an unlabeled data pool is given initially and the AL mechanism
iteratively selects batches to label in conjunction with training.

Learning-based AL methods select a batch of samples for labeling with guid-
ance from the previously-trained model and then add these samples into the
labeled dataset for the model training in the next cycle. Existing methods gen-
erally start with a randomly sampled labeled set. The size of the starting set
affects learning-based AL performance – when the start size is not sufficiently
large, the models learned in subsequent AL cycles are highly-biased which re-
sults in poor selection, a phenomenon commonly known as the cold start prob-
lem [26,23]. When cold start issues arise, learning-based selection yields samples
that lead to lower performance improvement than naive uniform sampling [26].

To improve the performance at early AL cycles when the amount of labeled
data is limited, it is important to address cold-start and ensure high performance
later on with low labeling cost. Along this line of research, one natural idea for
pool-based AL is integration of abundant unlabeled data into learning using
semi-supervised learning (SSL) [55,48]. Recent advances in SSL [5,50,51,45,46]
has demonstrated the vast potential of utilizing unlabeled data for learning ef-
fective representations. Although “semi-supervised AL” seems natural, only a
small portion of AL literature has focused on it. Past works that use SSL for AL
[14,36,55,39] treated SSL and AL independently without considering their im-
pact on each other. We on the other hand, hypothesize that a better AL selection
criterion should be in coherence with the corresponding objectives of unlabeled
data in SSL to select the most valuable samples. A primary reason is that SSL
already results in embodiment of knowledge from unlabeled data in a meaningful
way, thus AL selection should reflect the value of additionally collected labeled
data on top of such embodied knowledge. Based on these motivations, we pro-
pose an AL framework that integrates SSL to AL and also a selection metric
that is highly related to the training objective.

The proposed AL framework is based on an insight that has driven recent
advances in SSL [5,50,51] – a model should be consistent in its decisions between
a sample and its meaningfully distorted versions, obtained via appropriate data
augmentation. This motivates us to introduce an AL selection strategy: a sample
along with its distorted variants that yields low consistency in predictions indi-
cates that the SSL model may be incapable of distilling useful information from
that unlabeled sample – thus human labeling is needed.

Overall, our contributions are summarized as follows:

1. We propose to unify model training and sample selection with a semi-supervised
AL framework. The proposed framework outperforms the previous AL meth-
ods and the baselines of straightforward SSL and AL combinations.

2. We propose a simple yet effective selection metric based on sample consis-
tency which implicitly balances sample uncertainty and diversity during se-
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Fig. 1. Illustration of the proposed framework at tth AL cycle. During training, both
labeled and unlabeled data are used for the model optimization, with cross-entropy
loss encouraging correct predictions for the labeled samples and consistency-based loss
encouraging consistent outputs between unlabeled samples and their augmentations.
During sample selection, the unlabeled samples and their augmentations are evaluated
by the model obtained from the training stage. Their outputs are measured by our pro-
posed consistency-based metric. The samples with low consistency scores are selected
for labeling and sent to the labeled pool

lection. With comprehensive analyses, we demonstrate the rationale behind
the proposed consistency-based sampling.

3. We propose a measure that is potentially useful for determining the proper
start size to mitigate cold start problems in AL.

2 Related Work

2.1 Active learning

There exists a broad literature on AL [12,11,2,8]. Most AL methods can be clas-
sified under three categories: uncertainty-based methods, diversity-based meth-
ods and methods based on model performance change. Most uncertainty-based
methods use max entropy [30,31] and max margin [37,3,25] criteria due to their
simplicity. Some others use distances between samples and the decision bound-
ary [49,6]. Most uncertainty-based methods use heuristics, while recent work [53]
directly learns the target loss of inputs jointly with the training phase and shows
promising results. Diversity-based methods select diverse samples that span the
input space maximally [34,32,22,39]. There are also methods that consider un-
certainty and diversity in conjunction [21,15,52]. The third category estimates
the future model status and selects samples that encourage optimal model im-
provement [38,40,16].
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2.2 Semi-supervised active learning

Both AL and SSL aim to improve learning with limited labeled data, thus they
are naturally related. Yet, only a few recent works have considered combining
AL and SSL. In [14], joint application of SSL and AL is considered for speech un-
derstanding, and significant error reduction is demonstrated with limited labeled
speech data. Their AL selection criteria is based on a confidence score obtained
from the posterior probabilities of the decoded text. Rhee et al. [36] propose
an semi-supervised AL system which demonstrates superior performance in the
pedestrian detection task. Zhu et al. [55] combine AL and SSL using Gaussian
fields. Sener et al. [39] also consider SSL during AL cycles. However, in their
setting, the performance improvement is marginal when adding SSL in com-
parison to their supervised counterpart, potentially due to the sub-optimal SSL
method and combination strategy. Recently, Sinha et al. propose VAAL in [44],
where a variational autoencoder and an adversarial network are learned using
both labeled and unlabeled samples to infer the representativeness of unlabeled
samples during the sampling process. Although, unlabeled data is not used for
model training. The concurrent AL works [42][47] also consider integrating SSL,
but their selection procedures are independent from the model training. We
demonstrate that our proposed method unifying AL selection with SSL training
is superior than the straightforward-combination strategy.

2.3 Agreement-based active learning

Agreement-based methods, also referred as “query-by-committee”, base the se-
lection on the opinions of a committee which consists of independent AL metrics
or models [41,7,33,24,4,9]. Our method is related to agreement-based AL where
samples are determined based on the conformity of different metrics or models.
Specifically, our method selects samples that mostly disagree with the predic-
tions of their augmentations.

3 Consistency-based Semi-supervised AL

We consider the setting of pool-based AL, where an unlabeled data pool is
available for selection of samples to label. To minimize the labeling cost, we
propose a method that unifies selection and model updates. The proposed semi-
supervised AL is depicted in Fig. 1.

Most conventional AL methods base model learning only on the available
labeled data, ignoring the useful information in the unlabeled data. While, we
incorporate a semi-supervised learning (SSL) objective at training phases of AL
cycles. The target model Mt at AL selection cycle t is learned by minimizing an
objective loss function of the form Ll +Lu, where Ll and Lu indicate supervised
and unsupervised losses, respectively. Ll is the supervised learning objective,
such as the standard cross-entropy loss for classification. The proposed semi-
supervised AL framework is presented in Algorithm 1. For Lu, we adopt the
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Algorithm 1 A semi-supervised learning based AL framework

Require: Unlabeled data pool D, the total number of steps T , selected sample batch
set B, AL batch size K, start size K0 � |D|
B0 ← uniformly sampling from D with |B0| = K0

U0 ← D\B0

L0 ← {(x,J (x)) : x ∈ B0}, where J (x) stands for the assigned label of x.
for t = 0, . . . , T − 1 do

(training) Mt ← arg minM

{
1
|Lt|

∑
(x,y)∈Lt

Ll(x, y,M) + 1
|Ut|

∑
x∈Ut

Lu(x,M)
}

(selection) Bt+1 ← arg maxB⊂Ut
{C(B,Mt), s.t. |B| = K}

(labeling) Lt+1 ← Lt ∪ {(x,J (x)) : x ∈ Bt+1}
(pool update) Ut+1 ← Ut \Bt+1

end for
MT ← arg minM

{
1
|LT |

∑
(x,y)∈LT

Ll(x, y,M) + 1
|UT |

∑
x∈UT

Lu(x,M)
}

return MT

recent successful advances in SSL [1,5,54,50], that are based on minimizing the
notion of sensitivity to perturbations with the idea of inducing “consistency”,
i.e., imposing similarity in predictions when the input is perturbed in a way
that would not change its perceptual content. For consistency-based SSL, the
common choice for the loss is

Lu(x,M) = D(P (Ŷ = `|x,M), P (Ŷ = `|x̃,M)), (1)

where D is a distance function such as KL divergence [51], or L2 norm [28,5], M
indicates the model and x̃ denotes a distortion (augmentation) of the input x.

The design of the selection criteria is crucial while integrating SSL into AL.
The unsupervised objective exploits unlabeled data by encouraging consistent
predictions across slightly-distorted versions of each unlabeled sample. We hy-
pothesize that labeling samples that have highly-inconsistent predictions should
be valuable, because these samples are hard to be minimized using Lu. Human
annotations on them can ensure a correct label, to be useful for supervised model
training at next cycle. The samples that yield the large performance gains with
SSL would not be necessarily the samples with the highest uncertainty, as the
most uncertain data could be out-of-distribution examples, and including them
in training might be misleading. Based on the intuitions, we argue that, for semi-
supervised AL, valuable samples are the ones that demonstrate highly unstable
predictions given different input distortions, i.e., the samples that a model can
not consistently classify as a certain class.

To this end, we propose a simple metric to quantify the inconsistency of
predictions over a random set of data augmentations given a sample:

E(x,M) =

J∑
`=1

Var
[
P (Ŷ = `|x,M), P (Ŷ = `|x̃1,M), ..., P (Ŷ = `|x̃N ,M)

]
,

(2)
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where J is the number of response classes and N is the number of perturbed
samples of the original input data x, {x̃1, ..., x̃N}, which can be obtained by
standard augmentation operations.

For batch selection, we jointly consider K samples and aim to choose the
subset B such that the aggregate metric C(B,M) =

∑
x∈B E(x,M) is maximized,

i.e. the high inconsistency samples can be selected to be labeled by humans.

4 Experiments

In this section, we present experimental results of our proposed method. First,
we compare our method to naive AL and SSL combinations, to show the effec-
tiveness of our consistency based selection when all the methods are trained in a
semi-supervised way. Second, since most recent AL methods still use only labeled
data to conduct model training, we compare our method to recent AL methods
and show a large improvement, motivating future research for semi-supervised
AL. Third, we present qualitative analyses on several important properties of
the proposed consistency based sampling.

4.1 Experimental setup

Datasets. We demonstrate the performance of our method on CIFAR-10, CIFAR-
100 [27] and ImageNet [13] datasets. CIFAR-10 and CIFAR-100 have 60K images
in total, of which 10K images are for testing. CIFAR-10 consists of 10 classes
and CIFAR-100 has 100 classes. ImageNet is a large-scale image dataset with
1.2M images from 1K classes.
Implementation details. Different variants of SSL methods encourage consis-
tency loss in different ways. In our implementation, we focus on the recently-
proposed method, Mixmatch [5], which proposes a specific loss term to encour-
age consistency of unlabeled data. For comparison with selection baselines on
CIFAR-10 and CIFAR-100, we use Wide ResNet-28 [35] as the base model and
keep the default hyper-parameters for different settings following [5]. In each
cycle, the model is initialized with the model trained in the previous cycle. 50
augmentations of each image are obtained by horizontally flipping and random
cropping, but we observe that 5 augmentations can produce comparable results.
To perform a fair comparison, different selection baselines start from the same
initial model. The initial set of labeled data is randomly sampled and is uni-
formly distributed over classes. When comparing with advanced supervised AL
methods, we follow [44] for the settings of start size, AL batch size and back-
bone architecture (VGG16 [43]). We adopt an advanced augmentation strategy,
RandAugment [10], to perform augmentation of unlabeled samples on ImageNet.
Selection baselines. We consider three representative selection methods. Uni-
form indicates random selection (no AL). Entropy is widely considered as an
uncertainty-based baseline in previous methods [39,53]. It selects uncertain sam-
ples that have maximum entropy of its predicted class probabilities. k-center [39]
selects representative samples by maximizing the distance between a selected
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Fig. 2. Model performance comparison with different sample selection methods on
CIFAR-10 and CIFAR-100. Solid lines indicate the averaged results over 5 trials. Shad-
ows represent standard deviation

Fig. 3. Comparison with recent AL methods on CIFAR-100 and ImageNet. Our results
on CIFAR-100 and ImageNet are averaged over 5 and 3 trials, respectively

sample and its nearest neighbor in the labeled pool. We use the features from
the last fully connected layer of the target model to compute sample distances.

4.2 Comparison with selection baselines under SSL

To demonstrate the effectiveness of our method over the straightforward AL and
SSL combinations, we focus on comparing with different selection methods in
SSL framework. Fig. 2 and Table 1 show that when integrated with SSL train-
ing, our method outperforms baselines by a clear margin: on CIFAR-10, with 250
labeled images, our method outperforms uniform (passive selection) by ∼ 2.5%
and outperforms k-center, by ∼ 1.5%. As the number of labels increases, it is
harder to improve model performance, but our method outperforms the uniform
selection with 4K labels using only 2K labels, halving the labeled data require-
ments for the similar performance. Given access to all the labels (50K) for the
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Table 1. Comparison of different sampling methods on CIFAR-10. Note that all the
methods are under the SSL setting and start with 100 labeled samples. When the
number of labeled samples reaches 250, AL batch size K is set to be 250 and doubled
afterwards. The reported results are averaged over 5 trials

Methods
# of labeled samples in total

250 500 1000 2000 4000

Uniform 87.78±0.23 90.50±0.21 91.95±0.15 92.81±0.17 93.45±0.16
Entropy 88.24±0.51 89.95±0.58 91.53±0.35 92.42±0.53 93.28±0.61
k-center 88.75±0.42 90.94±0.53 92.34±0.24 93.30±0.21 94.03±0.25
Ours 90.23±0.39 91.84±0.29 92.93±0.26 93.78±0.38 94.57±0.06

entire training set, a fully-supervised model achieves an accuracy of 95.83% [5].
Our method with 4K (8%) examples achieves about 30% more error compared
to the fully supervised method. CIFAR-100 is a more challenging dataset as it
has the same amount of training images of CIFAR-10, but 10× more categories.
On CIFAR-100, we observe a consistent outperformance over baselines of our
method at all AL cycles.

There is typically a trade-off between using a large and a small AL batch
sizes. A large batch size will lead to insufficient usage of active learning given
a limited budget. However, selecting a small batch of samples would lead to
more AL cycles, which is computationally expensive. We conduct experiments on
CIFAR-10 following the setting in Fig. 2 using reasonable AL batch sizes. Results
show that when consuming 200 labels in total, our methods obtain comparable
performance (89.5%, 89.2% and 89.3%) with AL batch size set to be 25, 50 and
100, respectively.

4.3 Comparison with supervised AL methods

We have shown that our method clearly outperforms the straightforward AL and
SSL combinations in Sec. 4.2. As mentioned, most AL methods focus on learn-
ing with only labeled samples. Consequently, it is worth showing the overall gap
between our proposed framework and the existing methods to emphasize the
benefit of the proposed framework. We choose the following recent methods as
baselines: MC-Dropout [17], DBAL [18], Ensembles w. VarR [4] and VAAL [44]
and compare with them on CIFAR-100 and ImageNet. The results of the base-
lines are reprinted from [44].

As can be seen from Fig. 3, our method significantly outperforms the existing
supervised AL methods at all AL cycles on both datasets. Specifically, when
40% images are labeled, our method improves the best baseline (VAAL) by
22.62% accuracy on CIFAR100 and by 12.28% accuracy on ImageNet. The large
improvements are mostly due to effective utilization of SSL at AL cycles.

Moreover, the performance of our method over the supervised models com-
bined with the selection baselines in the scenario of very few labeled samples
is of interest. As shown in Table 2, our method significantly outperforms the
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Table 2. Comparison between our method (trained in SSL) and our baselines that
trained in supervised setting with very few labeled samples on CIFAR-10. All methods
start from 100 labeled samples. The following columns are results of different methods
with the same selection batch size. The reported results are over 5 trials

Setting Methods
# of labeled samples in total

100 150 200 250

Supervised
Uniform

41.85
46.13±0.38 51.10±0.60 53.45±0.71

Entropy 46.05±0.34 50.15±0.79 52.83±0.82
k-center 48.33±0.49 50.96±0.45 53.77±1.01

Semi-supervised Ours 83.81 87.57±0.31 89.20±0.51 90.23±0.49

Fig. 4. Left: Number of overconfident mis-classified samples in top 1% samples ranked
by different methods. Overconfident samples are defined as those having the highest
class probability larger than threshold. Right: the average entropy of unlabeled samples
ranked by different selection metrics. The ranked samples are divided into 100 groups
for computing average entropy. Shadows represent standard deviation

methods which only learn from labeled data at each cycle. When 150 samples in
total are labeled, our method outperforms kcenter by 39.24% accuracy.

4.4 Analyses of consistency-based selection

To build insights on the superior performance of our AL selection method, we
analyze different attributes of the selected samples, which are considered to be
important for AL. Experiments are conducted on CIFAR-10.
Uncertainty and overconfident mis-classification. Uncertainty-based AL
methods query the data samples close to the decision boundary. However, deep
neural networks yield poorly-calibrated uncertainty estimates when the raw
outputs are considered – they tend to be overconfident even when they are
wrong [20,29]. Entropy-based AL metrics would not distinguish such overcon-
fident mis-classifications, thus may result in sub-optimal selection. Fig. 4 (left)
demonstrates that our consistency-based selection is superior in detecting high-
confident mis-classification cases compared to entropy-based selection. Fig. 4(right)
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Fig. 5. Average distance between samples (top-left): the average pair-wise L2 distance
of top 1% unlabeled samples ranked by different selection metrics. Per-class error rate
vs. the class distribution of the selected samples are shown in bottom-left. Diversity
visualization (right): Dots and crosses indicate unlabeled (un-selected) samples and the
selected samples (top 100), respectively. Each color represent a ground truth class

shows the uncertainty in the selected samples with different methods, quantified
using entropy. When different AL selection methods are compared, uniform and
k-center methods do not base selection on uncertainty at all, whereas consistency
tends to select highly-uncertain samples but not necessarily the top ones. Such
samples might contribute to our superior performance compared to entropy.

Sample diversity. Diversity has been proposed as a key factor for AL [52].
k-center is a diversity based AL method, preferring to select data points that
span the whole input space. Towards this end, Fig. 5 (right) visualizes the di-
versity of samples selected by different methods. We use principal component
analysis to reduce the dimensionality of embedded samples to a two-dimensional
space. Uniform chooses samples equally-likely from the unlabeled pool. Samples
selected by entropy are clustered in certain regions. On the other hand, consis-
tency selects data samples as diverse as those selected by k-center. The average
distances between top 1% samples selected by different methods are shown in
Fig. 5 (top-left). We can see that entropy chooses samples relatively close to
each other, while consistency yield samples that are separated with much larger
distance which are comparable to samples selected by uniform and k-center.

Class distribution complies with classification error. Fig. 5 (bottom-left)
shows the per-class classification error and the class distribution of samples se-
lected by different metrics. Samples selected by entropy and consistency are
correlated with per class classification error, unlike the samples selected by uni-
form and k-center.
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Fig. 6. Illustration of cold-start problems for uncertainty-based AL. When the learned
decision boundary is far away from the expected boundary (the boundary when all
labels are available for the entire training set), e.g. the second and third columns, the
selected samples by uncertainty-based AL is biased, leading to sub-optimal performance

5 When can we start learning-based AL selection?

Based on the studies above, our proposed semi-supervised AL framework demon-
strates clear advantages. While towards minimizing the labeling cost, a challeng-
ing issue, cold start failure, may occur when only a extreme small labeled set
is available, which leads to sub-optimal AL performance. The proper study of
this problem is essential for scenarios especially when labels are very expensive
or challenging to collect.

5.1 Cold-start failure

When the size of the initial labeled dataset is too small, the learned decision
boundaries could be far away from the real boundaries and AL selection based
on the model outputs could be biased. To illustrate the problem, Fig. 6 shows
the toy two-moons dataset using a simple support vector machine model with
an RBF kernel, trained in supervised setting to learn the decision boundary [35].
As can be seen, the naive uniform sampling approach achieves better predictive
accuracy by exploring the whole space. On the other hand, the samples selected
by max entropy concentrate around the poorly-learned boundary.

Next, we study the cold start phenomenon for our proposed semi-supervised
AL method. We focus on CIFAR-10 with small labeled initial sets, shown in
Fig. 7. Using uniform sampling to select different starting sizes, AL methods
achieve different accuracies. For example, the model starting with K0 = 50 data
points clearly under-performs the model starting with K0 = 100 samples, when
both models reach 150 labeled samples. It may be due to the cold start problem
encountered when K0 = 50. On the other hand, given a limited labeling budget,
naively choosing a large start size is also not practically desirable, because it
may lead to under-utilization of learning-based selection. For example, starting
with K0 = 100 labeled samples has better performance than starting from 150
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Fig. 7. Comparison of different sampling methods trained with SSL framework on
CIFAR-10 when AL starts from different number of labeled samples

Fig. 8. Empirical risk (i.e. the target loss) on the entire training data (in blue) and
cross-entropy between p(Ŷ ) and p(Y ) show strong correlations in both semi-supervised
and supervised settings

or 200, since we have more AL cycles in the former case given the same la-
bel budget. The semi-supervised nature of our learning proposal encourages the
practice of initiating learning-based sample selection from a much smaller start
size. However, the initial model can still have poorly-learned boundary when
started with extremely small labeled data. If there is a sufficiently large valida-
tion dataset, this problem can be relieved by tracking validation performance.
However, in practice, such a validation set typically doesn’t exist. These moti-
vate us to conduct an exploration to systematically infer a proper starting size.

5.2 An exploratory analysis in start size selection

Recall from the last step of Algorithm 1, if T is set such that UT = ∅, i.e., if
the entire dataset is labeled, then the final model MT is trained to minimize the
purely supervised loss Ll on the total labeled dataset LT . Consider the cross-
entropy loss for any classifier p(Ŷ |X), which we call the AL target loss:

Ll

[
LT , p(Ŷ |X)

]
= − 1

|LT |
∑

(x,y)∈LT

log p(Ŷ = y|X = x). (3)

Note that the goal of an AL method can be viewed as minimizing the AL tar-
get loss of the entire training set LT [55] with the small subset of labeled data
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available. In any intermediate AL step, we expect our model can minimize the
target loss. If the model do a poor job in approximating and minimizing Eq. 3
(cold start problem occurs), the quality of the samples selected in the subse-
quent AL cycles could be consequently poor. Therefore, it is crucial to assess the
performance of the currently-learned model in minimizing the criterion in Eq. 3.
However, since the labeled data set Lt at cycle t is a strict subset of the entire
training set LT , it is impossible to simply plug the most recently-learned model
Ŷ in Eq. 3 for direct calculation.

To this end, we approximate the target loss based on the following proposition
(see proof in the supplementary material), which gives upper and lower bounds
on the expected loss:

Proposition 1. For any given distribution of Y , and any learned model Ŷ , we
have

H
[
p(Y ), p(Ŷ )

]
−H[p(X)] ≤ RH

[
p(Ŷ |X)

]
= EX

{
H

[
p(Y |X), p(Ŷ |X)

]}
≤ H

[
p(Y ), p(Ŷ )

]
−H[p(X)]− log Ẑ, (4)

where H[p, q] is the cross-entropy between two distributions p and q, H[p(X)] is
the entropy of the random variable X, and Ẑ = minx,y p(X = x|Ŷ = y) .

Proposition 1 indicates that the AL target loss, i.e., RH

[
p(Ŷ |X)

]
, can be

both upper and lower bounded. In particular, both bounds involve the quantity
H[p(Y ), p(Ŷ )], which suggests that H[p(Y ), p(Ŷ )] could potentially be tracked
to analyze RH [p(Ŷ |X)] when different numbers of samples are labeled. Unlike
the unavailable target loss on the entire training set, H[p(Y ), p(Ŷ )] does not
need all data to be labeled. In fact, to compute H[p(Y ), p(Ŷ )], we just need to
specify a distribution for Y , which could be assumed from prior knowledge or
estimated using all of the labels in the starting cycle.

As shown in Fig. 8, we observe a strong correlation between the target loss
and H[p(Y ), p(Ŷ )], where Y is assumed to be uniformly distributed. In practice,
a practitioner can trace the difference of H[p(Y ), p(Ŷ )] between two consecu-
tive points and empirically stop expanding the start set when the difference is
within a pre-defined threshold. Particularly, in SSL setting, 100 or 150 labeled
samples may be used as start set on CIFAR-10, as the value of H[p(Y ), p(Ŷ )]
essentially ceases decreasing, which coincides with the oracle stopping points if
we were given access to the target loss. In contrast, a start size of 50 may not be
favorable since the difference of H[p(Y ), p(Ŷ )] between the points of 50 and 20
are relatively large. A similar pattern in the supervised learning setting is also
shown in Fig. 8.

6 Weaknesses of our method

We explore how well our AL selection method would perform with supervised
learning using only labeled samples. Following [53], we start with 1000 labeled
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Table 3. Comparison of different sampling methods in the supervised setting on
CIFAR-10. All methods start from 1000 labeled samples. The reported results are
over 5 trials

Methods
# of labeled samples in total

1000 1500 2000 2500 3000

Uniform

72.93

75.38±0.17 77.46±0.3 78.79±0.38 80.81±0.28
Entropy 76.31±0.18 79.50±0.29 81.30±0.31 82.67±0.55
k-center 74.25±0.29 77.56±0.30 79.50±0.20 81.70±0.32
Ours 76.63±0.17 79.39±0.31 80.99±0.39 82.75±0.26

samples on CIFAR-10. As shown in Table 3, after 4 AL cycles (B = 500, totaling
3000 labels), uniform, k-center, entropy and our method (consistency) achieve
accuracy of 80.81%, 81.70%, 82.67% and 82.75%, respectively. It shows that
consistency sampling performs comparable with the baseline metrics without
significant improvement. This discourages the direct application of our selection
metric in the supervised setting. Mixmatch is mainly used as the target model
in this work and we experiment with two more SSL methods (see results in the
supplementary material). However, comprehensive analyses with extensive SSL
methods are desirable to further understand the advantages/disadvantages of
our approach. As an exploratory analysis, we propose a measure that is shown
to be strongly correlated with the AL target loss, but exact determination of the
optimal start size is yet to be addressed.

7 Conclusion

We present a consistency-based semi-supervised AL framework and a simple
pool-based AL selection metric to select data for labeling by leveraging unsuper-
vised information of unlabeled data during training. Our experiments demon-
strate that our semi-supervised AL method outperforms the state-of-the art AL
methods and also alternative SSL and AL combinations. Through quantitative
and qualitative analyses, we show that our proposed metric implicitly balances
uncertainty and diversity when making selection. In addition, we study and ad-
dress the practically-valuable and fundamentally-challenging question – “When
can we start learning-based AL selection?”. We present a measure to assist de-
termining proper start size. Our experimental analysis demonstrates that the
proposed measure correlates well with the AL target loss (i.e. the ultimate su-
pervised loss on all labeled data), thus is potentially useful to evaluate target
models without extra labeling effort. Overall, semi-supervised AL opens new
horizons for training with very limited labeling budget, and we highly encour-
age future research along this direction to further analyze SSL and cold-start
impacts on AL.
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