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Abstract. Low-resolution text images are often seen in natural scenes
such as documents captured by mobile phones. Recognizing low-resolution
text images is challenging because they lose detailed content information,
leading to poor recognition accuracy. An intuitive solution is to introduce
super-resolution (SR) techniques as pre-processing. However, previous
single image super-resolution (SISR) methods are trained on synthetic
low-resolution images (e.g. Bicubic down-sampling), which is simple and
not suitable for real low-resolution text recognition. To this end, we pro-
pose a real scene text SR dataset, termed TextZoom. It contains paired
real low-resolution and high-resolution images which are captured by
cameras with different focal length in the wild. It is more authentic and
challenging than synthetic data, as shown in Fig. [I| We argue improv-
ing the recognition accuracy is the ultimate goal for Scene Text SR. In
this purpose, a new Text Super-Resolution Network, termed TSRN, with
three novel modules is developed. (1) A sequential residual block is pro-
posed to extract the sequential information of the text images. (2) A
boundary-aware loss is designed to sharpen the character boundaries.
(3) A central alignment module is proposed to relieve the misalignment
problem in TextZoom. Extensive experiments on TextZoom demonstrate
that our TSRN largely improves the recognition accuracy by over 13%
of CRNN, and by nearly 9.0% of ASTER and MORAN compared to
synthetic SR data. Furthermore, our TSRN clearly outperforms 7 state-
of-the-art SR methods in boosting the recognition accuracy of LR images
in TextZoom. For example, it outperforms LapSRN by over 5% and 8%
on the recognition accuracy of ASTER and CRNN. Our results suggest
that low-resolution text recognition in the wild is far from being solved,
thus more research effort is needed. The codes and models will be released
at: jgithub.com/JasonBoyl/TextZoom
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Fig. 1. Comparison between synthetic LR, real LR, and HR images in TextZoom. ‘Syn
LR’ denotes BICUBIC down-sampled image of HR. ‘Real LR’ and ‘HR’ denotes LR
and HR images captured by camera with different focal lengths. From the images we
can find that the real LR images are much more challenging than the synthetic LR
images.

Table 1. Statistics of TextZoom. The testing set is divided into 3 different subsets:
easy, medium and hard. The recognition accuracy is tested by ASTER [37]. We see the
recognition accuracy of LR images decreases when the difficulty increases. Our main
purpose is to increase the recognition accuracy of the LR images by super-resolution.

TextZoom train test
easy medium hard
Image number 17367 1619 1411 1343

Accuracy(LR) 35.7% 62.4% 42.7% 31.6%
Accuracy(HR) 81.2% 94.2% 87.7% 76.2%
Gap 455% | 31.8%  45.0%  44.6%

1 Introduction

Scene text recognition is a fundamental and important task in computer vision,
since it is usually a key step towards many downstream text-related applica-
tions, including document retrieval, card recognition, license plate recognition,

c [3513414313]. Scene Text recognition has achieved remarkable success due to
the development of Convolutional Neural Network (CNN).

Many accurate and efficient methods have been proposed for most con-
strained scenarios (e.g., text in scanned copies or network images). Recent works
focus on texts in natural scenes [25126J6l2837444T42), which is much more
challenging due to the high diversity of texts in blur, orientation, shape, and
low-resolution. A thorough survey of recent advantages of text recognition can
be found in [27] . Modern text recognizers have achieved impressive results on
clear text images. However, their performances drop sharply when recogniz-
ing low-resolution text images [I]. The main difficulty to recognize LR text is
that the optical degradation blurred the shape of the characters. Therefore, it
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Fig. 2. Average recognition accuracy of the super-resolved images of LR images in
TextZoom. We rst super-resolve LR images with di erent SR methods, then directly
test the SR results with the o cial released model of ASRER [3[7]] MORAN [28] and
CRNN [B6]. We compare our TSRN with 7 state-of-the-art deep learning networks and
show ours outperforms them clearly. Dotted lines means accuracy of LR inputs.

would be promising if we introduce SR methods as a pre-processing
procedure before recognition. To our surprise, none of the real dataset and
corresponding methods focus on scene text SR.

In this paper, we propose a paired scene text SR dataset, termed TextZoom,
which is the rst dataset focus on real text SR . Previous Super-Resolution
methods [7,20,23,24,22,47,21] generate LR counterparts of the high-resolution
(HR) images by simply applying uniform degradation like bicubic interpolation
or blur kernels. Unfortunately, real blur scene text images are more varied in
degradation formation. Scene texts are of arbitrary shapes, distributed illumina-
tion, and di erent backgrounds. Super-resolution on scene text images is much
more challenging. Therefore, the proposed TextZoom, which contains paired LR
and HR text images of the same text content, is very necessary. The TextZoom
dataset is cropped from the newly proposed SISR datasets [4,46]. Our dataset
has three main advantages(1) This dataset is well annotated. We provide the di-
rection, the text content and the original focal length of the text images. (2) The
dataset contains abundant text from di erent natural scenes, including street
views, libraries, shops, vehicle interiors and so on(3) The dataset is carefully
divided into three subsets by di culty. Experiments on TextZoom demonstrate
that our TSRN largely improves the recognition accuracy of CRNN by over 13%
compared to synthetic SR data. The annotation and allocation strategy will
be brie y introduced in section 3 and demonstrated in detail in supplementary
materials.

Moreover, to reconstruct low-resolution text images, we propose a text-oriented
end-to-end method. Traditional SISR methods only focus on reconstruct the de-
tail of texture and only satisfy human's visual perception. However, scene text
SR is quite a special task since it contains high-level text content. The fore-and-
aft characters have information relations with each other. Obviously, a single
blur character will not disable human to recognize the whole word if other char-
acters are clear. To solve this task, rstly, we present a Sequential Residual Block
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to model recurrent information in text lines, which enabling us to build a cor-
relation in the fore-and-aft characters. Secondly, we propose a boundary-aware
loss termed gradient pro le loss to reconstructing the sharp boundary of the
characters. This loss helps us to distinguish between the characters and back-
grounds better and generate a more explicit shape. Thirdly, the misalignment of
the paired images is inevitable due to the inaccuracy of the cameras. We propose
a central alignment module to make the corresponding pixels more aligned. We
evaluate the recognition accuracy by two steps:(l) Do super-resolution with
di erent methods on LR text images; (2) Evaluate the SR text images with
trained Text Recognizerse.g. ASTER, MOCAN and CRNN. Extensive exper-
iments show our TSRN clearly outperforms 7 state-of-the-art SR methods in
boosting the recognition accuracy of LR images in TextZoom. For example, it
outperforms LapSRN by over 5% and 8% on recognition accuracy of ASTER
and CRNN. Our results suggest that low-resolution text recognition in the wild
is far from being solved, thus more research e ort is needed.

The contributions of this work are therefore three-fold:

1. We introduce the rst real paired scene text SR dataset TextZoom with dif-
ferent focal lengths. We annotate and allocate the dataset with three subsets:
easy, medium and hard, respectively.

2. We prove the superiority of the proposed dataset TextZoom by comparing
and analyzing the models trained on synthetic LR and proposed LR images.
We also prove the necessity of scene text SR from di erent aspects.

3. We propose a new text super-resolution network with three novel modules. It
surpasses 7 representative SR methods clearly by training and testing them
on TextZoom for fair comparisons.

2 Related work

Super-Resolution.  Super-resolution aims to output a plausible high-resolution
image that is consistent with a given low-resolution image. Traditional ap-
proaches, such as bilinear, bicubic or designed ltering, leverage the insight that
neighboring pixels usually exhibit similar colors and generate the output by in-
terpolating between the colors of neighboring pixels according to a prede ned
formula. In the deep learning era, super-resolution is treated as a regression
problem, where the input is the low-resolution image, and the target output is
the high-resolution image [7,20,23,22,24,47,21]. A deep neural net is trained on
the input and target output pairs to minimize some distance metric between
the prediction and the ground truth. These works are mainly trained and evalu-
ated on those popular datasets [2,45,30,14,31,40]. In these datasets, LR images
are generated by a down-sample interpolation or Gaussian blur lter. Recently,
several works capture LR-HR images pairs by adjusting the focal length of the
cameras [4,46,5]. In [4,5], a pre-processing method is applied to reduce the mis-
alignment between the captured LR and HR images While in [46], a contextual
bilateral loss is proposed to leverage the misalignment. In this work, a new
dataset TextZoom is proposed, which llIs in the absence of paired scene text SR
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dataset. It is well annotated and allocated with di culty. We hope it can serve
as a challenging benchmark.

Text Recognition.  Early work adopts a bottom-up fashion [18] which de-
tects individual characters rstly and integrates them into a word, or a top-
down manner [16], which treats the word image patch as a whole and recog-
nizes it as a multi-class image classi cation problem. Considering that scene
text generally appears as a character sequence, CRNN [36] regard it as a se-
quence recognition problem and employs Recurrent Neural Network (RNNSs) to
model the sequential features. CTC [10] loss is often combined with the RNN
outputs for calculating the conditional probability between the predicted se-
quences and the target [25,26]. Recently, an increasing number of recognition
approaches based on the attention mechanism have achieved signi cant improve-
ments [6,28]. ASTER [37] recti ed oriented or curved text based on Spatial
Transformer Network(STN) [17] and then performed recognition using an at-
tentional sequence-to-sequence model. In this work, we choose state-of-the-art
recognizer ASTER [37], MORAN [28] and CRNN [36] as baseline recognizers to
evaluate the recognition accuracy of the SR images.

Scene Text Image Super-Resolution. Some previous works conducted
on scene text image super-resolution are aimed at improving the recognition ac-
curacy and image quality evaluation metrics. [29] compared the performance of
several arti cial Iters on down-sampled textimages. [32] propose a convolution-
transposed convolution architecture to deal with binary document SR. [8] adapt
SRCNN [7] in text image SR in the ICDAR 2015 competition TextSR [33] and
achieved a good performance, but no text-oriented method was proposed.

These works take a step on low-resolution text recognition, but they only
train on down-sampled images, learning to regress a simple mapping function of
inverse-bicubic (or bilinear) interpolation. Since all the LR images are identically
generated by a simple down-sample formulation, it is not well-generalized to real
text images.

3 TextZoom Dataset

Data Collection & Annotation. Our proposed dataset TextZoom comes from
two state-of-the-art SISR datasets: RealSR [4] and SRRAW [46]. These two
newly proposed datasets consist of paired LR-HR images captured by digital
cameras.

RealSR [4] is captured by four focal lengths with two digital cameras: Canon
5D3 and Nikon D810. In RealSR [4], these four focal lengths of images are allo-
cated as ground truth, 2X LR images, 3X LR images, 4X LR images separately.
For RealSR, we annotate the bounding box of the words on the 105mm focal
length images. SR-RAW is collected by seven di erent focal lengths with SONY
FE camera, range from 24-240mm. The images captured in shorted focal lengths
could be used as LR images while those captured in longer lengths as correspond-
ing ground truth. For SR-RAW, we annotate the bounding box of the words on
the 240mm focal length images.
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We labeled the images with the largest focal length of each group and cropped
the text boxes from the rest following the same rectangle. So the misalignment
is unavoidable. There are some top-down or vertical text boxes in the annotated
results. In this task, we rotate all of these images to horizontal for better recog-
nition. There are only a few curved text images in our dataset. For each pair of
LR-HR images, we provide the annotation of the case sensitive character string
(including punctuation), the type of the bounding box, and the original focal
lengths. We demonstrate the detailed annotation principle of the text images
cropped from SR-RAW and RealSR in detail in supplementary materials.

The size of the cropped text boxes is diversee.g. height from 7 to 1700
pixels, so it is not suitable to treat the text images cropped from the same focal
lengths as a same domain. We de ne our principle following these considerations.
(1)No patching. In SISR, data are usually generated by cropping patches from
the original images [23,22,9,4,46]. Text images could not be cut into patches
since the shape of the characters should maintain completed2) Accuracy
distribution.  We divide the text images by height and test the accuracy (Refer
to the Tables showed in supplementary materials). We found that the accuracy
does not increase obviously when the height is larger than 32 pixels. Setting
images to 32 pixels height is also a customary rule in scene text recognition
research [36,6,28]. The accuracy of the images smaller than 8 pixels are too low,
which hardly has any value for super-resolution, so we discard the images the
height of which is less than 8 pixels(3) Number. We found that in the cropped
text images, the height range from 8 to 32 claim the majority. (4) No down-
sample. Since the interpolation degradation should not be introduced into real
blur images, we could only up-sample the LR images to a relatively bigger size.

Following these 4 considerations, we up-sample the images ranging from 16-
32 pixels height to 32 pixels height, and up-sample the images ranging from 8-16
pixels height to 16 pixels height. We conclude that (16, 32) should be a good
pair to form a 2X train set for scene text SR task. For example, the text images
taken from 150mm focal length and height sized in 16-32 pixels would be taken
as a ground truth for the 70mm counterpart. So we selected all the images the
height of which range from 16 pixels to 32 pixels as our ground truth image and
up-sample them to the size of 128 32 (width height), and the corresponding 2X
LR images to the size of 64 16 (width height). For this task, we only generate
this 2X LR-HR pair dataset from the annotated text images mainly due to the
special characteristics of text recognition. Other scale of factors of our annotated
images could be used for di erent purpose.

Allocation of TextZoom. The SR-RAW and RealSR are collected by dif-
ferent cameras with di erent focal lengths. The distance from the objects also
a ect the legibility of the images. So the dataset should be further divided fol-
lowing their distribution.

The train-set and test-set are cropped from the original train-set and test-set
in SR-RAW and RealSR separately. The author of SR-RAW used larger distance
from the camera to the subjects to minimize the perspective shift [46]. So the
accuracy of text images from SR-RAW is relatively lower under the similar focal
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lengths compared to RealSR. The accuracy of the images cropped from 100mm
focal lengths in SR-RAW is 52.1% tested by ASTER [37], while the accuracy of
those from 105mm in RealSR is 75.0% tested by ASTER [37] (Refer to the Tables
showed in supplementary materials). With the same height, the images of smaller
focal lengths are more blurred. With this in mind, we allocate our dataset into
three subsets by di culty. The LR images cropped from RealSR render easy.
The LR images from SR-RAW and the focal lengths of which larger than 50mm
are viewed asmedium . The rest are ashard .

In this task, our main purpose is to increase therecognition accuracy  of
the easy, medium and hard subsets. We also show the results of peak signal to
noise ratio (PSNR) and structural similarity index (SSIM) in the supplementary
materials.

Dataset Statistics The detailed statistics of TextZoom is shown in supple-
mentary materials.

4 Method

In this section, we present our proposed method TSRN in detail. Firstly, we
brie y describe our pipeline in section 4.1. Then we demonstrate the proposed
Sequential Residual Block. Thirdly, we introduce our central alignment module.
Finally, we introduce a new gradient pro le loss to sharpen the text boundaries.

4.1 Pipeline

Fig. 3. The illustration of our proposed TSRN. We concatenate binary mask with
RGB channels as a RGBM 4-channel input. The input is reciti ed by central alignment
module and then fed into our pipeline. The output is the super-resolved RGB image.
The outputs are supervised by L, loss. The RGB channels of the outputs are supervised
by Lep loss.

Our baseline is SRResNet [23]. As shown in Fig. 3, we mainly make two
modi cations to the structure of SRResNet: 1) add a central alignment module
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in front of the network; 2) replace the original basic blocks with the proposed
Sequential Residual Blocks (SRBs). In this work, we concatenate the binary
mask with RGB image as our input. The binary masks are simply generated
by calculating the mean gray scale of the image. The detailed information of
masks is shown in supplementary materials. During training, rstly, the input is
recti ed by central alignment module. Then we use CNN layers to extract shallow
features from the recti ed image. Stacking ve SRBs, we extract deeper and
sequential dependent feature and do shortcut connection following ResNet [12].
The SR images are nally generated by up-sampling block and CNN. We also
design a gradient prior loss L cp ) aiming at enhancing the shape boundary of
the characters. The output of the network is supervised by MSELoss I(,) and
our proposed gradient pro le loss Lgp ).

4.2 Sequential Residual Block

Previous state-of-the-art SR methods mainly pursue better performance in PSNR
and SSIM. Traditional SISR only cares about texture reconstruction while text
images have strong sequential characteristics. In text recognition tasks, scene
text images encode the context information for text recognition by Recurrent
Neural Network (RNN) [13]. Inspired from them, we modi ed the residual blocks [23]
by adding Bi-directional LSTM (BLSTM) mechanism. Inspired by [39], we build
sequence connectionist in horizontal lines and fused the feature into deeper chan-
nels. Di erent from [39], we build the in-network recurrence architecture not for
detecting but for low-level reconstruction, so we only adapt the idea of building
text line sequence dependence. In Fig. 3, the SRB is brie y illustrated. Firstly,
we extract feature by CNN. Then permute and resize the feature map as the
horizontal text line can be encoded into sequence. Then the BLSTM can propa-
gate error di erentials [36], and invert the feature maps into feature sequences,
and feed them back to the convolutional layers. To make the sequence depen-
dent robust for tilted text images, we introduce the BLSTM from two directions,
horizontal and vertical. BLSTM takes the horizontal and vertical convolutional
feature as sequential inputs, and updates its internal state recurrently in the
hidden layer.

Hi, = 1(X¢,;Hey 1)) =152 W )
Hi, = 1(X¢,Hy, 1); t2=1;2,05H

HereH; denotes the hidden layers X denotes the input features,t;; t, separately
denote the recurrent connection from horizontal and vertical direction.

4.3 Central Alignment Module

The misalignment make the pixel-to-pixel losses, such a&; and L, generate
signi cant artifacts and double shadows. This mainly due to the misalignment of
the pixels in training data. Sine some of the text pixels in LR images are in spatial
corresponding to the background pixels in the HR images, the network could
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learn a wrong pixel-wise counterpart information. As mentioned in Section. 3,
the text regions in HR images are more central aligned compared to the LR
images. So we introduce STN[17] as our central alignment module. The STN is
a spatial transform network which can rectify the images and be learned end-
to-end. To rectify spatial variation exibly, we adopt TPS transformation as
the transform manipulation. Once the text regions in LR images are aligned
adjacent the center, the pixel-wise losses would make better performance and
the artifacts could be relieved. We show more detailed information of central
alignment module in supplementary materials.

4.4 Gradient Prole Loss

Gradient Pro le Prior (GPP) is proposed in [38] to generate sharper edge in
SISR task. Gradient eld means the spatial gradient of the RGB values of the
pixels.

Since we have a paired text super-resolution dataset, we could use the gradi-
ent eld of HR images as ground truth. Generally, the color of characters in text
images contrast strongly with the backgrounds.So sharpening the boundaries
rather than smooth ones of characters could make the characters more explict.

Fig. 4. The illustration of gradient eld and Gradient Prior Loss.

We revisit the GPP and generate ground truth from HR images, then we
de ne the loss function as below:

Lep = BExiir Tnr(¥) 1 Tsr(X)jjz (X 2 [Xo; X1]) )

r Ih (X) denotes the gradient eld of HR images, andr | (x) denotes that of
SR images.

Our proposedLgp exhibits two advantageous properties: (1) The gradient
eld vividly show the characteristics of text images: the texts and backgrounds.
(2) The LR images always come with wider curve of gradient eld, while HR
images mean thinner curve. And the curve of gradient eld could be easily gener-
ated through mathematical calculation. This ensures a con dential supervision
label.
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5 Experiments

5.1 Datasets

We train the SR methods on our proposed TextZoom (see section 3.) training
set. We evaluate our models on our three subsetsasy, medium and hard . To
avoid down-sample degradation, all the LR images are up-sampled to 6416,
and HR images to 128 32.

5.2 Implementation Details

During training, we set the trade-o weight of L, lossas1and.cp asle 4. We
use the Adam optimizer with momentum term 0.9. When evaluating recognition
accuracy, we use the ocial Pytorch version code and the released model of
ASTER: aster.pytorch , MORAN: MORAM.pytorch , CRNN: crnn.pytorch
from github.

All the SR models are trained by 500 epochs with 4 NVIDIA GTX 1080ti
GPUs. The batch-size is adapted as the setting in the original papers.

5.3 Is SR necessary for Text Recognition?

We further quantitatively analyzed the necessity of super-resolution from three
aspects.

It is assumed that we could achieve better performance on recognizing low-
resolution (LR) text images if we directly train the recognition networks on small
size images, and then the super-resolution procedure could be removed. This
query is reasonable because the deep neural networks have a strong robustness
on the training domains. To refute this query and prove the necessity of super-
resolution for text images, we compare the recognition accuracy of 4 methods:

{ Released. Recognize with ASTER [37] model trained on customary size (no
less than 32 pixels in height, We use o cial released model here).

{ Relm. Recognize with model trained on low-resolution images (In this work,
we re-implemented ASTER [37] on Syn90K [15] and SynthText [11] at the
size of 64 16, All the training details are the same as the original paper
except the input sizes

{ Fine-tune. Fine-tune released ASTER [37] model on our TextZoom training
set.

{ Ours. Choose the low resolution images by size, then use our proposed
TSRN to generate the SR images and then recognize them with ASTER [37]
o cial released model. ).

To verify the robustness, we select all the images smaller than 6416 from 7
common scene text testing sets, IC13, IC15, CUTE, IC03, SVT, SVTP, CUTE
and IlIT5K and get 436 images in total. We term this testing set CommonLR
We compare these 4 methods on our dataset TextZoom and CommonLR. From
Table 2, we can gure that the re-implemented model do increase the accuracy
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Table 2. Comparison between di erent methods. Released means o cial released
model from github. Relm means our re-implemented model trained on Syn90K [15]
and SynthText [11] at the size of 64 16.

Method Recognition Accuracy
TextZoom CommonLR
Released 47.2% 75.3%
Relm 52.6% 79.3%
Fine-tune 59.3% 73.2%
Ours 58.3% 80.3%

sharply on the LR images. The average accuracy of TextZoom can be increased
by 5.4%, from 47.2% to 52.6%. And the accuracy of CommonLR could also be
improved for 5%. The result of re-implemented model is still lower than the
accuracy of our results (TSRN(ours) + ASTER(Released)).

When we ne-tune the Aster on our TextZoom training set, the accuracy of
TextZoom testing set would be even higher than our method. But TextZoom is
a small sized dataset for recognition task, its di erent distribution would make
the recognizer over-t on it. The accuracy of CommonLR of ne-tune method
is the lowest. Moreover, on this ne-tune Aster model the other testing sets like
IC13, IC15, etc. would drop sharply for more than 10.0% points.

Actually, our method is superior to ne-tune and re-Im methods in following
aspects. (1). The ne-tuned model over-t on TextZoom. It achieves highest
performance on TextZoom while lowest on CommomLR because the number of
TextZoom is far from enough for text recognition task. Super-resolution ,a low-
level task, usually needs less data to converge. Our method could directly choose
SR or not by the size and get better overall performance.

(2).0ur SR method can also produce better visual results for people to read
(see Fig. 5). (3).While re-Im and ne-tune method need 2 recognition models
for big and small size images separately, our method only need a tiny SR model,
introducing marginal computation cost. This part could be found in supplemen-
tary materials.

So the SR methods could be a e ective and convenient pre-processing pro-
cedure of scene text recognition.

5.4 Synthetic LR vs. TextZoom LR

To demonstrate the superiority of paired scene text SR images, we compare
the performance of the models trained on synthetic datasets and our TextZoom
dataset. The quantitative results are shown in the supplementary materials.
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Table 3. Ablation study for di erent settings of our method TSRN. The recognition
accuracies are tested by the o cial released model of ASTER [37].

Con guration Accuracy of ASTER [37]
Method Loss function easy | medium hard average
0 SRResNet L2+ Ly +Lp 69.6% | 47.6% | 34.3% 51.3%
1 5 SRBs L2 74.5% 53.3% 37.3% 56.2%
2 5 SRBs + align L2 74.8% 55.7% | 39.6% 57.8%
3 5 SRBs + align (Ours) Lo+ Lep 75.1% 56.3% | 40.1% 58.3%

5.5 Ablation Study on TSRN

In order to study the e ect of each component in TSRN, we gradually modify
the con guration of our network and compare their di erences to build a best
network. For brevity, we only compare the accuracy of ASTER [37].

Fig. 5. Visual comparisons for showing the e ects of each component in our proposed
TSRN. The recognition result strings of ASTER are displayed under each image. Those
characters in red denote wrong recognition.

1) SRBs. We add BLSTM mechanism to the basic residual block in SR-
ResNet [23] and get the proposed SRB. The SRB is the essential component in
TSRN. Comparing # 0 and # 1 in Table 3, stacking 5 SRBs, we can boost up
the average accuracy by 4.9% compared to SRResNet [23].

2) Central Alignment Module. Central alignment module can boost the
average accuracy by 1.5%, as shown in Table 3 method 2. From Fig. 5, we
can nd that without central alignment module, the artifacts are strong, and
the characters are twisted. While with more appropriate alignment, we could
generate higher quality images since the pixel-wise loss function could supervise
the training better.

3) Gradient Prole Loss. From Table 3 method 3, we can nd the pro-
posed gradient pro le loss can boost the average accuracy by 0.5%. Although
the increase is slight, the visual results are better (Fig. 5 method 3).

In supplementary materials, we further discuss about the detailed component
of our method.
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