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Abstract. Large-scale few-shot learning aims at identifying hundreds
of novel object categories where each category has only a few samples.
It is a challenging problem since (1) the identifying process is suscepti-
ble to over-fitting with limited samples of an object, and (2) the sample
imbalance between a base (known knowledge) category and a novel cat-
egory is easy to bias the recognition results. To solve these problems, we
propose a method based on multi-modal knowledge discovery. First, we
use the visual knowledge to help the feature extractors focus on different
visual parts. Second, we design a classifier to learn the distribution over
all categories. In the second stage, we develop three schemes to minimize
the prediction error and balance the training procedure: (1) Hard labels
are used to provide precise supervision. (2) Semantic textual knowledge
is utilized as weak supervision to find the potential relations between
the novel and the base categories. (3) An imbalance control is presented
from the data distribution to alleviate the recognition bias towards the
base categories. We apply our method on three benchmark datasets, and
it achieves state-of-the-art performances in all the experiments.

Keywords: Large-scale few-shot learning, Multi-modal knowledge dis-
covery

1 Introduction

In the past few years, convolutional neural networks (CNNs) have shown a pow-
erful ability on a number of visual tasks, such as classification [13, 8], transla-
tion [34, 31, 6], detection [23, 22], reconstruction [17], and segmentation [37, 37].
Although CNNs have strong robustness to object and background variations,
they can hardly show a good performance without large amounts of training
data. Meanwhile, it is time-consuming and expensive to collect and label these
data. On the contrary, a human can recognize and remember a new object from
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Fig. 1. (a) Given an image, we define its three visual parts, where the foreground fo-
cuses on the object, the background describes the environment related to the object,
and the original image includes both the foreground and the background. (b) Given
a novel label “Tabby Cat”, we show the similarities between it and other labels from
the base in the textual space. The similarity scores (in orange) are calculated by the
word2vec method. This textual knowledge can be effectively used to help the recog-
nition of novel objects as soft supervision information. For example, these scores are
the largest among those between “Tabby Cat” and all the labels in the base. Based
on them, these objects listed in (b) are considered as most similar to tabby cat, and
their similarities with tabby cat can be exploited to help the recognition of a tabby cat
image.

only a few samples (or even one) of it. Therefore, few-shot learning (FSL) is
proposed to imitate this human ability. The FSL task can be divided into two
categories, traditional FSL [30, 25, 21, 20] and large-scale FSL (LS-FSL) [32, 7,
15, 5]. Different from the traditional FSL which recognizes small N (N 6 20)
classes of novel objects, LS-FSL is a more realistic task that aims to identify
hundreds of novel categories without forgetting those categories (called base
categories) that have been recognized.

For the task of FSL or LS-FSL, we believe that the key problems are (1)
how to extract more information from the available images, and (2) how to
effectively use the base objects to help the recognition of novel objects. For the
first problem, a popular strategy is using a CNN trained on the base categories
to extract the global features of novel objects directly [7, 32]. It aims to yield a
transferable feature representation (textures and structures) to describe a novel
category. However, it is insufficient to represent the novel samples since their
global features cannot well describe the distribution of their category with the
limited samples. Therefore, to discover more information from the images, we
define three visual parts (shown in Fig. 1(a)) computed by an unsupervised
saliency detection method. They are used as the network input for training and
inference. The effectiveness of this scheme will be elaborated in Section 3.1.

For the second problem, previous LS-FSL works [7, 32] train a classifier under
the supervision of given labels (called hard labels in this paper) to learn the
distribution over both the base and the novel categories. In our method, in
addition to the hard labels, we introduce semantic soft labels generated from
textual knowledge to help the network learn a more powerful classifier. More
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Fig. 2. The overview of the proposed framework, where LCE, LSemantic, and LIC are
three losses.

details can be found in Section 3.2. Here is an example shown in Fig. 1(b). The
novel object can be guessed similar to a cat since the similarity between its label
“Tabby Cat” and the label “Tiger Cat” in the base is relatively large (0.57).
Besides, the score (0.41) gives the information that the input would be more
similar to “Coonhound” than to other categories not shown in Fig. 1(b), such
as “Car”.

The overview of our framework is depicted in Fig. 2. First, we use the three
visual parts of a given image as the input to three independently trained CNNs
to extract the features from this image. Second, we calculate the similarities
between the hard label of this image and other known labels in the base from
the textual knowledge, and use these similarities to generate the semantic soft
labels. Third, we design a classifier and train it with both the hard label and the
soft labels. The main contributions of our method are fourfold.

(1) We introduce the strategy of extracting more visual information from
images, and analyze its advantage for FSL and LS-FSL.

(2) We extract textual knowledge to help the classifier learn from language,
which can also be used to improve existing LS-FSL methods.

(3) Two novel losses are designed for semantic knowledge discovery and sam-
ple imbalance control during training.

(4) Our method is simple yet powerful; it achieves state-of-the-art perfor-
mances on popular LS-FSL and FSL datasets.

2 Related Work

2.1 Traditional Few-Shot Learning (FSL)

The methods [30, 25, 21, 20] based on meta-learning are proposed to solve the
problem of FSL. They train a meta-learner from many FSL tasks (with base
categories) without relying on ad hoc knowledge to suit for new FSL tasks (with
novel categories). Metric-learning is another popular approach; it attempts to
train a network which can make samples of the same class closer and samples
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of different classes farther in the feature space [28, 30]. Sample hallucination
is also useful to generate more training data [38, 36]. All the above methods
consider small datasets like Omniglot [14], CIFAR [12], and Mini-ImageNet [30],
and focus on the N -way-K-shot recognition problem that identifies N (N 6 20)
novel classes and each class has K (K = 1 or 5 usually) samples.

2.2 Large-Scale Few-Shot Learning (LS-FSL)

Recent works [5, 32, 7, 4, 15] start to pay attention to the more practical LS-FSL
problem that learns hundreds of novel categories without forgetting the base cat-
egories. Specifically, [7] hallucinates new samples in the feature space by using
a separate Multilayer Perceptron (MLP) to model the relationships between the
foregrounds and the backgrounds of images. Wang et. al. train a meta-learner
with hallucination to expand the training set and to classify the samples simul-
taneously [32]. The work in [15] clusters hierarchical textual labels both from the
base and the novel categories to train a feature extractor, and uses the learned
features to search the novel labels by the nearest neighbor (NN) method. Gidaris
et. al. design a sample classification weight generator with attention mechanism
and modify the classifier with the cosine similarity [4]. Peng et. al. imprint the
weights of the FSL classifier from both visual and textual features [19]. The work
in [33] hallucinates novel samples by a generative adversarial network (GAN)
which transfers the textual features to the novel image features. The work in
[5] combines meta-learning with a graph neural network (GNN) to model the
relationships of different categories and predicts the parameters of novel classes.

Different from the sample hallucination methods [38, 36, 7, 32, 33], we do not
generate hallucinated training samples; instead, we aim to extract more infor-
mation from each image for training and inference. Compared with the most
related method [15] that uses the knowledge to train the feature extractor (with
NN as the classifier), we exploit the textual knowledge to train the classifier
(with a pre-trained feature extractor). Besides, we discover the knowledge from
data distribution and use it to balance the recognition processing.

3 The Proposed Approach

3.1 Visual Knowledge Discovery

For visual representation, [27] visualizes the responses on images from trained
CNNs via gradient-based localization. The results show that CNNs trained with
large-scale samples tend to use the object regions for the representation. In LS-
FSL, the base categories usually have large-scale training samples (e.g., about
1300 samples in one category). Therefore, a CNN trained on the base data is
more inclined to focus on the textures and structures of the objects it learns. As
shown in the column of “Original Response”1 in Fig. 3(a), given a base sample
in the “Partridge” category, the responsive regions on the original image focus

1 The response on the original image is called original response.
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Fig. 3. The responsive regions of three CNNs (ResNets-50) visualized by Grad-
CAM [27] from several samples in ImageNet-FS [7].

on the body of the bird since the CNN is trained with many partridge images.
Similar result can be found for the mousetrap image. However, this CNN may
deviate the responses from novel objects and overlook them. For example, it
concentrates on the fisherman but not the fishes in the image with label “Silver
Salmon” (Fig. 3(b)). Thus, it is important to make the responses more accurate
or to enlarge the response regions of novel samples. However, it is difficult to
make the responses focus on novel objects since there are no (or only a few)
novel samples in the training procedure of a CNN.

Inspired by the work in [9] that humans have a remarkable ability to interpret
a complex scene by selecting a subset (foreground) of the available sensory infor-
mation primarily and then enlarging the vision to the other part (background)
of the scene, we extract more visual knowledge from available samples to imitate
this human behavior to enrich the representation. First, we employ an off-the-
shelf unsupervised saliency detection network [37] to segment the salient region
(foreground) from the background of an image. Let the unsupervised saliency
detection network be Ψ and the original image be Io. Then the mask of the
saliency regions is denoted as Ψ(Io) (see Fig. 2 for example, where Ψ(Io) is of
the same size as Io with 1 for the foreground and 0 for the background). Thus,
the foreground If and the background Ib are calculated by

If = Ψ(Io)⊗ Io, Ib = (1− Ψ(Io))⊗ Io, (1)

where ⊗ denotes the Hadamard product.
Second, we train three independent CNNs, Ωo, Ωf , and Ωb, to learn the

representation of the three visual parts Io, If , and Ib, respectively, from all the
base samples under the supervision of their hard labels. The reason to use three
independent CNNs is because those parts have different distributions. To analyze
the effectiveness of the visual knowledge discovery, we visualize the responsive
regions of the foregrounds and backgrounds from the trained CNNs using the
visualization method Grad-CAM [27] in Fig. 3. For the base samples, it is easy to
see thatΩo andΩf focus on the regions of the bird and the mousetrap. Although
there is no object in the background Ib, the responses of Ωb still concentrate
on the edges of the bird and the mousetrap. In contrast, these CNNs perform
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differently on the novel samples. For the two novel samples in Fig. 3(b), if only
Ωo is used, then the responses are mainly on the fisherman and the man for
the “Silver Salmon” and “File Cabinet” images, respectively. Obviously, the
extracted feature representations are very likely to cause failure recognition.
When Ωf is used, we can see that the response of “Silver Salmon” is shifted
to the fishes, which is what we need. Why Ωb is required is because in many
cases, such as the “File Cabinet” image, the result of the unsupervised saliency
detection does not give the main object corresponding to the label; instead, the
object is considered as the background. Therefore, Ωb is necessary to extract
useful features in these cases, as shown in the lower-right sub-image of Fig. 3(b).

In our framework, the features extracted by Ωo, Ωf , and Ωb are denoted as

vo = Ωo(Io), vf = Ωf (If ), vb = Ωb(Ib), (2)

which are then concatenated together as v = [vo, vf , vb] to describe a sample and
for the training of the classifier.

3.2 Textual Knowledge Discovery

Humans can recognize a new category with a few samples of it because they
have seen many other related objects or learnt them from textual knowledge,
and thus are already familiar with their salient features. Inspired by this, to help
the recognition of a novel category, we find its similar categories from the base by
using textual knowledge. For example, in Fig. 1(b), the similarity scores between
the novel label “Tabby Cat” and the labels from the base in the textual space can
describe their similarities to a large extent. Compared with the hard labels of the
novel categories, these scores provide more diverse and informative supervision
for recognizing the novel samples. To effectively use this textual knowledge to
help our network learn a better classifier, we extract the semantic knowledge to
enrich the supervision information.

The classifier in our method has two purposes: (1) learning the novel cate-
gories without forgetting the base categories, and (2) using the base knowledge
to help learn the novel categories. To achieve these, we design a C-way clas-
sifier Γ to learn the prediction distribution from both the base and the novel
categories, where C is the total number of the base and the novel categories.

Given a feature v extracted by the trained CNNs, the prediction by the clas-
sifier is denoted as p = Γ (v), where p is a C-dimensional vector. We design our
semantic soft label supervision based on the textual knowledge. Given the labels
of a novel sample k and the base samples, we first express these labels as vectors
by the available word2vec method [15]. Second, we compute the similarities be-
tween the novel label and the base labels using the cosine similarity with their
vector representations. Then, we obtain a Cbase-dimensional vector `k, where
Cbase is the number of the base categories, and the components of `k are the
similarity scores. `k ∈ RCbase provides non-sparse supervision measurements to
describe the similarities between the novel and the base objects. We call `k the
semantic soft label for the novel sample k. Next, we design a semantic soft loss
based on `k.
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In this work, the classifier Γ is a simple network, e.g., as simple as one fully-
connected layer. Its prediction (for the novel sample k) pk ∈ RC is normalized
by the sigmoid function, generating a normalized prediction vector sk ∈ RC with
ski = sigmoid(pki ), where ski ∈ (0, 1) and pki , i = 1, . . . , C, are the components
of sk and pk, respectively. We then define the semantic soft loss for the novel
sample k as

Lk = − 1

|Cbase|
∑
j∈base

γ log skj , γ =

{
1, if `kj > α,

0, if `kj < α,
(3)

where `kj is the similarity score between the label of the novel sample k and

the jth base category label, and α is a threshold controlling the usage of the
textual knowledge. Minimizing Lk can be loosely considered as maximizing the
normalized log likelihood of skj ’s under `kj > α, implying that these normalized

predictions skj ’s should be large because they are more similar to the novel label.
During training, if there are N novel samples in a training batch, the semantic
soft loss for this batch is

LSemantic =

N∑
k=1

Lk. (4)

3.3 Imbalance Control from Data Distribution

In LS-FSL, [7] shows that a classifier trained under the supervision of hard
labels without other assistant strategies bias the recognition towards the base
categories. Specifically, the mean accuracy of the novel categories is much worse
than that of the base categories. This is because each base category can use
many samples to well describe its feature distribution, while a novel category has
only a few training samples. To alleviate the effect of the imbalanced samples
between the novel and the base categories, we first oversample the samples from
the novel categories in each training batch. Second, we regard the distribution of
the dataset as the prior knowledge and then design an imbalance control strategy
to bias the predictions towards novel samples.

Given a training batch with B base samples and N novel samples, the pre-
dictions of these samples from the classifier are denoted as {pb}Bb=1 and {pn}Nn=1,
where pb ∈ RC and pn ∈ RC are the predictions of the bth base sample and the
nth novel sample, respectively. Then, the imbalance control loss LIC is defined
as

LIC =

N∑
n=1

B∑
b=1

max(
〈pb, pn〉
‖pb‖ · ‖pn‖

+ β, 0), (5)

where β ∈ [0, 1] is a hyper-parameter to determine the strength of the imbalance
control, and 〈•, •〉 is the inner product between two vectors.

Without the imbalance control, due to much more training data from the
base categories, both pb and pn have relatively large predictions for the base
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Table 1. Data partitions of ImageNet-FS [7] for different experiments, where 389 base
categories are used to train the feature extractors, ALL-S1 and ALL-S2 are used for
the ablation studies and the comparisons with other methods, respectively.

ALL-S1 (493) ALL-S2 (507)
Base Categories (389) BASE-S1: 193 BASE-S2: 196
Novel Categories (611) NOVEL-S1: 300 NOVEL-S2: 311

categories, meaning that pb and pn have a relatively large correlation. Using the
proposed imbalance control by minimizing LIC, we can reduce these correlations,
thus making the prediction towards the novel categories when the input is a novel
sample. Note that imposing this loss has little effect on base samples because
there are much more training data in the base categories.

3.4 Hard Label Supervision and Total Loss

The hard labels are also used to train the classifier with the cross-entropy loss.
Given a training batch with B +N samples, the cross-entropy loss between the
predictions {ph}B+N

h=1 and their hard labels {Lh}B+N
h=1 is calculated by

LCE =

B+N∑
h=1

CrossEntropy(softmax(ph), Lh). (6)

Finally, the total loss for a training batch is defined as

L = LCE + µ1LSemantic + µ2LIC, (7)

where µ1 and µ2 are two weighting factors.

4 Experiments

In this section, we evaluate our method on three tasks, LS-FSL, traditional FSL,
and improving other LS-FSL methods. We use the pre-trained unsupervised
saliency detection network [37] to split an image into three visual parts, and
use the pre-trained word2vec [15] to represent the labels with vectors. In our
experiments, the three feature extractors are of the same structure. It should be
mentioned that this saliency detection network [37] is trained unsupervisedly on
the MSRA-B dataset [16] without using any object masks and category labels;
in other words, no extra visual supervision information is introduced to help the
FSL and LS-FSL tasks.

4.1 Large-Scale Few-Shot Learning

4.1.1 Experiments on the ImageNet-FS Benchmark
Dataset and evaluation. ImageNet-FS [7] contains 1000 categories from the
ImageNet dataset [24]. It is divided into 389 base categories and 611 novel cate-
gories, where 193 base categories and 300 novel categories are used for validating
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the hyper-parameters, and the remaining 196 base categories and 311 novel cat-
egories are used for classifier learning and testing. Denote the former 493 cate-
gories as ALL-S1 and the latter 507 categories as ALL-S2. There are about 1300
samples in a base category. For novel categories, there are 5 settings with K = 1,
2, 5, 10, and 20 training samples per category. The evaluation of this benchmark
contains two parts: (1) NOVEL-S2: the Top-5 recognition accuracy of the 311
testing novel categories, and (2) ALL-S2: the Top-5 recognition accuracy of the
507 (both the base and the novel) categories. More details of the settings can
be found from [7]. In Table 1, we summarize the data partitions for different
experiments in this section.

Training the feature extractors. To compare with other methods, we use
ResNets-10 [8] or ResNets-50 [8] as the feature extractors Ωo, Ωf , and Ωb. We
respectively train Ωo, Ωf , and Ωb using the original images, the foreground
images, and the background images with their hard labels from all the 389 base
categories ([7] also uses all the 389 base categories to train its feature extractor).
During this training, we optimize the parameters of these feature extractors with
the squared gradient magnitude (SGM) loss [7] using SGD [1] for 200 epochs with
a batch size = 256. The learning rate starts at 1 and is divided by 10 for every
50 epochs. The weight decay is fixed at 0.0001. Note that the three classifiers
for training the three feature extractors are discarded after this training, which
are different from the classifier discussed next.

Training the classifier. Our classifier Γ has only one fully-connected layer
with normalized weights [26]. It classifies the features from both the base and
the novel categories. It is trained with our loss L in Eq. (7) for 90 epochs. The
batch size (B+N) is set to 1000 with B = 500 and N = 500. We use the Adam
optimization [10] with the starting learning rate of 0.001 and the weight decay
of 0.0001. The learning rate is divided by 10 after every 30 epochs.

Ablation study — the effectiveness of the visual knowledge discovery.
In this ablation study, the classifier is trained with only the LCE loss. To evaluate
the effectiveness of the visual knowledge discovery, we train seven classifiers
with the features of vo, vf , vb, vof , vob, vfb, or v from ALL-S1, where vof , vob,
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Table 2. Top-5 accuracies (%) on NOVEL-S1 and ALL-S1 with different α in the tex-
tual knowledge discovery. The feature extractors are ResNets-10. “LCE Only” denotes
the network without using the textual knowledge.

NOVEL-S1/ALL-S1

K = 1 K = 2 K = 5 K = 10 K = 20
α = 0.0 50.2/59.7 61.8/68.3 72.7/75.7 78.4/78.7 80.0/80.0
α = 0.1 50.6/59.8 62.1/68.4 72.9/75.9 78.6/78.8 79.9/80.2
α = 0.2 51.0/59.7 62.2/68.2 73.0/75.9 78.6/78.9 80.1/80.2
α = 0.3 50.9/59.8 62.3/68.2 73.0/75.9 78.5/78.8 79.9/80.1
α = 0.4 51.0/59.9 62.1/68.2 73.0/75.9 78.5/78.8 79.8/80.0
α = 0.5 51.1/60.1 62.2/68.7 73.8/76.0 78.8/79.0 80.9/80.3
α = 0.6 50.6/59.9 62.0/68.3 73.0/75.9 78.5/78.8 80.1/80.2
α = 0.7 50.5/59.7 61.8/68.2 72.7/75.7 78.5/78.8 80.3/80.3
α = 0.8 50.1/59.5 61.7/68.1 72.9/75.9 78.4/78.7 80.2/80.4
α = 0.9 50.2/59.6 61.8/68.2 73.2/76.2 78.4/78.8 80.1/80.2
LCE Only 49.5/59.7 61.8/68.2 72.9/75.6 77.3/78.3 79.8/79.3

vfb, and v represent the concatenations [vo, vf ], [vo, vb], [vf , vb], and [vo, vf , vb],
respectively. These features are extracted by the ResNet-10 feature extractors.
The recognition performances on the K = 1, 2, 5, 10, and 20 settings and
on the evaluations of NOVEL-S1 and ALL-S1 are shown in Fig. 4. Fig. 4(a)
indicates that both the foregrounds and the backgrounds can help the network
classify the novel and the base samples. As expected, the foregrounds are more
useful than the backgrounds, and the original images give more information
than either foregrounds or backgrounds. Comparing Fig. 4(a) with Fig. 4(b),
we can see that the performances of different concatenations are better than
their individual features. More importantly, the combination v of vo, vf , and
vb provides the best performance, which validates the effectiveness of our visual
knowledge discovery.

Ablation study — the textual knowledge discovery. In this ablation
study, the classifier is trained with the combined features v and with LCE and
LSemantic losses (µ1 = 1, µ2 = 0). Since the threshold α controls the strength
of the textual knowledge usage, we conduct an experiment with different α on
NOVEL-S1 and ALL-S1. The results are shown in Table 2. For comparison, we
also give the results without the textual knowledge in the last row of Table 2.
First, we can see that the textual knowledge discovery is effective and stable;
the network with it consistently outperforms the network without it for different
α. Second, the best value of α = 0.5 is selected when the feature extractors are
ResNets-10. We also have another similar experiment when the feature extrac-
tors are ResNets-50 (omitted here), where the best value of α is 0.3.

In Fig. 5, we show several examples of the results by the network with the
textual knowledge discovery (denoted as “LCE + LSemantic”) and the network
without it (denoted as “LCE Only”). It is easy to see that “LCE + LSemantic”
obtains the top-ranked results that are more relevant to the input objects. For
example, when the input novel image is a kind of dog (“Cardigan Welsh Corgi”
here), all the top 7 results by “LCE + LSemantic” are dog labels, but the second
and the third results (“Plastic Bag” and “Paper Towel”) by “LCE Only” are



Large-Scale Few-Shot Learning via Multi-Modal Knowledge Discovery 11
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Fig. 5. The recognition results of several novel samples by the networks with and
without the textual knowledge discovery, denoted as “LCE + LSemantic” and “LCE

Only”, respectively. In this experiment, K = 1. We randomly select one image from
each label category for easy understanding of the objects corresponding to the labels.

Table 3. Top-5 accuracies (%) in the evaluation of the imbalance control on NOVEL-S1

and ALL-S1. The feature extractors are ResNets-10.

Method K = 1 K = 2 K = 5 K = 10 K = 20

NOVEL-S1
LCE + LIC 50.1 62.0 73.4 78.1 80.7
LCE Only 49.5 61.8 72.9 77.3 79.8

ALL-S1
LCE + LIC 60.1 68.5 75.9 78.6 79.9
LCE Only 59.7 68.2 75.6 78.3 79.3

not relevant. This figure clearly shows the effectiveness of the textual knowledge
discovery.

Ablation study — imbalance control from data distribution. In this
ablation study, the classifier is trained with the combined features v and with
the LCE and LIC losses (µ1 = 0, µ2 = 1). We try different values of β ∈ [0, 1], and
find that the network performance is insensitive to them. Thus, we set β = 1. In
Table 3, we compare the network using the imbalance control (“LCE+LIC”) and
the network without it (“LCE Only”). In all the cases, “LCE +LIC” outperforms
“LCE Only”, indicating the usefulness of the imbalance control.

Comparisons with other LS-FSL methods. In this experiment, we compare
our method with state-of-the-art LS-FSL ones. The hyper-parameters of our
model are set to α = 0.5 when ResNets-10 are used as the feature extractors,
α = 0.3 when ResNets-50 are used, β = 1, µ1 = 1, and µ2 = 1. The compared
methods include Prototypical Nets (PN) [28], Matching Networks (MN) [30],
Logistic Regression [7], Prototype Matching Nets (PMN) [7], SGM [7], LwoF [4],
wDAE-GNN [5], Nearest Neighbor (NN) [15], LSD [2], and KTCH [15].

All the results on NOVEL-S2 and ALL-S2 are listed in Table 4. Our method
outperforms others in all the cases. Compared with these methods, our im-
provements for novel categories (NOVEL-S2) are larger than those for both the
base and the novel categories (ALL-S2). Besides, our improvements when using
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Table 4. Top-5 accuracies (%) by different methods on NOVEL-S2 and ALL-S2 [7].
Here, “from [32]” means the accuracy numbers of the corresponding method are
from [32]. “H.” means data hallucination.

Method with ResNet-10
NOVEL-S2 ALL-S2

K = 1 K = 2 K = 5 K = 10 K = 20 K = 1 K = 2 K = 5 K = 10 K = 20

Prototypical Nets (from [32]) 39.3 54.4 66.3 71.2 73.9 49.5 61.0 69.7 72.9 74.6
Matching Networks (from [32]) 43.6 54.0 66.0 72.5 76.9 54.4 61.0 69.0 73.7 76.5
Logistic Regression + H. [7] 40.7 50.8 62.0 69.3 76.5 52.2 59.4 67.6 72.8 76.9
SGM + H. [7] 44.3 56.0 69.7 75.3 78.6 54.8 62.6 71.6 76.0 78.2
PMN + H. [32] 45.8 57.8 69.0 74.3 77.4 57.6 64.7 71.9 75.2 77.5
LwoF [4] 46.2 57.5 69.2 74.8 78.1 58.2 65.2 72.7 76.5 78.7
wDAE-GNN [5] 48.0 59.7 70.3 75.0 77.8 59.1 66.3 73.2 76.1 77.5

Ours 51.8 63.1 73.6 78.1 80.9 60.1 68.5 75.9 78.9 80.5

Method with ResNet-50
NOVEL-S2 ALL-S2

K = 1 K = 2 K = 5 K = 10 K = 20 K = 1 K = 2 K = 5 K = 10 K = 20

Nearest Neighbor (from [15]) 49.5 59.9 70.1 75.1 77.6 - - - - -
Prototypical Nets (from [32]) 49.6 64.0 74.4 78.1 80.0 61.4 71.4 78.0 80.0 81.1
Matching Networks (from [32]) 53.5 63.5 72.7 77.4 81.2 64.9 71.0 77.0 80.2 82.7
SGM + H. [7] 52.8 64.4 77.3 82.0 84.9 63.7 71.6 80.2 83.3 85.2
PMN + H. [32] 54.7 66.8 77.4 81.4 83.8 65.7 73.5 80.2 82.8 84.5
LSD [2] 57.7 66.9 73.8 77.6 80.0 - - - - -
KTCH [15] 58.1 67.3 77.6 81.8 84.2 - - - - -

Ours 58.5 69.7 79.2 83.0 85.5 66.7 74.8 81.5 83.4 85.5

ResNets-10 as the feature extractors are more significant than those when using
ResNets-50. With ResNets-10, compared with the best previous method wDAE-
GNN, ours outperforms it by at least 3.1% in accuracy for K = 1, 2, 5, 10, and
20 on NOVEL-S2, which is significant for LS-FSL.

4.1.2 Experiments on the ImNet Benchmark

Dataset and evaluation. ImNet [11] is another LS-FSL dataset, which is also
selected from ImageNet. It contains 1000 base categories and 360 novel cate-
gories. For novel categories, there are 5 settings with K = 1, 2, 3, 4, and 5
training samples per category. The evaluation of this benchmark is to recognize
the samples from these 360 novel categories. More details are described in [11].

Training the feature extractors and the classifier. The feature extractors
are three ResNets-50. The training of them is similar to that in the experiments
on ImageNet-FS. Besides, the training of the classifier Γ is also similar to that
in the experiments on ImageNet-FS.

Comparisons with other LS-FSL methods. The compared methods include
Nearest Neighbor (NN) [15], SGM [7], PPA [21], LSD [2], and KTCH [15]. The
Top-5 accuracies by our and these methods on the novel categories are listed in
Table 5. We can see that our method again performs best on this dataset in all
the cases. Compared with the previous best model KTCH, our improvements
for K = 1, 2, 3, 4, and 5 are 4.4%, 5.7%, 5.9%, 5.9%, and 6.7%, respectively,
showing the power of our approach.
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Table 5. Top-5 accuracies (%) by different methods on the novel categories from
ImNet [11]. All the methods use ResNet-50 for feature extraction. All the accuracy
numbers of other methods are from [15].

Method
Novel Categories

K = 1 K = 2 K = 3 K = 4 K = 5
Nearest Neighbor (from [15]) 34.2 43.6 48.7 52.3 54.0
SGM (from [15]) 31.6 42.5 49.0 53.5 56.8
PPA (from [15]) 33.0 43.1 48.5 52.5 55.4
LSD (from [15]) 33.2 44.7 50.2 53.4 57.6
KTCH [15] 39.0 48.9 54.9 58.7 60.5
Ours 43.4 54.6 60.8 64.6 67.2

Table 6. Top-1 accuracies (%) by different methods on the testing novel categories of
Mini-ImageNet with 95 confidence intervals. †: Using the validation set (in addition to
the base set) for feature extractor training.

Method
Feature

K = 1 K = 5
Extractor

MAML [3] Conv-4-64 48.70 ± 1.84% 63.10 ± 0.92%
PN [28] Conv-4-64 49.42 ± 0.78% 68.20 ± 0.66%
RelationNet [29] Conv-4-64 50.40 ± 0.80% 65.30 ± 0.70%
MetaGAN [38] Conv-4-64 52.71 ± 0.64% 68.63 ± 0.67%
SalNet [36] Conv-4-64 57.45 ± 0.88% 72.01 ± 0.67%
MetaNet [18] ResNets-12 57.10 ± 0.70% 70.04 ± 0.63%

PPA† [21] WRN-28-10 59.60 ± 0.41% 73.74 ± 0.19%

LEO† [25] WRN-28-10 61.76 ± 0.08% 77.59 ± 0.12%
LwoF (from [5]) WRN-28-10 60.06 ± 0.14% 76.39 ± 0.11%

wDAE-GNN† [5] WRN-28-10 62.96 ± 0.15% 78.85 ± 0.10%
Ours WRN-28-10 64.40 ± 0.43% 83.05 ± 0.28%

4.2 Traditional Few-Shot Learning

Dataset and evaluation. For traditional FSL, we apply our model on the Mini-
ImageNet dataset [30]. Mini-ImageNet consists of 100 categories from ImageNet
and each category has 600 images. It is divided into three parts: 64 base cate-
gories, 16 novel categories for validation, and the remaining 20 novel categories
for testing. This dataset is evaluated on several 5-way-K-shot classification tasks.
In each task, 5 novel categories are sampled first, then K samples in each of the
5 categories are sampled for training, and finally 15 samples (different from the
previous K samples) in each of the 5 categories are sampled for testing. To re-
port the results, we sample 2000 such tasks and compute the mean accuracies
over all the tasks.
Training the feature extractors. We use the 2-layer wide residual networks
(WRN-28-10) [35] as the feature extractors. They are trained with the cross-
entropy loss using the Adam optimization for 200 epochs with a batch size = 256
on all the 64 base categories. The learning rate starts at 0.001 and is divided by
10 for every 50 epochs. The weight decay is fixed at 0.0001.
Training the classifier. The training of the classifier Γ on this dataset is
similar to that in the experiments on previous datasets. It is trained with our
loss L in Eq. (7) for 40 epochs. The batch size (B+N) is set to 100 with B = 50
and N = 50. We use the Adam optimization with the starting learning rate of
0.001 and the weight decay of 0.0001. The learning rate is divided by 10 after
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Table 7. Top-5 accuracies (%) on ImNet.

Method
Novel Categories

K = 1 K = 2 K = 3 K = 4 K = 5
SGM [7] 31.4 42.7 49.1 53.2 56.4
SGM +T 33.5 44.1 50.1 54.5 57.3
KTCH [15] 36.0 47.0 52.9 57.2 60.4
KTCH +T 40.1 50.5 56.6 60.8 63.3

every 10 epochs. We conduct an experiment with different α on the validation
set (omitted here) and find the best value of α is 0.2.
Comparisons with other traditional FSL methods. As shown in Table 6,
we compare our method with MAML [3], PN [28], RelationNet [29], Meta-
GAN [38], SalNet [36], MetaNet [18], PPA [21], LEO [25], LwoF [4], and wDAE-
GNN [5]. Again, our method outperforms them. Specifically, compared with the
best previous method wDAE-GNN, we obtain 1.44% and 4.2% accuracy im-
provements for K = 1 and K = 5, respectively. Note that wDAE-GNN uses
both the base and the validation categories for feature extractor training, while
ours are trained with only the base categories.

4.3 Textual Knowledge Discovery on Other Methods

Our textual knowledge discovery can be used to improve other LS-FSL methods.
In this section, we show two examples based on SGM [7] and KTCH [15]. We train
our classifier (with the LCE and LSemantic losses) using the features2 extracted
by SGM or KTCH on the ImNet dataset. The two new models are denoted as
SGM +T and KTCH +T , respectively, where “T ” means the textual knowledge
discovery. The recognition results by SGM, KTCH, and the two new models are
shown in Table 7. We can see that the new models SGM +T and KTCH +T
respectively improve SGM and KTCH by significant margins.

5 Conclusion

In this paper, we have proposed three schemes to tackle the problem of large-
scale few-shot learning (LS-FSL): (1) visual knowledge discovery for better object
representation, (2) textual knowledge discovery for finding the relations between
novel and base categories, and (3) imbalance control from data distribution to
alleviate the recognition bias towards the base categories. Our method is simple
yet effective. The extensive experiments have shown that our model achieves
state-of-the-art results on both LS-FSL and traditional FSL benchmarks. Be-
sides, the proposed textual knowledge discovery can also be used to improve
other LS-FSL methods.
Acknowledgments. This work is supported by the National Key Research and
Development Program of China under grant 2018YFB0804205, and National Na-
ture Science Foundation of China (NSFC) under grants 61732008 and 61725203.

2 The SGM features are obtained from the released code by the authors of [7], while
the KTCH features are provided by an author of [15].
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