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1 Implementation and Datasets details

1.1 Full MetaDataset Description

The MetaDataset includes ImageNet [12] (1000 categories of natural images),
Omniglot [6] (1623 categories of black-and-white hand-written characters from
different alphabets), Aircraft [9] (100 classes of aircraft types), CU-Birds [14]
(200 different bird species), Describable Textures [1] (43 categories for textures),
Quick Draw [3] (345 different categories of black-and-white sketches), Fungi [13]
(1500 mushroom types), VGG-Flower [10] (102 flower species), Traffic Sign [2]
(43 classes of traffic signs) and MSCOCO [7] (80 categories of day-to-day objects). For
testing, we additionally employ MNIST [15] (10 hand-written digits) CIFAR10 [5]
(10 classes of common objects), and CIFAR100 [5] (100 classes of common objects).
Figure 1 illustrated random samples drawn from each dataset.

1.2 MetaDataset training details

When using multiple ResNet18 on MetaDataset (a single ResNet per dataset)
to build a multi-domain representation, we train the networks according to
the following procedure. For optimization, we use SGD with momentum and
adjust the learning rate using cosine annealing [8]. The starting learning rate, the
maximum number of training iterations (“Max iter.”) and annealing frequency
(“annealing freq.”) are set individually for each dataset. To regularize training, we
use data augmentation, such as random crops and random color augmentations,
and set a constant weight decay of 7 × 10−4. For each dataset, we run a grid
search over batch size in [8, 16, 32, 64] and pick the one that maximizes accuracy
on the validation set. The hyper-parameters maximizing the validation accuracy
are given in Table 1.

When training a parametric network family for building multi-domain repre-
sentations, we start by adopting a ResNet18 already trained on ImageNet, that
we keep fixed for the rest of the training procedure. For each new dataset, we
then train a set of domain-specific FiLM layers, modulating intermediate ResNet
layers, as described in Section 3.3 of the original paper. Here, we also use cosine
annealing as learning rate policy, employ weight decay and data augmentation,
as specified above. In Table 2, we report the training hyper-parameters for each
of the datasets.

1.3 mini-ImageNet training details

All the methods we evaluate on mini -ImageNet use ResNet12 [11] as a feature
extractor. It is trained with batch size 200 for 48 epochs. For optimization, we use
Adam optimizer [4] with initial learning rate 0.1 which is kept constant for the
first 36 epochs. Between epochs 36 and 48, the learning rate was exponentially
decreased from 0.1 to 10−5, i.e. by dividing the learning rate by 10

1
3 after each

epoch. As regularization, we use weight decay with 5 × 10−4 multiplier and data
augmentation such as random crops, flips and color transformations.
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Test Dataset learning rate weight decay Max iter. annealing freq. batch size

ImageNet 3 × 10−2 7 × 10−4 480,000 48,000 64
Omniglot 3 × 10−2 7 × 10−4 50,000 3,000 16
Aircraft 3 × 10−2 7 × 10−4 50,000 3,000 8
Birds 3 × 10−2 7 × 10−4 50,000 3,000 16
Textures 3 × 10−2 7 × 10−4 50,000 1,500 32
Quick Draw 1 × 10−2 7 × 10−4 480,000 48,000 64
Fungi 3 × 10−2 7 × 10−4 480,000 15,000 32
VGG Flower 3 × 10−2 7 × 10−4 50,000 1,500 8

Table 1: Training hyper-parameters of individual feature networks on Meta-
Dataset. The first column indicates the dataset used for training. The first row gives
the name of he hyper-parameter. The body of the table contains hyper-parameters that
produced the most accurate model on the validation set.

Test Dataset learning rate weight decay Max iter. annealing freq. batch size

Omniglot 3 × 10−2 7 × 10−4 40,000 3,000 16
Aircraft 1 × 10−2 7 × 10−4 30,000 1,500 32
Birds 3 × 10−2 7 × 10−4 30,000 1,500 16
Textures 3 × 10−2 7 × 10−4 40,000 1,500 16
Quick Draw 1 × 10−2 7 × 10−4 400,000 15,000 32
Fungi 1 × 10−2 7 × 10−4 400,000 15,000 32
VGG Flower 1 × 10−2 7 × 10−4 30,000 3,000 16

Table 2: Training hyper-parameters of the parametric network family on
MetaDataset. The first column indicates the dataset used for training. The first row
gives the name of he hyper-parameter. The body of the table contains hyper-parameters
that produced the most accurate model on the validation set.

2 Additional Experiments and Ablation Study

2.1 Additional results on MetaDataset

Here we elaborate on using SUR with a multi-domain set of representations
obtained from independent feature extractors (see Section 3.2), report an ablation
study on varying the number of extractors in the multi-domain set, and report
detailed results, corresponding to Figure 3 (a) of the original paper. Specifically,
we use 8 domain-specific ResNet18 feature extractors to build a multi-domain
representation and evaluate SUR against the baselines. The results are reported
in Table 3, which corresponds to Figure 3 (a) of the original paper.

In the following experiment, we remove feature extractors trained on Birds,
Textures and VGG Flower from the multi-domain feature set and test the perfor-
mance of SUR on the set of remaining 5 feature extractors. We chose to remove
these feature extractors as none of them gives the best performance on any of the
test sets. Hence, they probably do not add new knowledge to the multi-domain
set of features. The results are reported in Table 3 (a) as “SUR (5/8)”. As we
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Test Dataset ImageNet-F Union-F Concat-F SUR SUR (5/8)

ImageNet 56.3±1.0 44.6±0.7 19.5±1.6 56.0±1.2 56.1±1.1

Omniglot 67.5±1.2 86.1±0.9 91.5±0.5 93.0±0.4 93.1±0.4

Aircraft 50.4±0.9 82.2±0.6 33.7±1.4 85.7±0.3 85.5±0.4

Birds 71.7±0.8 72.1±1.1 18.8±1.3 71.6±0.8 71.0±0.8

Textures 70.2±0.7 62.7±1.0 34.5±0.9 70.3±0.9 70.4±0.9

Quick Draw 52.3±1.0 70.7±0.9 51.2±0.9 80.2±0.8 80.5±0.9

Fungi 39.1±1.0 56.2±0.8 12.6±0.4 62.8±1.1 63.1±1.0

VGG Flower 84.3±0.7 82.5±0.8 40.3±1.2 83.6±0.8 83.3±0.8

Traffic Sign 63.1±0.8 63.8±0.9 48.2±0.6 66.1±0.8 63.6±0.9

MSCOCO 52.8±1.0 42.3±1.0 17.8±0.4 52.4±1.1 52.8±1.1

MNIST 77.2±0.7 84.8±0.6 89.6±0.7 91.2±0.5 92.5±0.5

CIFAR 10 66.3±0.8 51.4±0.8 34.7±0.8 64.6±0.9 65.8±0.9

CIFAR 100 55.7±1.0 39.5±1.0 18.9±0.6 54.5±1.0 56.5±1.0

Table 3: Motivation for feature selection. The table shows accuracy of different
feature combinations on the Meta-Detaset test splits. The first column indicates the
dataset the algorithms are tested on, the first row gives a name of a few-shot algorithm.
The body of the table contains average accuracy and 95% confidence intervals computed
over 600 few-shot tasks. The numbers in bold lie have intersecting confidence intervals
with the most accurate method.

can see, selecting from the truncated set of features may be beneficial for some
out-of-domain categories, which suggests that even the samples form of adapta-
tion – selection – may overfit when very few samples are available. On the other
hand, for a new dataset Traffic Sign, selecting from all features is beneficial.
This result is not surprising, as one generally does not know what features will
be useful for tasks not known beforehand, and thus removing seemingly useless
features may result in a performance drop.

2.2 Analysis of Feature Selection on MetaDataset

Here, we repeat the experiment from Section 4.3, i.e. studying average values
of selection parameters λ depending on the test dataset. Figure 2 reports the
average selection parameters with corresponding confidence intervals. This is in
contrast to Figure 4 of the original paper that reports the average values only,
without confidence intervals.

2.3 Importance of Intermediate Layers on mini-ImageNet

We clarify the findings in Section 4.4 of the original paper and provide an ablation
study on the importance of intermediate layers activations for the meta-testing
performance. For all experiments on mini-ImageNet, we use ResNet12 as a
feature extractor and construct a multi-domain feature set from activations
of intermediate layers. In Table 4, we experiment with adding different layers
outputs to the multi-domain set. The multi-domain set is then used to construct
the final image representation either through concatenation “concat” or using
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Method 1-3 4-6 7-9 10-12 Aggregation 5-shot 1-shot

Cls

last 76.28 ±0.41 60.09 ±0.61

X select 77.39 ±0.42 61.02 ±0.62

X X select 79.25 ±0.41 60.79 ±0.62

X X X select 78.92 ±0.41 60.71 ±0.64

X X X X select 78.80 ±0.43 60.55 ±0.62

X concat 78.43 ±0.42 60.41 ±0.62

X X concat 75.67 ±0.41 57.15 ±0.61

X X X concat 70.90 ±0.40 53.53 ±0.61

X X X X concat 69.40 ±0.40 51.21 ±0.60

DenseCls

last 78.25 ±0.43 62.61 ±0.61

X select 79.34 ±0.42 62.46 ±0.62

X X select 80.04 ±0.41 63.13 ±0.62

X X X select 79.84 ±0.42 62.95 ±0.62

X X X X select 79.49 ±0.43 62.58 ±0.63

X concat 79.12 ±0.41 62.51 ±0.62

X X concat 79.59 ±0.42 62.74 ±0.61

X X X concat 77.63 ±0.42 60.14 ±0.61

X X X X concat 76.07 ±0.41 57.78 ±0.61

DivCoop

last 81.06 ±0.41 64.14 ±0.62

X select 81.23 ±0.42 63.83 ±0.62

X X select 81.19 ±0.41 63.93 ±0.63

X X X select 81.11 ±0.42 63.85 ±0.62

X X X X select 81.08 ±0.42 63.71 ±0.62

X concat 81.12 ±0.42 63.92 ±0.62

X X concat 80.79 ±0.41 63.22 ±0.63

X X X concat 80.52 ±0.42 62.48 ±0.61

X X X X concat 80.36 ±0.42 61.30 ±0.61

Table 4: Comparison to other methods on 1- and 5-shot mini-ImageNet.
The first column gives the name of the feature extractor. Columns 2-5 indicate if
corresponding layers of ResNet12 were added to the multi-domain set of representations.
Column “Aggregation” specifies how the multi-domain set was used to obtain a vector
image representation. The two last columns display the accuracy on 1- and 5-shot
learning tasks. To evaluate our methods we performed 1 000 independent experiments
on mini-ImageNet-test and report the average and 95% confidence interval. The best
accuracy is in bold.

SUR. The table suggests that adding the first 6 layers negatively influences the
performance of the target task. While our SUR approach can still select relevant
features from the full set of layers, the negative impact is especially pronounced
for the “concat” baseline. This suggests that the first 6 layers do not contain
useful for the test task information. For this reason, we do not include them in
the multi-domain feature set, when reporting the results in Section 4.4.

We further provide analysis of selection coefficients assigned to different layers
in Figure 3. We can see that for all methods, SUR picks from the last 6 layers
most of the time. However, it can happen that some of the earlier layers are
selected too. According to Table 4, these cases lead to a decrease in performance
and suggest the SUR may overfit, when the number of samples if very low.
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Fig. 1: Samples from all MetaDataset datasets Each line gives 8 random samples
from a dataset specified above.
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Fig. 2: Frequency of selected features depending on the test domain in Meta-
Dataset. The top row indicates a testing dataset. The leftmost column presents a
dataset the feature extractor has been trained on. A cells at location i, j reflects the
average value of selection parameter λi assigned to the i-th feature extractor when
tested on j-th dataset with corresponding 95% confidence intervals. The values are
averaged over 600 few-shot test tasks for each dataset.

Fig. 3: Frequency of selecting intermediate layer’s activation’s on mini-
ImageNet for 5-shot classification. The top row indicates intemediate layer. The
leftmost column gives the name of a method used to pre-train the feature extractor.
Each cells reflects the average value of selection parameter λi assigned to the i-th
intemediate layer with corresponding 95% confidence intervals. The values are averaged
over 1000 few-shot test tasks for each dataset.
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