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Abstract. 3D hand reconstruction from images is a widely-studied prob-
lem in computer vision and graphics, and has a particularly high re-
levance for virtual and augmented reality. Although several 3D hand
reconstruction approaches leverage hand models as a strong prior to re-
solve ambiguities and achieve more robust results, most existing models
account only for the hand shape and poses and do not model the tex-
ture. To fill this gap, in this work we present HTML, the first parametric
texture model of human hands. Our model spans several dimensions of
hand appearance variability (e.g., related to gender, ethnicity, or age)
and only requires a commodity camera for data acquisition. Experimen-
tally, we demonstrate that our appearance model can be used to tackle
a range of challenging problems such as 3D hand reconstruction from
a single monocular image. Furthermore, our appearance model can be
used to define a neural rendering layer that enables training with a self-
supervised photometric loss. We make our model publicly available?.

Keywords: hand texture model, appearance modeling, hand tracking,
3D hand reconstruction

1 Introduction

Hands are one of the most natural ways for humans to interact with their envi-
ronment. As interest in virtual and augmented reality grows, so does the need
for reconstructing a user’s hands to enable intuitive and immersive interactions
with the virtual environment. Ideally, this reconstruction contains accurate hand
shape, pose, and appearance. However, it is a challenging task to capture a
user’s hands from just images due to the complexity of hand interactions and
self-occlusion. In recent years, there has been significant progress in hand pose
estimation from monocular depth [53, 30, 54, 1, 12, 25, 8] and RGB [57, 46, 7, 22,

? https://handtracker.mpi-inf.mpg.de/projects/HandTextureModel/



2 N. Qian et al.

component 0
Texture Map
component 1 component 2 component 0

Mesh Visualization
component 1 component 2

-3σ

+3σ

Fig. 1. We present the first parametric hand texture model. Our model successfully
captures appearance variations from different gender, age, and ethnicity.

55] images. Although most of these works estimate only joint positions, a few
recent works attempt to reconstruct the hand geometry as well [27, 6, 2, 56, 26].

Despite these recent advances, there is little work that addresses the re-
construction of hand appearance. However, hand appearance personalization
is important for increasing immersion and the sense of “body-ownership” in
VR applications [19], and for improved tracking and pose estimation through
analysis-by-synthesis approaches. Without a personalized appearance model, ex-
isting pose estimation methods must use much coarser hand silhouettes [6, 2, 56]
as an approximation of appearance. One approach to obtain a personalized hand
texture is to project the tracked geometry to the RGB image and copy the ob-
served color to the texture map [23]. However, only a partial appearance of the
observed hand parts can be recovered with this method and tracking errors can
lead to unnatural appearances. In addition, without explicit lighting estimation,
lighting effects will be baked into the results of these projection-based methods.

To address this gap, we present HTML, the first data-driven parametric Hand
Texture ModeL (see Fig. 1). We captured a large variety of hands and aligned
the scans in order to enable principal component analysis (PCA) and build a
textured parametric hand model. PCA compresses the variations of natural hand
appearances to a low dimensional appearance basis, thus enabling a more robust
appearance fitting. Our model can additionally produce plausible appearance of
the entire hand from fitting to partial observations from a single RGB image.
Our main contributions can be summarized as follows:

– We introduce a novel parametric model of hand texture, HTML, that we
make publicly available. Our model is based on a dataset of high-resolution
hand scans of 51 subjects with variety in gender, age, and ethnicity.

– We register our scans to the popular MANO hand model [39] in order to cre-
ate a statistical hand appearance model that is also compatible with MANO.

– We demonstrate that our new parametric texture model allows to obtain a
personalized 3D hand mesh from a single RGB image of the user’s hand.

– We present a proof-of-concept neural network layer which uses the MANO
shape and pose model in combination with our proposed texture model in an
analysis-by-synthesis fashion. It enables a self-supervised photometric loss,
directly comparing the textured rendered hand model to the input image.
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2 Related Work

The use of detailed, yet computationally efficient, hand models for hand track-
ing applications is well studied [31, 35, 41, 48]. Nevertheless, many such methods
require time-consuming expert adjustments to personalize the model to a user’s
hand, making them difficult to deploy to the end-user. Therefore, we focus our re-
view to methods that can automatically generate personalized articulated hand
models from images. However, we will see that almost all these methods exclu-
sively consider shape personalization and do not include texture or appearance.

Modeling Hand Geometry. Two types of personalizable hand models exist in
the literature, i.e., heuristic parameterizations that directly move and scale the
geometric primitives of the models [23, 47, 51, 37, 52], and data-driven statisti-
cal parameterizations that model the covariance of hand geometry [20, 39]. Al-
though heuristic approaches are expressive, infeasible hand-shape configurations
can arise when fitting such models to single images due to ambiguities between
shape and pose. Thus, existing approaches must perform the personalization
offline over a set of depth images [47, 51, 37], or design additional heuristic con-
straints [52] to resolve these ambiguities. On the other hand, data-driven pa-
rameterizations [20] provide a low-dimensional shape representation and natural
priors on hand poses. The recent MANO model [39] additionally provides learned
data-driven pose-dependent shape corrections to the geometry to avoid artifacts
in posing a hand model through linear blend skinning (LBS). This model has
been applied in many recent hand pose estimation methods [6, 56, 2, 16, 2] and
has been used to annotate hand pose estimation benchmarks [58, 16, 15].

Nonetheless, and despite the popularity of the MANO model of hand geome-
try, there exists no data-driven parametric texture model for providing realistic
appearance. As such, in this work we present for the first time a hand appearance
model that is fully compatible with MANO. Although MANO has a rather low-
resolution mesh (778 vertices), our appearance model is defined in the texture
space so that a much higher texture resolution is available.

Modeling Appearance. With a few exceptions [23, 24], the previously mentioned
works do not model hand texture. The works of de La Gorce et al. [23, 24]
incorporate heuristic texture personalization for hand-tracking using an analysis-
by-synthesis approach. Their approach obtains only a partial estimate of the
hand texture using the current pose estimate, and relies on a smoothness prior
to transfer color to unobserved parts by a diffusion process on a per-frame basis.
Romero et al. [39] provide the raw RGB scans used to register the MANO model,
but they contain strong lighting effects like shadows and over-exposed regions.
Hence, it is not possible to recover accurate appearance from these scans as we
show in the supplementary document. Despite the lack of a parametric hand
texture model, the benefits of having such a model can be readily seen in face
modeling literature. For example, 3D morphable face models (3DMM) [5, 18, 33,
13, 9] provide parametric geometry and appearance models for faces that have
been used to drive research in many recent works in diverse applications [10]. For
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Fig. 2. Overview of our hand texture acquisition pipeline. We run rigid struc-
ture from motion (SfM) on a set of input images to obtain a scanned mesh for back
and palm side of the hand, respectively. After removing background vertices, we fit the
MANO template mesh to extract the texture from the scan. We remove lighting effects
and seamlessly stitch the front and back texture, resulting in a complete texture for
the captured hand (visualized on the 3D hand mesh from 2 virtual views on the right).

example, these 3DMMs were used within analysis-by-synthesis frameworks for
RGB tracking [38, 50], and as unsupervised loss for learning-based methods [49].
Our proposed parametric hand appearance model HTML has the potential to
drive similar advances in the hand pose estimation and modeling community.

3 Textured Parametric Hand Model

Our hand texture acquisition pipeline is summarized in Fig. 2. First, we record
two image sequences observing the palm side and the back side of the hand,
respectively. Subsequently, we run rigid structure from motion (SfM) [3, 40] to
obtain a 3D reconstruction of the observed hand side (Sec. 3.1). Next, we remove
the scene background, and register both (partial) hand scans to the MANO
model [39] based on nonlinear optimization. Afterwards, the texture of the partial
hand scans is mapped to the registered mesh. We then remove shading effects
from the textures and stitch them to obtain a complete hand texture (Sec. 3.2).
The parametric texture model in subsequently generated using PCA (Sec. 3.3).

3.1 Data Acquisition

In total, we captured 51 subjects with varying gender, age, and ethnicity (see
Fig. 3). To minimize hand motion during scanning, we record the palm side and
backside of the hand separately, so that the subjects can rest their hand on a
flat surface. As such, for each subject we obtain four scans, i.e., back and palm
sides for both left and right hands. The scanning takes ∼90 seconds for one hand
side, so that the total scanning time of ∼6 minutes is required per person.

To obtain 3D hand scans, we use SONY’s 3DCreator App [44]. The 3D
reconstruction pipeline includes three stages, i.e., initial anchor point extraction,
simultaneous localization and mapping (SLAM) with sparse points [21], and
online dense 3D reconstruction (sculpting) [45]. The output is a textured high-
resolution surface mesh (of one hand side as well as the background), which
contains ∼6.2k vertices and ∼11k triangles in the hand area on average. By
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Fig. 3. Distribution of age, gender, and skin color for our 51 captured subjects. We
use the Goldman world classification scale [42] for classifying skin color.

design, our hand texture model is built for the right hand. For model creation,
we mirror the left hand meshes, so that we use a total of 102 “right” hands
for modeling. We note that by mirroring we can also use the texture model
of “right” hand for the left hand. In the following, we will abstract away this
technical detail and describe our texture modeling approach for a single hand.

3.2 Data Canonicalization

To learn the texture variations in a data-driven manner it is crucial that the
acquired 3D scans are brought into a common representation. Due to the pop-
ularity and the wide use of the MANO model of hand geometry, we decided to
build the hand texture in the MANO space. This has the advantage that existing
hand reconstruction and tracking frameworks that are based on MANO, such as
[29, 6, 16], can be directly extended to also incorporate hand texture. We point
out that our texture model can also be used with other models by defining the
respective UV mapping. Our data canonicalization comprises several consecutive
stages, i.e., background removal, MANO model fitting, texture mapping, shading
removal, and seamless stitching, which we describe next.

Background Removal. For each hand we have reconstructed two textured meshes,
one that shows the hand palm-down on a flat surface, and one that shows the
hand palm-up on a flat surface (cf. Sec. 3.1). In both cases, the background,
i.e., the flat surface that the hand is resting on, is also reconstructed as part of
the mesh. Hence, in order to remove the background, we perform a robust plane
fitting based on RANSAC [11], where a plane is fitted to the flat background
surface. To this end, we sample 100 random configurations of three vertices, fit
a plane to the sampled points, and then count the number of inliers. Any point
that has a distance to the fitted plane that is smaller than the median edge
length of the input scanned mesh is considered as inlier. Eventually, the plane
that leads to the largest inlier count is considered the background plane. We have
empirically found that this approach is robust and able to reliably identify the
flat surface in all cases. Eventually, we use a combination of distance-based and
color-based thresholding to discard background vertices in the scanned mesh. In
particular, we discard a vertex if its distance from the background plane is less
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than 1cm and the difference between the red and green channel of the vertex
color is smaller than 30 (RGB ∈ [0, 255]3). This yields better preservation of
hand vertices that are close to the background plane.

MANO Model Fitting. Subsequently, we fit the MANO hand model to the filtered
hand scan mesh (i.e., the one without background). To this end, we first obtain
the MANO shape and pose parameters based on the hand tracking approach of
Mueller et al. [29]. The approach uses a Gauss-Newton optimization scheme that
makes use of additional information based on trained machine learning predictors
(e.g., for correspondence estimation). Since their method was developed for 3D
reconstruction and tracking of hands in depth images, we render synthetic depth
images from our partial hand scan meshes. Note that the approach [29] was
partially trained on synthetic depth images and thus we have found that it is
able to produce sufficiently good fits of the MANO geometry to our data.

However, since the MANO model is relatively coarse (778 vertices), and more
importantly, it has a limited expressivity of hand shape (it only spans the vari-
ations of their training set of 31 subjects), we have found that there are still
some misalignments. To also allow for deformations outside the shape space of
the MANO model, we hence use a complementary non-rigid refinement of the
previously fitted MANO mesh to the hand scan. To this end, we use a variant
of non-rigid iterative closet point (ICP) [4] that optimizes for individual vertex
displacements that further refine the template, which in our case is the fitted
MANO model. As our objective function, we use 3D point-to-point and point-to-
plane distances together with a spatial smoothness regularizer [14]. An accurate
alignment is especially important at salient points, like fingertips, to ensure high
perceptual quality. Hence, we add prior correspondences for the fingertips and
the wrist to the non-rigid ICP fitting. We automatically obtain these correspon-
dences in the input scanned mesh using OpenPose [43]. The influence of the
prior correspondences is shown in our evaluation (see Sec. 5.1).

Texture Mapping. After having obtained an accurate alignment of the hand
template, i.e., the fitted MANO model plus non-rigid deformation for refinement,
to our textured high-resolution hand scan, we transfer the scan texture to a
texture map. To this end, we have manually defined UV coordinates for the
MANO model template by unwrapping the mesh to a plane (see texture mapping
step in Fig. 2). We project each vertex in the high-resolution hand scan to
the closest point on the surface of the fitted MANO hand template. Using the
barycentric coordinates of this projected point together with the UV coordinates
of the template mesh, we transfer the color to the texture map. After performing
this procedure for all vertices of our high-resolution hand scan, there can still
be some texels (pixels in the texture map) that are not set (we have found that
about 6.5% of the hand interior does not have a defined texture). To deal with
that, holes are filled based on inpainting with neighboring texels.

Shading Removal. We ensured that our scans have low-frequency shading by
using controlled lighting. Thus, we implicitly made the assumptions of having
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a) b)

replace

Fig. 4. Shading removal. (a) Original texture and its Laplacian pyramid decompo-
sition. (b) The shading effects are removed by modifying the deepest level.

a mostly Lambertian surface and no casted shadows. Since the smooth shading
effects have low frequency (see Fig. 4a), they can be separated and removed
using a frequency-based method like the Laplacian image pyramid. To this end,
we first build a Laplacian pyramid with five levels from the texture map that
we obtained in the previous step. We observe that the deepest level separates
the (almost) constant skin color as well as the smooth shading from the texture
details that are kept on earlier levels of the pyramid. We replace this deepest
level with a constant skin color for palm and back side, respectively, effectively
removing the smooth shading. We obtain this constant skin color by averaging
in the well-lit area (see blue rectangles in Fig. 4). Note how the texture details
from higher levels are preserved in the modified texture map (see Fig. 4b).

Seamless Texture Stitching. Since so far this texture mapping is performed both
for the palm-up and palm-down facing meshes, we eventually blend both partial
texture maps to obtain a complete texture map of the hand. To this end, we
use a recent gradient-domain texture stitching approach that directly operates
in the texture atlas domain while preserving continuity induced by the 3D mesh
topology across atlas chart boundaries [34].

3.3 Texture Model Creation

Let {Ti}ni=1 be the collection of 2D texture maps that we obtain after data canon-
icalization as described in Sec. 3.2. In order to create a parametric texture model
we employ PCA. We vectorize each Ti to obtain the vector ti ∈ R618,990 that
stacks the red, green and blue channels of all hand texels. PCA first computes
the data covariance matrix

C =
1

n− 1

n∑
i=1

(ti − t̄) (ti − t̄)> , (1)

for t̄ = 1
n

∑n
i=1 ti being the average texture. Subsequently, eigenvalue decom-

position of C = ΦΛΦT is used to obtain the principal components Φ and the
diagonal matrix of eigenvalues Λ. With that we obtain the parametric texture
model for the parameter vector α ∈ Rk, k = 101 as

t(α) = t̄+ Φα . (2)
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Fig. 5. 3D hand personalization from a single image. Starting from a single
RGB input image (left), we first initialize the mesh using the method by Boukhayma
et al. [6]. Next, we refine the fit non-rigidly and extract the partial hand texture. By
fitting our parametric texture model, we are able to obtain a complete texture which
minimizes the error to the input texture (right).

4 Applications

To demonstrate possible use cases of our parametric hand appearance model,
we present two applications. First, we consider 3D hand reconstruction and
personalization from a single monocular RGB image. Subsequently, we show
the usage as a neural network layer enabling a self-supervised photometric loss.

4.1 3D Hand Personalization from a Single Image

Given a single monocular RGB image of a hand, we aim to reconstruct a 3D
hand mesh that is personalized to the user’s shape and appearance. This appli-
cation consists of four steps: (1) initialization of shape and pose parameters of
the MANO model, (2) non-rigid shape and pose refinement, (3) partial texture
extraction, and (4) estimation of appearance parameters of our model.

Shape and Pose Initialization. We use the method of Boukhayma et al. [6] to
obtain an initial pose and shape estimate of the MANO template mesh from a
single RGB image. As discussed before, the MANO shape space is not always
expressive enough to perfectly fit the user’s hand shape. In addition, the results
from the method by Boukhayma et al. do not yield sufficiently accurate repro-
jection of the mesh onto the image plane as shown in Fig. 5 (second from the
left). Hence, this initial mesh is further refined.

Non-Rigid Refinement of the Initial Mesh. We non-rigidly refine the initial mesh
estimate to better fit the hand silhouette in the image. Therefore, we optimize the
3D displacement of each vertex using ICP constraints on the boundary vertices.
We define the set of boundary vertices of the hand mesh V̄ ⊂ V, i.e., the set of
vertices on the silhouette. Let Π : R3 → Ω be the camera projection converting
from 3D world coordinates to 2D pixel locations. For each boundary vertex v̄i,
we first find the closest hand silhouette pixel p̄i in the image domain Ω as

p̄i = arg min
p∈Ω

||Π(v̄i)− p||2 s.t. n(p)>Π(n(v̄i)) > η . (3)
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Here, n(p) is the 2D boundary normal at pixel p (calculated by Sobel filtering),
and Π(n(v̄i)) is the 2D image-plane projection of the 3D vertex normal at v̄i.
The threshold η = 0.8 discards unsuitable pixels based on normal dissimilarity.
We then use this closest hand silhouette pixel p̄i as correspondence for boundary
vertex v̄i if it is closer than δ (= 4% of the image size):

c̄i =

{
p̄i, if ||Π(v̄i)−p̄i||2 < δ

∅, otherwise
. (4)

We can then optimize for the refined 3D vertex positions using the computed
correspondences in the following objective function:

E(V) =
1

|V̄|
∑
v̄i∈V̄

||Π(v̄i)−p̄i||22 + wsmth

∑
vj∈V

∑
vk∈Nj

1

|Nj |
||(vj−vk)−(v0

j−v0
k)||22,

(5)
where Nj is the set of neighboring vertices of vj , and V0 = {v0

•} are the vertex
positions from the previous ICP iteration. In total, we use 20 ICP iterations and
initialize V,V0 from the shape and pose initialization step as described above.

Partial Texture Extraction. For each fully visible triangle, i.e., when all its 3
vertices are visible, we extract the color from the input image and copy it to the
texture map. This yields a partial texture map where usually at most half the
texels have a value assigned and all other texels are set to ∅. We then obtain the
vectorized target texture map ttrgt (as for model creation in Sec. 3.3).

Estimation of Appearance Parameters. Subsequently, we find the appearance
parameters of our model that best fit the user’s hand by solving the least-squares
problem with Tikhonov regularization:

arg min
α∈Rk

∑
ttrgti 6=∅

(ttrgt
i − t(α)i)

2 + wreg||α||22 . (6)

Note that our proposed parametric appearance model enables us to obtain a
complete texture. In contrast to the extracted partial texture, the result is free
of lighting effects and artifacts caused by small misalignments of the hand model.

4.2 Self-Supervised Photometric Loss

Previous works have trained neural networks to regress joint positions or MANO
model parameters from RGB images [28, 57, 55, 7, 46, 58]. The most common loss
is the Euclidean distance between the regressed and ground truth joint positions.
Some works have also explored a silhouette loss between the mesh and the hand
region in the image [6, 2, 56]. Our HTML enables the use of a self-supervised
photometric loss, which complements the existing fully supervised losses. With
that, when training a network to predict shape and pose with such an approach,
we additionally obtain a hand texture estimate. To this end, we introduce a
textured hand model layer, which we explain now.
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Textured Hand Model Layer. Given a pair of MANO shape and pose parameters
(β, θ), as well as the texture parameters α, our model layer computes the textured
3D hand meshM(β, θ, α). An image of this mesh is then rendered using a scaled
orthographic projection. As such, this rendered image can directly be compared
to the input image I using a photometric loss in an analysis-by-synthesis manner.
We formulate the photometric loss as

Lphoto(β, θ, α) =
1

|Γ |
∑

(u,v)∈Γ

||render(M(β, θ, α))(u, v)− I(u, v)||2 , (7)

where Γ is the set of pixels which the estimated hand mesh projects to. The use
of a differentiable renderer makes the photometric loss Lphoto fully differentiable
and enables backpropagation for neural network training.

Network Training. We train a residual network with the architecture of ResNet-
34 [17] to regress the shape β, pose θ, and texture parameters α from a given
input image. In addition to the self-supervised photometric loss, we employ losses
on 2D joint positions, 3D joint positions, and L2-regularizers on the magnitude of
the shape, pose, and texture parameters. The network is trained in PyTorch [32],
using the differentiable renderer provided in PyTorch3D [36]. We assume a sin-
gle fixed illumination condition for training. We leave the joint estimation of
additional lighting and material properties to future work.

5 Experiments

In this section, we evaluate our proposed parametric hand texture model, explore
different design choices in our texture acquisition pipeline, and present results
of our two example applications.

5.1 Texture Model Evaluation

Compactness. Fig. 6 (left) shows the compactness of our texture model. The plot
describes how much the explained variance in the training dataset increases with
the number of used principal components. The first few components already ex-
plain a significant amount of variation since they account for more global changes
in the texture, e.g., skin tone. However, adding more components continuously
increases the explained variance.

Generalization. For evaluating generalization, we use a leave-one-subject-out
protocol. We remove the data of one subject, i.e., the two texture samples
from left and right hand, and rebuild the PCA model. Then, we reconstruct
the left-out textures using the built model and measure the reconstruction error
as the mean absolute distance (MAD) of the vectorized textures. As shown in
Fig. 6 (middle), the reconstruction error decreases monotonically for an increas-
ing number of components for both of the two models.
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Fig. 6. Evaluation of compactness, generalization and specificity. Using shading re-
moval (“w/ sr”) substantially outperforms not using shading removal (“w/o sr”).

Specificity. We also report the specificity, which quantifies the similarity between
random samples from the model and the training data. To this end, we first
sample a texture instance from our model based on a multivariate standard
Normal distribution (due to the Gaussian assumption of PCA). Then, we find
the nearest texture in our training dataset in terms of the MAD. We repeat this
procedure 200 times, and report the statistics of the MAD in Fig. 6 (right).

Influence of Shading Removal. Fig. 6 also shows compactness, generalization,
and specificity for a version of the texture model that was built without shading
removal (“w/o sr”). It can be seen that the version without shading removal
performs worse compared to the one with shading removal (“w/ sr”) in all met-
rics. When the lighting effects are not removed, they increase the variance in
the training dataset. Hence, more principal components are necessary to explain
variation and the reconstruction of unseen test samples has a higher error. In the
supplemental material, we also show visually that the principal components for
the model without shading removal have to account for strong lighting variation.

Influence of Prior Correspondences. To ensure a good alignment of the hand
template mesh and the scanned mesh, as explained in Sec. 3.2, for the non-rigid
ICP-based refinement step in our model building stage we make use of prior
correspondences for the fingertips and the wrist. Fig. 7 compares the textures
obtained by running the non-rigid ICP fitting with and without them. Especially
for the thumb, the tip is often not well-aligned, resulting in a missing finger nail
in the texture. Using explicit prior correspondences alleviates this issue.

w/ Prior Corrs.w/o Prior Corrs.

Fig. 7. Using non-rigid ICP-based refinement with prior correspondences for fingertips
and the wrist improves the alignment of the hand template mesh to the scanned mesh,
yielding better textures (right). (Textures shown before shading removal.)
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Input Image Model Fit Input Image Model Fit3D Mesh 3D Mesh

Fig. 8. Hand personlization from a single RGB input image for different subjects.

5.2 Application Results: 3D Hand Personalization

Here, we show results for obtaining a personalized 3D hand model from a single
RGB image (see Sec. 4.1). As previously discussed, since the output meshes of
state-of-the-art regression approaches [6] do not have a low reprojection error,
we use non-rigid refinement based on silhouettes. To simplify segmentation in
our example application, we captured the images of the users in front of a green
screen. In future work, this could be replaced by a dedicated hand segmentation
method. Fig. 8 shows hand model fits and complete recovered textures from
a single RGB image for several subjects. Since we use a low-dimensional PCA
space to model hand texture variation, we can robustly estimate a plausible and
complete texture from noisy or partially corrupted input (see Fig. 9). In contrast,
a texture that is directly obtained by projecting the input image onto a mesh
obtained by the method of Boukhayma et al. [6] contains large misalignments
and a significant amount of background pixels, and thus is severely corrupted.

5.3 Application Results: Photometric Neural Network Loss

Our self-supervised photometric loss (see Sec. 4.2) enables to not only obtain
shape and pose estimates as in previous work, but in addition to also estimate
hand appearance. To demonstrate this we train our network on the recently pro-
posed FreiHAND dataset [58]. For details of the experimental setup, please see
the supplementary document. In Fig. 10, we show hand model fits predicted by
a neural network trained with and without our photometric loss (cf. Sec 4.2). We
note that the pose and shape prediction with the photometric loss are quantita-
tively similar to the predictions without (the mean aligned vertex errors (MAVE)
are 1.10 cm vs 1.14 cm respectively, and mean aligned keypoint errors (MAKE)
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Input Image Estimated Complete TextureExtracted Texture using Boukhayma et al.

Fig. 9. Fitting to noisy or corrupted input textures is robust and yields a realistic and
complete texture estimate due to the low-dimensional PCA space built by our model.

are 1.11 cm vs 1.14 cm respectively). In addition, these results are comparable to
the current state of the art [58] with a MAVE of 1.09 cm and MAKE of 1.10 cm.
We stress that our method with the photometric loss additionally infers a high
resolution, detailed texture of the full hand, which the other methods do not.

6 Limitations and Discussion

Our experiments have shown that HTML can be used to recover personalized
3D hand shape and appearance. Although our model provides detailed texture,
the underlying geometry of the MANO mesh is coarse (778 vertices). This could
be improved by using a higher-resolution mesh and extending the MANO shape
space with more detailed geometry. Non-linear models, e.g., an autoencoder
neural network, can be explored for capturing variations that a linear PCA model
cannot. As hand appearance varies during articulation, modeling pose-dependent
texture changes can increase the realism. This would need a more complicated
capture and registration setup and a significantly larger dataset to capture the
whole pose space and diverse users. In terms of applications, estimating lighting
in addition to or jointly with the texture parameters can better reconstruct input
observations. Correctly modeling lighting for hands, where shadow casting often
occurs, is a challenge that would need to be addressed. Other applications of our
model, such as exploring how self-supervision can alleviate the need for keypoint
annotations or improve pose estimation, can be directions for future research.
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Predicted Texture With L𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 Input Image Without L𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Fig. 10. We show the predicted pose and texture from a neural network trained using
a photometric loss Lphoto enabled by our parametric hand texture model.

7 Conclusion

In this work, we introduced HTML — the first parametric texture model of
hands. The model is based on data that captures 102 hands of people with
varying gender, age and ethnicity. For model creation, we carefully designed a
data canonicalization pipeline that entails background removal, geometric model
fitting, texture mapping, and shading removal. Moreover, we demonstrated that
our model enables two highly relevant applications: 3D hand personalization
from a single RGB image, and learning texture estimation using a self-supervised
loss. We make our model publicly available to encourage future work in the area.
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