
STEm-Seg: Supplementary Material

Ali Athar*1, Sabarinath Mahadevan*1, Aljos̆a Os̆ep2, Laura Leal-Taixé2, and
Bastian Leibe1

1 RWTH Aachen University, Germany
{athar,mahadevan,leibe}@vision.rwth-aachen.de

2 Technical University of Munich, Germany
{aljosa.osep,leal.taixe}@tum.de

Abstract. In this supplementary, we provide:
– A short explanation of the Lovàsz Hinge Loss, used for training our

network (Sec. I.),
– implementation and training details for our method (Sec. II.),
– explanation and training details for several baselines, evaluated in

our experimental section (Sec. III. and VI.),
– and finally, additional qualitative results on three different datasets

(Sec. VII.).

I. Loss Function

As explained in Sec. 3.1 of the paper, we use a loss function that is a linear
combination of three components:

Ltotal = Lemb + Lsmooth + Lcenter, (1)

here Lsmooth is the variance smoothness loss, which ensures that the network
outputs uniform variance values for every object instance. For example, if the
network outputs the set of variances Vj for the jth instance in a video clip, then

the variance smoothness loss for this set of variances is denoted by Lj
smooth and

is computed as:

Lj
smooth =

1

|Vj |
∑
v∈Vj

(v − v̄)
2
,

where v̄ is the mean of the variances in Vj . Likewise, the loss can be computed
for all object instances in the video clip and averaged. No loss is applied to the
variances output for background pixels.

Lcenter is a regression loss, which ensures that pixels belonging to a foreground
object instance have probability values in the instance center heat map H that
match the probability obtained by applying Eq. 2 (main text) to the embedding
vector at that pixel location.

Lemb is the embedding loss, and is computed using the Lovàsz extension of
the hinge loss for binary segmentation, as explained below.

The Lovàsz Hinge Loss: We use the Lovàsz Hinge Loss [1] to train the
embeddings output by our network (Lemb). It is a convex surrogate of the Jaccard

2 Athar, Mahadevan et al.

index which directly optimizes the Intersection over Union (IoU) between the
predicted and the ground truth object mask tubes, thereby alleviating class
imbalance issues that arise from using, e.g., the cross-entropy loss. In practice,
we apply the Lovàsz Hinge loss for binary segmentation. For a given video object
instance prediction, we use F to denote the set of scores for each pixel in the
video3, and denote by ∆J the set of incorrect pixel predictions 4. The loss Llovasz

can then be computed as follows:

Llovasz(F) = ∆̄J(h(F)), (2)

where ∆̄J is the Lovàsz extension of ∆J , and h is the hinge loss associated with
a binary prediction. Here we provide only a high-level description of the loss
function. For a more detailed explanation of this loss we refer the reader to [1].

II. Implementation Details

Hardware: We train our network using a batch size of 2 on a workstation with
2 Nvidia RTX TITAN GPUs and 64GB RAM. The inference is performed on a
workstation with a single Nvidia GTX 1080Ti GPU and 32GB RAM.

Training Schedule: For all tasks, the network is trained using an SGD opti-
mizer with an initial learning rate of 10−3. The learning rate is initially constant
and then starts to decay exponentially after a certain number of iterations up
to 10−5. The exact number of iterations varies for each setting as follows:

– DAVIS’19 Unsupervised: 60k total iterations, decay begins after 20k itera-
tions.

– YouTube-VIS: 150k total iterations, decay begins after 60k iterations.
– KITTI-MOTS: 100k total iterations, decay begins after 40k iterations.

Image Augmented Sequences: As mentioned in Sec. 4.1, we train our net-
work on clips from actual video data in addition to sequences that have been
synthesized from static images using random affine transformations and motion
blur. Doing so allows us to utilize a large amount of publicly available image in-
stance segmentation data (e.g., COCO [8], PascalVOC [3], Mapillary Vistas [9])
for training purposes. We experimentally verified the performance benefit of in-
corporating such data in Sec. 4.3.

These augmentations were applied using the imgaug 5 library, which provides
a built-in function that simulates image blur caused by camera motion. The
affine transformations we apply consist of rotations in the range [−10◦, 10◦],
translations of up to 10% of the image dimension along each axis, and scale

3 this is practically just the logit value for the probability computed in Eq. 2 (main
text).

4 Obtained by thresholding the probabilities as in Eq. 3 of the main text and comparing
against the ground truth mask.

5 https://github.com/aleju/imgaug

STEm-Seg: Supplementary 3

variations in the range [0.8, 1.2]. We also apply small random offsets to the hue
and saturation values of each image. All random transformations are independent
of one another, i.e., we do not try to simulate consistent motion by sequentially
applying the same transformation multiple times.

Video Data Augmentation: For training clips sampled from actual video
data, random horizontal flipping is the only augmentation used. This is applied
randomly to entire clips and not to individual frames within clips.

III. Baselines for DAVIS’19 Unsupervised

In Sec. 4.4 we compared our method to two simple proposal-based baselines:
optical flow tracker (OF-Tracker) and Re-ID tracker (RI-Tracker), in addition
to other published methods on DAVIS’19 unsupervised benchmark. For both,
we generate per-frame mask proposals M ∈ {m1, ...,mn} for all the objects in a
video using a ResNet-101 based Mask R-CNN [4]. To ensure a fair comparison
with our architecture, we train the Mask R-CNN jointly on YouTube-VIS [14],
DAVIS’19 [2], and augmented images from COCO [8], as well as Pascal VOC [3]
dataset for 120k iterations. We use SGD with a momentum of 0.9 and an initial
learning rate of 10−3 with exponential decay. The mask proposals that are gen-
erated by such a re-trained Mask R-CNN are then linked over time using optical
flow and re-id for OF-Tracker and RI-Tracker, respectively.

OF-Tracker: We use PWC-Net [11] to generate optical flow for each subsequent
pair of frames in the DAVIS’19 validation set. The optical flow is then used to
warp mi+1 onto mi for each frame pair {i, i+1} to generate a set of warped masks
per-frame W ∈ {w1, ..., wn−1} for a video sequence. A simple linear assignment
based on object overlap between the warped frame wi and the proposal mi is
then used to associate the objects in the adjacent video frames. The associated
object IDs are further propagated forward throughout the video sequence.

RI-Tracker: For the RI-Tracker, we train a re-id network with a ResNet-
50 [5] backbone on the DAVIS’19 [2] training set. The network is trained using
a batch hard triplet loss [6] on randomly selected triplets from a random video
sequence for 25k iterations. This network is then used to generate re-id vectors
for all the object proposals in M , which are further associated over time using
linear assignment based on the Euclidean distance between embedding vectors.

IV. Extended Ablations for Embedding Mixing Function

In Sec. 4.3, we ablated the impact of using different mixing functions φ(·) that
modify the embedding representation as discussed in Sec. 3.2. In Tab. 1(a) of the
main text, we reported the results of this ablation on the DAVIS’19 Unsupervised
validation set. Here, we provide extended results of applying different φ(·) on
the YouTube-VIS [14] and KITTI-MOTS [13] datasets in Tab. I. The results for
DAVIS’19 have also been repeated for reference.

4 Athar, Mahadevan et al.

Mixing Function E
DAVIS YT-VIS KITTI MOTS

J&F AP sMOTSA (car) sMOTSA (pedestrian)

φxy 2 61.6 30.5 64.2 41.1
φxyt 3 62.6 31.8 72.5 48.9
φxyf 3 62.8 32.6 71.8 42.2
φxytf 4 64.2 32.4 71.9 43.6
φxyff 4 64.4 35.0 73.2 47.3
φxyfff 5 62.4 34.0 73.4 41.5

Table I: Ablation studies on the Impact of different embedding mixing functions on
DAVIS ’19, YouTube-VIS (YT-VIS) and KITTI MOTS.

For both DAVIS’19 and YouTube-VIS, the results are consistent: for the same
number of total embedding dimensions (E), having a free dimension is more ben-
eficial than having a temporal coordinate dimension. For KITTI-MOTS, how-
ever, the trend differs. In particular, we obtain similar performance with φxyt

(72.5 and 48.9 sMOTSA on the car and pedestrian class, respectively) and φxyff

(73.2 and 47.3 sMOTSA). In Tab. 4 (main text), we reported the results for φxyt

since the mean sMOTSA score for the two categories (60.70) is slightly better
than that of φxyff (60.25). We attribute this difference in part to the fact that the
temporal coordinate is a more useful feature for instance separation in KITTI-
MOTS than in DAVIS’19 due to the fact that object instances undergo faster
motion and often enter/exit the scene mid-way through a video clip. Further-
more, the performance trends for the car and pedestrian classes seem to follow
different patterns, e.g., while φxyfff yields the highest sMOTSA for the car class
(73.4), it is significantly lower for the pedestrian class.

V. UnOVOST Training on KITTI-MOTS

In the main paper (Sec. 4.4), we reported the performance of UnOVOST [7],
the highest-scoring workshop submission for the DAVIS’19 Unsupervised Chal-
lenge [2], for the task of Multi-object Tracking and Segmentation (MOTS) using
the KITTI-MOTS dataset [13]. We obtained the implementation from the au-
thors [7] and re-trained and tuned the model as follows:

– We initialized a Mask R-CNN [4] network with a ResNet-101 [12] backbone
with weights from an off-the-shelf model trained for instance segmentation
on the COCO dataset [8]. We then altered the output layers to predict two
categories, i.e.. car and pedestrian, and trained the network for 60k iterations
on Mapillary Vistas [9] and KITTI-MOTS datasets. The training data and
the backbone is thus identical to the one used for our STEm-Seg network.

– We trained a ReID network on image instance crops from KITTI-MOTS
using a triplet loss [10] and batch-hard sampling [6].

The two most important hyper-parameters in UnOVOST are the IoU thresholds
used for pruning object detections and for associating object detections based

STEm-Seg: Supplementary 5

on optical flow, respectively. We performed a grid search for these two param-
eters on the KITTI-MOTS validation set in order to optimize the sMOTSA
score. Our observation was that the UnOVOST framework is fairly insensitive
to these parameters; however, the final scores on KITTI-MOTS are consistently
low (see Tab. 4 in the paper). Qualitative analysis of the results showed that the
ReID network frequently makes spurious associations. We postulate that this is
because object instances in KITTI-MOTS frequently have similar appearances.
This differs from the object instances in DAVIS whose appearances usually differ
since they span a large variety of object classes.

VI. Adaptation of TrackR-CNN to YouTube-VIS

As discussed in Sec. 4.4, we adapted the publicly available implementation 6 of
TrackR-CNN [13] to the task of Video Instance Segmentation and evaluated it
on the Youtube-VIS dataset [14]. To this end, we initialized the parameters of
the network, which overlap with Mask R-CNN [4] with weights from a model
trained for instance segmentation on COCO [8] and Mapillary Vistas [9].

In the original implementation, a class-specific re-identification embedding
head was used. This was feasible for KITTI-MOTS, where there are only two
object classes. In YouTube-VIS, however, there are 40 object classes, and several
occur infrequently in the dataset. Furthermore, video sequences are significantly
shorter, and there are usually only 1–2 objects of the same class present in a
video clip. For that reason, we adapted the TrackR-CNN architecture and kept a
single ReID head that is shared among all object classes. We trained the network
under this setting using a batch size of 8 images for 400k iterations and evaluated
multiple intermediate checkpoints. Despite these efforts, the highest AP score
obtained was less than 10%.

A major performance bottleneck we identified is a low-resolution 14x14 RoI-
Align [4] layer used in TrackR-CNN that limit the memory usage to a reasonable
level. This suffices for KITTI-MOTS, which contains small pedestrian instances
and cars with simple shapes, but results in very coarse segmentation masks on the
YouTube-VIS dataset which contains a diverse set of objects that cover a large
area of the image. The AP measure heavily penalizes such coarse segmentation
as it is computed by taking the average over a set of IoU thresholds ranging from
0.5 to 0.95.

VII. Additional Qualitative Results

In this section, we provide additional qualitative results on the validation split
of all three datasets, DAVIS’19 [2] in Fig. 1, YouTube-VIS [14] in Fig. 2 and
KITTI-MOTS [13] in Fig. 3. As can be seen, our method can reliably segment
and track a large variety of different objects in diverse scenarios and is fairly
robust to occlusions and scale changes.

6 https://github.com/VisualComputingInstitute/TrackR-CNN

6 Athar, Mahadevan et al.

time

Fig. 1: Additional qualitative results on DAVIS’19. STEm-Seg generates con-
sistently good results under varied scenarios. E.g., in the motocross-jump sequence
(fifth row) it demonstrates robustness to a large change in scale. In the bike-packing

sequence (bottom row), it is robust to sudden pose changes.

STEm-Seg: Supplementary 7

time

Fig. 2: Additional qualitative results on YouTube-VIS (YT-VIS) [14]. Most
of the semantically challenging animal categories are successfully segmented by STEm-
Seg. It also captures some fine object details such as the skateboard (top row) and the
surfboard (third row) well.

8 Athar, Mahadevan et al.

time

Fig. 3: Additional qualitative results on KITTI-MOTS. Our method success-
fully tracks and segments cars and pedestrians in automotive scenarios, even when
observed from a large distance (sixth row from the bottom) and bridges occlusions
(fifth row).

STEm-Seg: Supplementary 9

References

1. Berman, M., Blaschko, M.B.: Optimization of the jaccard index for image segmen-
tation with the lovász hinge. CVPR (2018)

2. Caelles, S., Pont-Tuset, J., Perazzi, F., Montes, A., Maninis, K., Gool, L.V.: The
2019 DAVIS challenge on VOS: unsupervised multi-object segmentation. arXiv
arXiv:1905.00737 (2019)

3. Everingham, M., Van Gool, L., Williams, C., Winn, J., Zisserman, A.: The pascal
visual object classes (VOC) challenge. IJCV 88(2), 303–338 (2010)

4. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)
5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: CVPR (2016)
6. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-

identification. arXiv preprint arXiv:1703.07737 (2017)
7. I. E. Zulfikar, J. Luiten, B.L.: UnOVOST: Unsupervised Offline Video Object Seg-

mentation and Tracking for the 2019 Unsupervised DAVIS Challenge. The 2019
DAVIS Challenge on Video Object Segmentation - CVPR Workshops (2019)

8. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft COCO: Common objects in context. In: ECCV (2014)

9. Neuhold, G., Ollmann, T., Bulo, S.R., Kontschieder, P.: The Mapillary Vistas
dataset for semantic understanding of street scenes. In: ICCV (2017)

10. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face
recognition and clustering. In: CVPR (2015)

11. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-Net: CNNs for optical flow using
pyramid, warping, and cost volume. In: CVPR (2018)

12. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet
and the impact of residual connections on learning. In: American Ass. of Art.
Intelligence (2017)

13. Voigtlaender, P., Krause, M., Osep, A., Luiten, J., Sekar, B., Geiger, A., Leibe, B.:
MOTS: Multi-object tracking and segmentation. In: CVPR (2019)

14. Yang, L., Fan, Y., Xu, N.: Video instance segmentation. In: ICCV (2019)

