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Abstract. Generating diverse and natural human motion is one of the
long-standing goals for creating intelligent characters in the animated
world. In this paper, we propose an unsupervised method for generat-
ing long-range, diverse and plausible behaviors to achieve a specific goal
location. Our proposed method learns to model the motion of human
by decomposing a long-range generation task in a hierarchical manner.
Given the starting and ending states, a memory bank is used to retrieve
motion references as source material for short-range clip generation. We
first propose to explicitly disentangle the provided motion material in-
to style and content counterparts via bi-linear transformation modelling,
where diverse synthesis is achieved by free-form combination of these two
components. The short-range clips are then connected to form a long-
range motion sequence. Without ground truth annotation, we propose a
parameterized bi-directional interpolation scheme to guarantee the phys-
ical validity and visual naturalness of generated results. On large-scale
skeleton dataset, we show that the proposed method is able to synthesise
long-range, diverse and plausible motion, which is also generalizable to
unseen motion data during testing. Moreover, we demonstrate the gener-
ated sequences are useful as subgoals for actual physical execution in the
animated world. Please refer to our project page for more synthesised
results 4.
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1 Introduction

Human motion is naturally continuous in time and diverse between different in-
dividuals. The same action performed by different people can look very different,
and even performed by the same actor twice could hardly be identical (Fig. 1).
Capturing this diverse and stylized motion has been a long-standing demand in
animation production and video games [10]. By generating this natural motion
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Fig. 1. Visualization of motion sequences generated by proposed hierarchical style-
based networks. The generation is achieved by transferring the “style” of multiple
subsequences to new ones and then connect these clips smoothly in a temporal se-
quential manner. We present two synthesized motion sequences, which consist of the
same motion “content”, but capture different motion “style”. The specific definition
of “content” and “style” is described in the method part. The long-range and diverse
motion generation is thus achieved by free-form composition of “content” and “style”
and connecting short-range clips to a long-range one.

automatically, it provides useful tools for player customization of action skills
in video games [10, 36]. However, synthesizing long-range and diverse motion is
an extremely challenging task. On one hand, given the nature of multi-modal
human behaviours, it is difficult to generate diverse motion without access to
the distribution of motion states. On the other hand, it is common in sequential
generative models that the error will accumulate through time, which restricts
the maximum length of the generated motion sequence [6].

To generate natural and diverse motion, researchers have proposed statistical
models based on optimization [34, 17, 2]. For example, Style Machine is a prob-
abilistic generative model introduce in [2]. It is capable of generating motion
with different styles (e.g., motion of novice ballet or modern dance of an expert)
by optimizing with a cross-entropy framework. Motivated by this work, Motion
texture [17] further proposed a two-level statistical model designed to capture di-
verse motion transitions, which achieves visually appealing state switching within
seen sequence clips. However, these optimization-based methods are commonly
restricted by the optimization complexity and can hardly be applied with large-
scale dataset. Meanwhile, it is hard for these approaches to generalize to unseen
distribution of data.

To adapt and generalize to large-scale data, deep neural networks are utilized
in several recent works [11, 10, 36]. For example, Holden et al. [11] introduced to
synthesize the motion sequence using deep networks by first taking the control
signal as inputs, the outputs of the deep networks are then furthered edited via
image-based style transfer techniques [7]. Although the adopted style transfer
approach works well for transferring texture and color in the image domain, it
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does not necessarily generalize to motion stylization. Without carefully designed
training strategies for post-processing, unnatural pose and other artifacts, e.g.,
foot sliding, is commonly observed during motion synthesis [9].

In this work, we present hierarchical style-based networks, which leverage the
large spectrum of human behaviours from unlabeled and unsegmented data to
generate long-range, diverse and visually plausible motion sequences (as shown
in Figure 1). Our framework is in a 2-level hierarchical structure: (i) Locally, our
network first generates multiple short-range motion sequences independently;
(ii) Globally, these short-range motion are then connected sequentially in time
to a long-range motion sequence.

For obtaining diverse long-range motion sequences, we will first need to gen-
erate diverse short-range motion clips. To achieve this, we propose to disentangle
the feature representation for short-range motion to two parts, representing the
content and the style of the motion. The content refers to the specific action
performed at each step, e.g., walking, running and dancing. The style refers
to some pattern/property existing throughout the whole sequence, which keeps
constant along with time. Take the walking motion for example: senior individ-
uals and child walking sequences demonstrate two different styles for the same
“walking” action. With this disentangled representation, we can obtain diverse
motion from the free-form combination of motion content vectors and style vec-
tors. However, labeling content and style is expensive and most of the time
it is even hard to define the style semantically. Thus, instead of defining the
style, we propose an unsupervised learning approach to automatically discover
the disentanglement between content and style. Specifically, we utilize a bi-linear
transformation to explicitly decompose the motion feature into two components,
and the two features are then combined together to reconstruct the input motion
in an auto-encoder structure. The key for disentanglement is that we enforce the
intermediate style feature to be consistent in time.

Given the synthesised short-range clips, we propose to connect them sequen-
tially in time with motion interpolation between each two clips. Our network
takes the starting and ending states from two different clips as inputs. To in-
terpolate between these two states, we propose a parameterized representation
which maintains the component scale of the generated sequences (e.g., bone
lengths are fixed along time). Specifically, the representation is parameterized
by a bi-directional LSTM model, which concurrently leverages the motion infor-
mation of starting and ending states. In this way, we can obtain more plausible
and visually appealing interpolation results.

Extensive experiments are conducted on large-scale human motion dataset-
s [11]. We show that the proposed method outperforms existing motion genera-
tion baselines in terms of synthesis length, diversity and plausibility, e.g., being
useful as sub-goals for actual physical execution in the animated world. We also
demonstrate the proposed model is capable of synthesising novel motion based
on unseen data without additional fine-tuning procedure, which indicates the
generalization ability of our method.
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2 Related Work

Motion Interpolation. Given start and end states, this task aims to synthesize
intermediate states which smoothly translate between them [31]. For video in-
terpolation [19, 18, 20, 22] where start and end states are two consecutive frames,
the final result is expected to increase frame rate of original video to a higher val-
ue. Previous researches often utilize phase dynamics [20], flow based feature [19]
and other motion information [22] to facilitate this task. Our work is differ-
ent from this branch of work because there exists large motion gap between
start and end states in our settings. Another branch of work is video comple-
tion [4, 18, 32]. It receives two nonconsecutive frames as input and aims to fill
the motion gap between start and end states. [4] firstly attempts to solve this
task and more specifically, propose to select out a rational path in the latent
space with BFGS [3] algorithm. [18] incorporates the 3D convolution layers and
LSTM network into a unified model, which tries to automatically find the op-
timal results for intermediate frames. Despite much progress has been made in
this filed, the high dimensional data (i.e., video frames) severely restricts video
completion within simple and seen motion categories. However, we do not limit
the start and end states belonging to the same sequence. Meanwhile, we expect
the interpolated sequence as diverse as possible meanwhile with natural transi-
tion between synthesised states. This has not been deeply addressed in previous
motion completion works [33, 15]. As a potential downstream application, our
model could be used to construct motion planning [21] algorithm. Compared to
goal-driven RL [14, 15], our model gets rid of requirements hard to achieve, i.e.,
known dynamics of agent, which is more general and applicable to more motion
planning scenarios.

Motion Synthesis in Computer Graphics. In the context of computer
graphics, there is a branch of researches [13, 23, 16, 28, 11] which also concentrate
on motion generation, i.e., obtaining a continuous trajectory from a discrete set
of poses. Our work shares similar target with this branch of work. However, we
would like to emphasise that these works [28, 13, 23] are in parallel with ours
and have completely different research routine on this task. More specifically,
graphics methods [2, 17] focus on formulating an optimal and explicit statistic
modelling framework, which is not easy scale-up to large datasets and unseen
motion. For example, [2] introduce a fully data-driven method for articulated
motion generation, which needs online optimization if given new demonstration
data as inputs. The involved learning procedure is relatively more complex com-
pared to ours and needs careful hyperparameter tuning. On the contrary, our
model combines both advantages of deep model and purely data-driven method.
Another related work [17] proposes a statistical model for approximation of orig-
inal motion distribution, which is represented by a transition matrix indicating
the possibility of state change. This method requires all motion data are avail-
able for generation, which is in turn restricted to seen data. Differently, our
model could generalize to unseen data, which implies more practical value for
downstream application.
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Fig. 2. Proposed framework for hierarchical style-based motion synthesis: (a) Reference
Motion Search: We search for reference subsequences in the training set; (b) Short-range
Motion Generation: a novel subsequence is then generated based on reference one with
motion style transfer; (c) Long-range Motion Generation: all synthesized subsequences
are connected together in temporal order with bi-directional modelling.

3 Method

In this work, we aim to synthesize visually natural, diverse and long-range motion
sequence constrained by a pair of starting/ending states in a hierarchical manner.
We denote the motion sequence with length of M as S = [s1, ..., si, ..., sM ], where
si is the state at time stamp i. The starting and ending states are denoted as sS
and sE respectively. Note that s ∈ RJ×3, where J refers to the number of joints,
which is represented with the x-y-z Cartesian coordinate.

Our motion synthesis framework contains 3 steps as shown in Fig. 2: (i)
Reference Motion Search. Given the input starting/ending states, we define Ref-
erence Motion Search as first dividing the route to L segments by adding L− 1
sub-goals in between on the ground; then, for a segment l, sampling 1 reference
subsequences Sl ∈ RM×J×3 from the dataset.5 Each sub-goal is represented by
a spatial point pl ∈ R2, l = 1, .., L − 1. We denote pS and pE as the project-
ed locations of root joint of sS and sE . (ii) Short-range Motion Generation.

Toward diverse motion generation, when generating subsequence Ŝl, we advo-
cate a synthesis paradigm in the motion style transfer manner, which keeps the
content identical to that of Sl while changing the style based on another sub-
sequence that is randomly sampled from the dataset. (iii) Long-range Motion
Generation. Given the short-range motion subsequences, we connect each two
consecutive subsequences by adding a transitional motion in between. We denote
the transitional motion between Ŝl and Ŝl+1 as Ŝl,l+1 ∈ RN×J×3, where N is
the length of the sequence. The final long-range generated sequence is presented

as: [sS , Ŝ
0,1, Ŝ1, ..., Ŝl, Ŝl,l+1, Ŝl+1, ..., ŜL, ŜL,L+1, sE ].

5 Please refer to the supplementary material for detailed description about the sam-
pling procedure.
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Fig. 3. Proposed model for short-range motion generation. Left part: We train an
auto-encoder in self-supervised way, where bi-linear transformation is utilized for un-
supervised content and style disentanglement. Right part: Training objective (Ltrn)
emphasising the consistency at feature level is incorporated into the proposed model.
Note that the content and style features are from different subsequences if trained with
Ltrn.

3.1 Short-range Motion Generation

In this section, we present the procedure of generating short-range motion clips.
This part is formulated as a motion style transfer task, i.e., new motion clips
are synthesised via altering the style of reference subsequence Sl while keeping
their motion contents unchanged. Recall that the content refers to the specific
action performed at each step, e.g., walking, running and dancing, while the
style refers to some pattern/property existing throughout the whole sequence,
which keeps constant along with time. The free-form combination of content
and style information is used for diverse synthesis of subsequences Ŝl. Without
annotation of style, we first propose to learn corresponding representations in a
disentangling manner.

Content and Style Disentanglement. As shown in Fig. 3, two encoders,
φec and φes, are used to extract the content and style features as follows,

Hl
c = φec(S

l),Hl
s = φes(S

l), (1)

where Sl is input subsequence, Hl
c = {hl

c,i}Mi=1 and Hl
s = {hl

s,i}Mi=1 are the
content and style features respectively. Inspired by the success of content and
style separation in character and image [29] fields, we propose to reconstruct the
motion with a bi-linear transformation scheme:

ŝli = φd(B(hl
c,i,h

l
s,i)) (2)

where B(·) is the bi-linear transformation [29], i.e., B(hl
c,i,h

l
s,i) = hl

c,iW(hl
s,i)

T.

W ∈ RCctn×Cout×Csty is a bi-linear transformation weight. φd is the motion de-
coder, the subscript i indicates time step i. As a two-factor method, the bi-linear
transformation possesses an elegant mathematical property, i.e., separability:
their outputs are linear in either component when the other is kept unchanged.
Facilitated by bi-linear transformation, the contribution of two components can
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Fig. 4. Proposed model for long-range motion generation. Starting with skeleton model
of human subject (leftmost), we extract the corresponding direction vector from 3D
coordinate (second part), which are parameterized by the starting/ending states of one
subsequence (third part). This leads to more compact solution space with learnable
parameters (γ, λ), which are generated by the proposed bi-directional model.

be effectively disentangled and fused into a representative latent feature that is
naturally generalizable to unseen factor modes such as new contents [29].

Training Objective. Encoder and decoder are jointly trained by a L2 re-
construction loss, i.e., Lrec = ||Sl − Ŝl||22. To guarantee the style consistency of
the reconstructed subsequence, an explicit L2 loss is incorporated into training
procedure, i.e., Lcst = ||ĥl

s,i− ĥl
s,j ||22, where i, j are randomly sampled two style

features corresponding to time step i and j respectively. Meanwhile, the moving
route cl (including root position and velocity, foot position and velocity [11]) is
extracted as a part of content feature and trained with a L2 loss to prevent foot
sliding, i.e., Lrte = ||cl− ĉl||22, where cl is the input control signal. Note that the
moving route is treated as a part of content feature hl

c, i.e., cl ∈ hl
c.

At each iteration we sample a new batch of data for training, to further
guarantee the consistency at feature level. Suppose a subsequence (denoted as Ŝ)

is generated with the content Hm
c of Sm and style Hn

s of Sn. Ŝ is subsequently
fed into φec and φes to obtain reconstructed features, i.e., Ĥm

c and Ĥn
s . This

part is trained with Ltrn = ||Hm
c − Ĥm

c ||22 + ||Hn
s (Hn

s )T − Ĥn
s (Ĥn

s )T||22. The
latter part for style consistency is inspired from Gram Matrix utilized in image
translation [7]. The high-order statistics of style feature has been proven to be
more critical for translation in image domain. The final training objective is
presented as follows,

L = Lrec + 0.01Lcst + 0.5Lrte + Ltrn. (3)

Note that both the encoder and decoder are jointly trained under the supervision
of Ltrn. We present the model architecture details in the supplementary material.
Please refer to it.

3.2 Long-range Motion Generation

This part refers to connecting edited short-range subsequences (Ŝl, Ŝl+1) into

a long-range one with interpolated subsequence Ŝl,l+1. To achieve smooth and
natural transition, we propose to parametrize the original 3D coordinate space
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as shown in Fig. 4, which leads to a more compact output space consisting of
parameterized representation rather than motion states. Details are shown as
follows.

Parameterized Representation. Given the state st at time step t we first

obtain the direction vector vt(p, q) = st(p)−st(q)
||st(p)−st(q)||22

, where (p, q) correspond-

s to one child-parent pair of character joint according to the skeleton topology
(Fig. 4(b)). The transition subsequence is generated in the direction vector space.
Given two vectors (v1,vN ) as bases (the length of transition is assumed to be
N), interpolation is essentially the combination of v1 and vN . The interpolation
procedure is inspired from Quaternion Slerp [27] but generalized to non-linear
situation. As shown in Fig. 4(c), supposing v1 and vN are two bases in 3D space,
the third basis is obtained by outer product of them: v1×N = v1 × vN . There-
fore arbitrary direction vector vt could be represented in the parameterization
manner as follows,

vt =
sin(1− γt)Λ

sinΛ
(
sin(1− λt)Ω

sinΩ
v1 +

sin(λtΩ)

sinΩ
vN ) +

sin(γtΛ)

sinΛ
v1×N , (4)

where Ω is directed angle between v1 and vN , Λ = π/2 because of outer product.
vt is thus parameterized by v1 and vN with (γt, λt). Note that γt, λt are two
learnable parameters in our work, which is modelled by a bi-directional LSTM [8]
introduced in following paragraph.

Intuitively, the interpolation defined by Eqn. 4 is analogous to locating on
the earth with the longitude and latitude. The Eqn. 4 conducts quaternion slerp
twice, where the first one, inside the brackets, decides the “longitude” (λ) and
the second one, outside the brackets, decides the “latitude” (γ). One one hand,
the output dimension at each time stamp is reduced from 4J (quaternion) to 2J
(γ, λ), leading to a more compact solution space. On the other hand, outputs
are naturally valid, i.e., unit vector required by direction vector, which avoids
additional normalization procedure.

Bi-directional Modelling. As shown in Fig. 4(d), we utilize two LSTM [8]
networks (forward and backward) to achieve natural and plausible interpolation
in the parametrization space (o = {λ, γ}). The forward one (denoted as ψf ) pre-
dicts future states with o1 as origin and oN as target. The counterpart (denoted
as ψb) takes the reverse direction, i.e., oN as origin and o1 as target. The whole
modelling procedure is executed as follows,

ôt+1,f = ψf (ôt,f ,oN ), ôt−1,b = ψb(ôt,b,o1), (5)

The complementary pair of forward/backward outputs, i.e., (ôt,f , ôN−t,b) are
firstly converted back to the x-y-z coordinate space (̂st,f , ŝN−t,b) with forward
kinematics [25], and then fused as follows,

ŝt = ψfse(̂st,f , ŝN−t,b),Lpos = ||st − ŝt||22. (6)

With supervision signal in the position space, the topology information of char-
acter skeleton is better utilized and motion generation artifacts, e.g, foot sliding,
could be explicitly punished during training procedure.
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Adversarial Training: Generalizing beyond Training Sequence. Above
interpolation is trained with starting/ending pair belonging to the same se-
quence, i.e., with ground truth. However, proposed model should be tested with
arbitrary state pairs for practical usage. It lacks ground truth signal for training
under such condition. We thus utilize adversarial training to facilitate general-
ization ability of motion interpolation. More specifically, with s1, sN sampled
from different sequences, ψf,b give prediction of intermediate states as described
above, which are regarded as fake sequences. A motion discriminator D is further
proposed for adversarial training as follows,

LD =
1

2
((1−D(S))2 +D2(G(s1, sN ))),LG = (1−D(G(s1, sN )))2, (7)

where G refers to proposed interpolation model in this section. The discriminator
architecture follows the work of Chen et.al. [5], i.e., built based on residual block
and designed for synthesising more realistic 3D poses.

3.3 Implementation Details

We implement the proposed framework with Pytorch [24] platform. Note that the
long-range and short-range generation models are trained disjointly, but could
be tested in the end-to-end manner without extra overhead. We empirically get
suboptimal results with joint training, which is also time consuming to converge.
The short-range part is trained w.r.t. Eqn. 3. As for the long-range generation
part, the adversarial training scheme is adopted , i.e., alternatively supervised by
Lpos+0.01LG and 0.01LD. We adopt Adam [12] as the optimizer, where learning
rate, learning decay and weight decay are set to 5e−4, 0.97, 1e−5 respectively.
Note that learning decay is executed after the end of every epoch. Both parts
are trained with 200 epoches or until converged.

4 Experiments

4.1 Evaluation settings

Datasets. We use the CMU Mocap dataset 6 for training. Reference subse-
quences are obtained in a sliding window manner, where M = 120 and N = 40.
The dimension of state at a single time step (st) is 63, which is 21 joints with 3D
coordinates. To demonstrate that our model could generate novel behaviour n-
ever seen during training, we keep a held-out reference set (denoted as DR) from
training data (denoted as DT ) for further testing. The held-out set provides
reference subsequences during testing.

Baselines. Considering the hierarchical structure of our model, we present
comparison experiments at both two levels (short-range and long-range). For
short-range generation, we compare our model with two strong baselines: the
work of Holden et.al. [11] (termed as DeepSyn in this paper) and QuaterNet [25].

6 http://mocap.cs.cmu.edu/
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Fig. 5. Motion diversity evaluation. X-axis
is the proportion of data used for training.
Y-axis is the deviation of joint coordinates.
Our model is able to synthesize more di-
verse sequences than baseline models.

Fig. 6. Style feature visualization. We
can see that facilitated by the loss
Ltrn, the style feature of synthesized
sequence is closer to the input one (ref-
erence) and kept relatively constant.

QuaterNet [25] is retrained with the same data used in this work. The input
dimension is adjusted to match with our data. For long-range generation, we
compare our model with temporal prediction baselines: HP-GAN [1] and MT-
VAE [35]. For these two baselines, the ending states are feed as input with
the default hyper-parameter setting, i.e., trained as goal-conditioned prediction
models.

4.2 Evaluation of Short-range Generation

Generation diversity evaluation. We compare our model with DeepSyn [11]
and QuaterNet [25] in evaluation of motion diversity, comparing the motion di-
versity under different percentages of data used for training. As illustrated in
Fig. 5, 10%, 30%, 50% and 100% training data are used respectively. We calcu-
late the averaged standard diviation of all joints with a higher value indicating
more diverse. We can see that both DeepSyn [11] and QuaterNet [25] keep rela-
tive constant motion diversity which is comparable with training data used less
than 30%, but largely inferior to the diversity of full training data. On the con-
trary, our model achieves higher motion diversity, which mainly benefits from
the hierarchical style-based framework.

Short-range generation visualization. Fig. 7 shows the short-range re-
sults (from top to bottom generated motion: our model, DeepSyn [11] and
QuaterNet [25]). We can observe that DeepSyn [11] synthesises a abnormal
walking sequence with unnatural behavior (middle row in Fig. 7, fall-down pose
during synthesis). QuaterNet [25] is able to generate a visually natural walking
sequence but struggles to produce diverse motion behaviour (last row in Fig. 7,
restricted within simple locomotion synthesis). Different from all these models,
our hierarchical style-based model achieves natural state transition throughout
the whole sequence (first row in Fig. 7), meanwhile provides natural and diverse
motion (i.e., walking-turning-dancing) behaviours during generation.

Style feature consistency evaluation. As shown in Fig. 6, we plot one
representative dimension of the learned style feature for a complete sequence.
The purple/green/gray curves refer to the style feature of reference sequence,
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Ours

Holden et.al. 
[11]

QuaterNet 
[25]

Fig. 7. Comparison of motion naturalness with DeepSyn [11] and QuaterNet [25].
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Fig. 8. Visualization of generated short-range subsequences. The edited sequence (mid-
dle column) well preserves the detailed motion from content sequence (e.g., the arm
moving in the first row) and constant pattern from style sequence (e.g., the arm lifting
in the second row).

synthesised sequence trained with and without Ltrn respectively. We can ob-
serve that training without the supervision of Ltrn leads to the transferred style
feature (gray curve) drifts away from the reference one (purple curve). On the
contrary, training with the supervision of Ltrn (green curve) effectively facili-
tates transferring the style pattern from reference sequence to the synthesised
one (the green curve is close to the purple curve).

Style-based generation evaluation. As shown in Fig. 8, we provide two
edited sequence examples (middle part) which possess the general motion style
from one subsequence (right part), but detailed motion pattern from another
one (left part). For the first sequence (top row in Fig. 8), the target style motion
shows a walking sequence with back bent down (style), while the reference motion
content (sampled from held-out set DR) is a sequence with arm waving. We
can notice that the synthesised motion (second column, top row) preserves the
arm motion and learns the style pattern (back bent down) successfully. For the
second sequence (bottom row in Fig. 8), the target style motion shows a walking



12 Xu et al.

(A) MSE for prediction accuracy (B) Foot height variation

End 

Interpolation
Start 

Interpolation

M
S

E

F
o
o
t 

H
ei

g
h
tOurs

HP-GAN
MT-VAE

Fig. 9. Evaluation of long-range motion generation in terms of training MSE (A) and
foot height variation (B). (A) shows that our model (blue line) achieves lower error
than baseline models. (B) demonstrates the non-linearity of interpolation results.
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Fig. 10. States transition visualization for evaluation of smoothness.

sequence with arm lifted horizontally (style), while the reference motion content
(sampled from training set DT ) is a regular walking sequence. The synthesised
motion (second column, bottom row) fully captures the style of upper body
meanwhile maintains the walking pattern from reference sequence.

4.3 Evaluation of Long-range Motion Generation

Generation accuracy evaluation. We compare with two goal-conditioned
prediction models (HP-GAN [1] and MT-VAE [35]) evaluated by prediction ac-
curacy. The training data is a subset chosen from original one, consisting of
locomotion, punching, kicking and dancing sequences. The test data belongs to
the same motion category of no overlap with training data. We calculate the
MSE value (the lower the better) of predicted clips given starting/ending states
from the same sequences. As shown in Fig. 9 (A), we can see that facilitated
by the bi-directional modelling, our model could equally consider the contribu-
tion of starting/ending states, which leads to high transition accuracy (i.e., low
MSE value) near the starting/ending states. Further boosted by the proposed
parameterization method (i.e., more compact output space), the interpolation
accuracy outperforms both HP-GAN [1] and MT-VAE [35] by a large margin.

Interpolation sequence visualization. Fig. 10 demonstrates long-range
motion generation results given starting and ending states from different refer-
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Fig. 11. Left: Motion generation given the same starting and ending states. Right:
Long-range Motion generation with characteristic routes.

ence subsequences, respectively. Note that here the starting and ending states
are sampled from held-out set (DR) for evaluation. Synthesised motion clips of
long-range part are termed as interpolation sequences for simplicity. Note that
for all sequences shown in Fig. 10, the starting as well as ending states are from
held-out reference set. We can observe that our model is able to generate s-
mooth and natural transition when starting and ending states are similar (left
part in Fig. 10). Moreover, when encountered large motion difference (right part
in Fig. 10), e.g., from walking to dancing, turning back with a relatively large
degree, our model still makes it to generate visually natural transition sequence.

Non-trivial interpolation verification. To evaluate whether our model
learns non-linear interpolation between two sequences, we report the height vari-
ation of the right foot in a composed motion sequence. Meanwhile, we manually
rotate the second sequence w.r.t. the final state of the first sequence to show
that our model is robust to a large range of direction difference between two se-
quences. As shown in Fig. 9(B), we present multiple curves which correspond to
different rotation angles. All recorded curves are highly non-linear but smooth
between starting and ending points. Moreover, our model adaptively changes
foot height with different rotation configurations, which indicates smooth and
natural motion for better long-range motion generation.

Visualization of final synthesized sequences. With both short-range
and long-range motion generation, we are able to synthesize final sequences. Re-
call that our model is constrained by given starting and ending states for motion
interpolation. To this end, we present three synthesized sequences in Fig. 11, of
which each result leverages three reference subsequences and four generated clips
for motion generation. As shown in left part of Fig. 11, starting from the same
state, we are able to generate long-range and visually natural motion boosted
by the short-range and long-range motion generation. Meanwhile, we are able to
generate diverse behaviour (shown as complex hand and arm motion) facilitated
hierarchical style-based modelling.

Reality Evaluation. We evaluate the reality of the synthesised long-range
sequence quantitatively. We train three classifiers with the ground truth as posi-
tive samples. Negative samples are generated by three models (i.e., DeepSyn [11],
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Table 1. Classification Accuracy for evaluating the reality of synthesised sequences.

DeepSyn [11] QuaterNet [25] Ours

DeepSyn [11] — 37.6% 66.3%

QuaterNet [25] 41.9% — 75.3%

Ours 28.3% 50.4% —

QuaterNet [25], and Ours) respectively. As shown in Tab. 1, we report the pro-
portion of generated sequences classified as positive ones. Row refers to the model
used to train the classifier. Column refers to the model evaluated by the clas-
sifiers. Our model generates more realistic sequences than these two baselines
(first two rows). The proportion of the other two models’ results classified as
positive by the our model (third row) is lower.

Distribution Similarity Evaluation. Inspired by FVD score [30] we mea-
sure the distribution similarity between the original and generated sequences
with motion features as inputs. The scores (the lower the better) are 281.5 (Deep-
Syn [11]), 341.1 (QuaterNet [25]), and 179.8 (ours), i.e., the distribution of our
results is closer to that of the original data. Meanwhile, we compare the motion
diversity of short-range sequences with those generated by the full model. Motion
deviation (the higher the better) is reported, i.e., 0.226 (short-range sequence)
and 0.347 (full sequence) respectively. We can see that the long-range generation
model facilitates increasing the motion diversity by a large margin.

4.4 Application

Expert demonstration guidance for imitation learning. Under a simulat-
ed environment with gravity constrain [26], unnatural motion violating physical
law (e.g., severe joint twisting) is hard for a simulated agent to follow. To fur-
ther show our model produces realistic motion, generated results are used for
demonstration guidance of imitation learning. As shown in Fig. 11, the right
part is demonstration synthesised by our model (top) while the bottom one is
learned policy with [26]. We can see that the learned motion succeeds to follow
the synthesised one.

5 Conclusion

In this work, we present hierarchical style-based networks to generate long-range,
diverse and visually plausible motion sequences. Our framework is in a 2-level
hierarchical structure involving short-range and long-range motion generation
respectively. On large-scale skeleton dataset, we show that the proposed method
is able to synthesise long-range, diverse and plausible motion, which is also gen-
eralizable to unseen motion data during testing.
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