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1 Dataset curation

In this section, we describe our process for obtaining keypoint and segmentation
annotations for the Stanford Dog Dataset [1]. We submit the entire set of 20,580
dog images to the Amazon Mechnical Turk crowdsourcing platform to obtain a
set of 20 keypoint and segmentation masks. We overlay 1 bounding box, provided
with the original dataset, on the submitted images to identify the specific dog
for the annotators to label. Each image was sent to 3 independent annotators
for collecting keypoints and segmentation masks.

Keypoints. To identify keypoints, workers were given a list of 20 keypoints to
click: 2 per tail, 3 per leg, 2 per ear, nose and jaw. They were additionally asked
to provide a visibility flag per point.

For each keypoint, we process the three clicks to yield a reliable coordinate.
From the 3 clicks, we discard clicks that are further than a set tolerance from the
mean. If at least 2 clicks remain, we take the mean coordinate as the accepted
keypoint position. Otherwise, the point has not been reliably identified between
workers, so we set the keypoint as invisible. As described in the main paper,
we remove images from train and test splits which have fewer than 8 visible
keypoints.

Segmentation. For each image, each worker w ∈ {w1, w2, w3} submits a binary
segmentation mask Aw ∈ RH×W . We request a re-labelling for any submissions
which fail simple criteria, such as if the highlighted area is below a threshold
number of pixels.

For each image, we generate the most likely segmentation by comparing sub-
missions across workers. For any two workers w,w′ we compute a correlation
coefficient:
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Where � denotes the element-wise product of the matrices. We remove a
worker’s segmentation Aw if all correlation coefficients cw,w′ are below a set
threshold. The final binary mask is computed from the remaining submissions:



2 B. Biggs et al.
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Fig. 1. Accuracy distribution of all submitted dog segmentations across the entire
Stanford Dog Dataset.

We can also define the accuracy of a worker’s segmentation, as the largest
of their correlation coefficients: Acc(Aw) = maxw′ 6=w{cw,w′}. Figure 1 shows the
set of segmentation annotation accuracies over the entire labelled dataset.

2 Fitting SMBLD to 3D animation data

Another method for improving the generalizability of the SMAL model is to
improve the 3D shape prior. Such priors are typically used to ensure shape
deformation remain within a realistic and anatomically plausible range. Due to
the limited diversity of scans used to build the SMAL model, while the shape
prior does enforce realism among deformations, it does not allow for a wide
enough range to cover the set of dogs in our dataset.

We improve the quality of the prior (and learn a prior over our new scale
parameters) by fitting to a set of 13 artist-designed 3D dog meshes, designed
for animation use, which are more varied than the original set. We apply an
energy minimization scheme which aligns the SMAL vertices to each scan, under
smoothing regularizers.

Recall that SMBLD is adapted from the SMAL [3] deformable animal mesh,
by including limb scaling parameters. We learn a prior by fitting our SMBLD
model, which comprises parameters for pose θ and shape β (the latter of which
includes our scaling parameters κ).

Note that fitting SMBLD to 3D scans is significantly easier than to 2D im-
ages, since the complete 3D information of the target mesh is available. In addi-
tion, our target meshes are not particularly detailed and are already aligned in
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T-pose, so we avoid need for a complex alignment technique as discussed in, for
example SMPL [2] or SMAL [3].

We run an energy minimization process to align the SMBLD mesh to the
3D scans, subject to some smoothing regularizers. We minimize the following
energy formulation:

Eopt = Echamfer + Elaplacian + Eedge + Enormal (3)

where each of these terms has a scalar weight λ. We set λchamfer = λedge = 1.0,
λnormal = 0.01 and λlaplacian = 0.1. We run the optimization using SGD, learning
rate 10−4 for 1000 iterations.

Chamfer energy. A measure of the average distance between vertices of the
SMBLD mesh V = Fv(θ, β), and the target mesh vertices V ′, when p vertices
vi, v

′
j are sampled from each mesh respectively:

Echamfer(V, V
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Uniform laplacian energy. A measure of the mesh smoothness.

Edge energy. This energy is equal to the average edge length across the mesh,
and is used to encourage uniform distribution of vertices.

Normal energy. This energy promotes consistency between adjacent faces. It
is a measure of the average normal consistency between adjacent faces. For two
faces with normals n0 and n1, the normal consistency is 1− n0·n1

|n0||n1| .

At the end of this process, we have a collection of fits |(θ, β)|{i=1,...13} from
which we can learn our unimodal pose and shape priors. As discussed, we evenu-
tally use this unimodal shape prior to initialize our mixture shape prior, which
is tuned with the expectation-maximization step in the training loop.

3 Training procedure

Recall that the training objective for our end-to-end system for predicting SM-
BLD parameters consistent with a monocular dog input image is given by:

Lopt = Ljoints + Lsil + Lpose + Lshape + Lmixture (5)

As described in the paper, each loss term is weighted with a scalar λ and we
train our method in two stages:

Stage 1. We set λjoints = 10.0, λpose = 1.0, λshape = 1.0, λsil = 0.0, λmixture =
0.0. We train this stage for 250 epochs, using the Adam optimizer, with learning
rate set to 10−4.
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Stage 2. In this stage, we introduce the silhouette loss to encourage a shape
alignment between the projected model silhouette and the ground truth annota-
tion. We set λjoints = 10.0, λpose = 0.5, λshape = 0.0, λsil = 100.0, λmixture = 0.1.
We train this stage for 150 epochs and run the described EM update step every
K = 15 epochs. We selected to use M = 10 clusters based on a grid search over
M = 1, 5, 10, 25 and comparing IoU. We again use the Adam optimizer, and set
the learning rate to 10−5.
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