
Diverse and Admissible Trajectory Forecasting
through Multimodal Context Understanding

Supplementary Material

Seong Hyeon Park1, Gyubok Lee2, Jimin Seo3?, Manoj Bhat4?, Minseok Kang5,
Jonathan Francis4,6, Ashwin Jadhav4, Paul Pu Liang4, and

Louis-Philippe Morency4

1 Hanyang University, Seoul, Korea
2 Yonsei University, Seoul, Korea
3 Korea University, Seoul, Korea

4 Carnegie Mellon University, Pittsburgh, PA, USA
5 Sogang University, Seoul, Korea

6 Bosch Research Pittsburgh, Pittsburgh, PA, USA

A Additional Experimental Details

A.1 nuScenes Trajectory Extraction Process

nuScenes tracking dataset contains 850 different real-world driving records, each
of which spans 40 frames (20 seconds) of LiDAR point-cloud data, RGB camera
images, ego-vehicle pose records, and 3D bounding-box annotations of the sur-
rounding vehicles, pedestrians, animals, etc. It also provides a map API that gives
an access to the drivable area information. Based on this setting, we generate
trajectories by associating the bounding boxes of the same agents, using the agent
IDs available in the dataset. The resultant sequences, however, include noise
and missing points, due to annotation errors and occlusion issues, as depicted in
Fig. 1(b). To combat this, we employ Kalman smoothing [12] with the constant
velocity linear model in Eq. (1), in order to filter the noise and impute missing
points. When initializing the Kalman filter, we utilize Expectation-Maximization
(EM) [1] to fit the initial states and the covariance parameters (transition and
emission), with respect to the sequences.


xt+1

yt+1

zt+1

ẋt+1

ẏt+1

żt+1

 =


1 0 0 0.5 0 0
0 1 0 0 0.5 0
0 0 1 0 0 0.5
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




xt
yt
zt
ẋt
ẏt
żt

 (1)

Next, we construct the episodes for our trajectory dataset. The lengths of the past
and prediction segments are set to 2 and 3 seconds (4 and 6 frames), respectively.
As a result, an individual episode should contain a snippet of length 5 seconds (10
frames) from the smoothed trajectory, with a maximum of 30 samples extracted

? Authors contributed equally



2 S. Park, et al.

40 frames

: Missing Points

⋮

1 40

Frame Index

Smoothed & Imputed Snippets

(a) (b) (c)

𝑆−3
1 ⋯ 𝑆0

1 ⋯ 𝑆6
1

𝑆−3
2 ⋯ 𝑆0

2 ⋯ 𝑆6
2𝑆−3

1 ⋯ 𝑆0
1 ⋯ 𝑆6

1

𝑆−3
2 ⋯ 𝑆0

2 ⋯ 𝑆6
2

- 𝑆−1
3 𝑆0

3 ⋯ 𝑆6
3

𝑆−3
1 ⋯ 𝑆0

1 ⋯ 𝑆6
1

𝑆−3
2 ⋯ 𝑆0

2 ⋯ 𝑆6
2

𝑆−3
3 ⋯ 𝑆0

3 ⋯ 𝑆6
3𝑆−3

1 ⋯ 𝑆0
1 ⋯ 𝑆6

1

𝑆−3
3 ⋯ 𝑆0

3 ⋯ 𝑆6
3

Fig. 1. Trajectory association, filtering and imputation process. (a), (b), (c) depict the
bounding boxes in different frames, the associated and concatenated sequences, and the
final trajectory snippets, respectively. Each agent is assigned a different color.

from one episode. For each snippet, we normalize the coordinate system, such
that the ego-pose at the present time (4th frame) is placed at the origin (0, 0).

For each episode, we generate the road mask of dimension 224 × 224 that
covers 112× 112(m2) area around the ego-pose, at the present time. The map
API enables access to the drivable area information around the spot where the
dataset is collected. Based on the ego-pose, we query the drivable area and save
the returned information into a binary mask that is assigned 1’s at the pixels
belonging to the drivable area, and 0’s at the other pixels.

A.2 Argoverse Motion Forecasting Data

Argoverse motion forecasting contains about 320,000 episodes, each of which
spans 50 frames (5 seconds), along with a map API that gives an access to the
drivable area information. All of the episodes are pre-processed for the trajectory
forecasting task and, hence, additional extraction processes (such as association,
smoothing, and imputation) are unnecessary. However, to condition the data
samples to be as similar to the samples in the nuScenes trajectory (Section A.1)
as possible, we down-sample each episode to episode lengths of 10 frames (5
seconds). We also normalize the coordinate system, such that the ego-agent at
the present time is placed at the origin. As with nuScenes, we generate for each
episode the road mask of dimension 224× 224 which covers a 112× 112(m2) area
around the ego-agent at the present time.

A.3 CARLA Trajectory Extraction Process and Experiments

CARLA [6] is a vehicle and pedestrian behavior simulator wherein the agents
follow the physical laws of motions driven by Unreal Engine. In order to validate
the generalizability of our models, we synthesize trajectory forecasting data using
CARLA vehicles and record the trajectory for all simulation time-steps. We make
sure the data format is consistent with that of Argoverse and nuScenes. The
data extracted from the simulator includes: vehicle trajectories, 2D birds-eye-
view map images, lane center-lines, and LiDAR point-cloud data. The physics
engine (Unreal Engine 4.19) provides limited capability for producing actual
surface contour points, with the provided in-built CARLA ray-tracing LiDAR
sensor. Therefore, we utilize the depth image sensor to extract accurate depth



Diverse and Admissible Trajectory Forecasting 3

Fig. 2. Visualizing predictions over simulated CARLA dataset at a snapshot of
simulation-time with birds-eye-view image of drivable and non-drivable area and map.
The RED points indicate ground truth, GREEN points indicate past trajectory points
and BLUE indicates future trajectory points

information. We use four depth sensors, each with 90 deg field-of-view to capture
depth images at each time-step. Then points are uniformly sampled on each image
plane according to the number of channels and rotation frequency configuration
of selected LiDAR. These points are corresponded with the pixel depth value by
2D bi-linear interpolation and projected into 3D space. The points are assigned
a distance and an azimuth angle and converted from spherical coordinate to
Cartesian coordinate system. This simulates precise object-shape contoured
LiDAR point-cloud. Additional map Lane-center information is acquired from
the map way-points, by maintaining a curvature at turning intersections.

In this paper, only birds-eye-view maps are used. These maps are utilized
to build the distance transform of these images, as mentioned in Sec. 4.3 of the
main paper. The drivable and non-drivable area information is extracted, based
on the semantic segmentation of objects provided by the C++ API. The API is
extended to specifically capture only the drivable area, and we utilize the Python
API to save as a binary road mask with respect to ego-vehicle in simulation-time.

As the calibration parameters are not provided by the Unreal Engine physics
kit, the intrinsic and extrinsic camera parameters and the distortion parameters
are estimated by multiple camera view bundle adjustment. These parameters are
used to transform segmentation images from a perspective view to an orthographic
birds-eye-view. The maps are synchronized with the trajectory data 20 points in
the past trajectory segment and 30 points in the future trajectory segments for
all agents in a snapshot. In each map, we fix the number of agents to 5, including
the ego-vehicle. Engineered data can be further generated on similar lines, for
specialized edge-case handling of model. We will release our extended CARLA
dataset which presents multiple data modalities, corresponding simulation and
data extraction codes for our fellow researchers.

Performance Analysis: Model generalizability depends on both the map
characteristics as well as the statistical distribution of trajectory samples provided
by the dataset. The CARLA dataset has simpler cases compared to the the ones in
Argoverse motion forecasting. But there are scenic disturbances, like parked and
moving agents in the private property-areas, which is considered as non-drivable
area. Even considering these cases, the model is able to predict valid admissible



4 S. Park, et al.

Table 1. Results of baseline models and our proposed model in CARLA dataset.
Local-CAM-NF is an ablation, whereas AttGlobal-CAM-NF is our full proposed
model. The metrics are abbreviated as follows: minADE(A), minFDE(B), rF(C),
DAO(D), DAC(E). Improvements indicated by arrows.

Model
CARLA

A (↓) B (↓) C (↑)* D (↑)* E (↑)*

LSTM 0.866 1.752 1.000 5.838 0.984
CSP 0.671 1.271 1.000 5.827 0.990
MATF-D 0.599 1.108 1.000 5.807 0.992
DESIRE 0.748 1.281 1.745 21.68 0.969
MATF-GAN 0.566 1.015 1.212 11.94 0.988
R2P2-MA 0.658 1.116 1.892 33.93 0.990

CAM 0.695 1.421 1.000 5.615 0.981
CAM-NF 0.543 1.006 2.135 36.60 0.979
Local-CAM-NF 0.483 0.874 2.248 33.94 0.986
Global-CAM-NF 0.490 0.898 2.146 33.00 0.986
AttGlobal-CAM-NF 0.462 0.860 2.052 30.13 0.987

trajectories, only influenced by the provided drivable area. We rigorously analyze
the performance of our models in the CARLA dataset. The results are illustrated
in Table 1 where our model outperforms in minADE and minFDE metrics by
about 15% compared to baselines. CAM-NF model provides good performance
in diversity metrics DAO illustrating its capability in improving diversity by
using the flow-based decoder. From the results, our proposed AttGlobal-CAM-
NF model is better able to mimic the true distribution of the autopilot in the
simulator, showing considerable improvement in forecasting, over the baselines.

Table 2. Analysis on α on nuScenes.

Model minADE (↓) minFDE (↓) rF (↑) DAO (↑) DAC (↑)
AttGlobal-CAM-NF(0.25) 0.775 1.349 2.310 23.68 0.912
AttGlobal-CAM-NF(0.5) 0.639 1.171 2.558 22.62 0.918
AttGlobal-CAM-NF(0.75) 0.666 1.246 2.431 23.04 0.914
AttGlobal-CAM-NF(1.0) 0.840 1.679 1.970 22.83 0.904

A.4 Analysis of α

We experiment with various values of α—a degradation coefficient of constant
velocity. As shown in Table 2, models tend to perform better when trained with
a certain range of α less than 1.0, reflecting that degrading the assumption of
constant velocity (when α = 1.0) prevents the model to avoid trivial solutions and
encourages it to actively seek for necessary cues for predictions in non-constant
velocity. Among values we experimented, we choose to set α = 0.5 because the
largest rF and DAC are observed in this setting, while remaining competitive
in DAO, as well as the best precision in terms of minErrors of the prediction.
This is a desirable property in our task of diverse and admissible trajectory
forecasting. A possible future direction of our degradation approach is to replace



Diverse and Admissible Trajectory Forecasting 5

α with a learnable parametric function of noise centered at 1.0 that can perturb
the physical model of the world, similarly discussed in [7].

B Scene Context Processing

B.1 The Drivable-area Map and Approximating p

(a) (b) (c)

Fig. 3. (a) binary road mask, (b) the distance-transformed map, and (c) p̃ in nuScenes.
The colorbars indicate the scales of the pixel value (increasing from left to right).

(a) (b) (c)

Fig. 4. (a) binary road mask, (b) the distance-transformed map, and (c) p̃ in Argoverse.
The colorbars indicate the scales of the pixel value (increasing from left to right).



6 S. Park, et al.

(a) (b) (c)

Fig. 5. (a) binary road mask, (b) the distance-transformed map, and (c) p̃ in CARLA.
The colorbars indicate the scales of the pixel value (increasing from left to right).

We utilize the 224× 224 binary road masks in Sec. A.1 and Sec. A.2 to derive p̃,
which is used in the evaluation of the reverse cross-entropy in our loss function
at Eq. (7), the main paper. Since p̃ is evaluated using 2× 2 bilinear interpolation,
the probability should be assigned to be gradually changing over the pixels, or the
gradient would become 0 almost everywhere. To this end, we apply the distance
transform to the binary mask, as depicted in Fig 3(b), Fig 4(b), Fig 5(b). We
utilize this transformed map for deriving p̃, as well as the scene context input
Φ. As described in the main paper, our p̃ is defined based on the assumptions
that every location on the drivable-area is equally probable for future trajectories
to appear in and that the locations on non-drivable area are increasingly less
probable, proportional to the distance from the drivable area. Hence, we first
set the negative-valued pixels (drivable region) in a the distance-transformed
map to have 0s assigned and subtract each pixel from the maximum so that
the pixel values in the drivable-area are uniformly greatest over the map. Then,
we normalize the map with the mean and standard deviation calculated over
the training dataset to smooth the deviations. Finally, we apply softmax over
the pixels to constitute the map as a probability distribution p̃, as depicted in
Fig 3(c), Fig 4(c), Fig 5(c).

B.2 Generating scene context input Φ

The scene context input Φ ∈ R224×224×3 is directly generated utilizing the the
distance-transformed map. We augment 2 extra channels to the map, which
embeds the unique pixel indices and Euclidean distances between each pixel and
the center of the map. This way the ConvNet is enabled the access to the spatial
position in the input thus it can extract the location-specific features from the
scene context input. As similarly to the p̃, we normalize this augmented with the
mean and standard deviation calculated over the training dataset to smooth the
deviations.



Diverse and Admissible Trajectory Forecasting 7

C Additional Results Visualization

Past Trajectories Predictions GT

(a) (b) (c) (d)

(1)

(2)

Fig. 6. Prediction results on nuScenes. Brighter background colors represent greater p̃
values. Our approach predicts future trajectories that show diversity while remaining
admissible.



8 S. Park, et al.

Past Trajectories Predictions GT

(a) (b) (c) (d)

(1)

(2)

Fig. 7. Prediction results on Argoverse. Brighter background colors represent greater
p̃ values. Our approach predicts future trajectories that show diversity while remaining
admissible.

Past Trajectories Predictions GT

(a) (b) (c) (d)

(1)

(2)

Fig. 8. Prediction results on CARLA. Brighter background colors represent greater p̃
values. Our approach predicts future trajectories that show diversity while remaining
admissible.



Diverse and Admissible Trajectory Forecasting 9

Prediction results on nuScenes, Argoverse, and CARLA are illustrated in Fig 6,
Fig 7, and Fig 8, respectively. In most cases throughout all three datasets, our
model shows diverse and admissible predictions, even in the case of rapid left
or right turns as in (2)(d) in Fig 6 and (1)(d) and (2)(d) in Fig 8. An clear
insight on the quality of our model can be noticed when comparing predictions
in cases of one path and multiple paths in front. For example, cases in (1)(b) and
(2)(c) in Fig 6 show predictions are mostly going forward given the scene and
the past trajectories going forward, whereas cases in (1)(c) and (2)(d) in Fig 6
show predictions are diverse given the shape of the road and the past trajectories
that start to make turns. One weakness of our experimental setting is that it is
quite challenging for our model to predict an explicit left or right turn given the
past trajectory going only forward as illustrated in the bottom-most trajectory
in (1)(b) in Fig 6 and (1)(a) in Fig 8. One possible feature that can be added
to avoid such cases would be to incorporate encoded lane information in our
cross-agent interaction module along with trajectory encodings.

D Architecture and Training Details

D.1 Training Setup

For all experiments, we implemented models using the PyTorch 1.3.1 framework.
We performed all data extraction and model training on a desktop machine with
a NVIDIA TITAN X GPU card. We directly utilized the default implementations
of Adam optimizer [9] with the initial learning rate of 1.0E-04 and an adaptive
scheduler that halves the learning rate with patience parameter 3 based on the
sum of the avgADE and avgFDE in validation. The batch size is 64 for all
baselines and the proposed model except AttGlobal-CAM-NF, where the
batch size of 4 is used. We train the model for maximum 100 epochs, however,
the early stopping is applied when the over-fitting of a model is observed.

D.2 Hyperparameters

Our experiments involve predicting 3 seconds of future trajectories of surrounding
agents given a past record of 2 seconds, that includes the past trajectories and the
scene context at the present time. The setting is common over all three datasets
(nuScenes [4], Argoverse [5], and CARLA [6]) that we experiment. The trajectories
are represented as 2D position sequences recorded at every 0.5 seconds. The
hyperparameters of the network structure is described in Table 3 and Sec. D.3.

D.3 Network Details

In this section, we discuss the details on the network architecture of our model,
which are not discussed in the main paper. The details of the the cross-agent
attention and the agent-to-scene attention are particularly included in the dis-
cussion. We also give the edge case (e.g., bilinear interpolation at the position
out of scene range) handling methods in our model. Refer to Table 3 for the
hyperparameters used in the components of our model.



10 S. Park, et al.

Table 3. Network Hyperparameters.

Operation Input (dim.) Output (dim.) Parameters
ConvNet

(Every Conv2D is with ‘same’ padding, and followed by BN [8] & ReLU.)
Conv2D Φ (64, 64, 3) conv1 (64, 64, 16) kernel:=(3,3)
Conv2D conv1 conv2 (64, 64, 16) kernel:=(3,3)
MaxPool2D conv2 pool2 (32, 32, 16) kernel:=(2,2), stride:=(2,2)
Conv2D pool2 conv3 (32, 32, 32) kernel:=(5,5)
Conv2D conv3 conv4 (32, 32, 6) kernel:=(1,1)
Dropout conv3 Γg (32, 32, 32) p:=0.5
UpSample2D conv4 Γl (100, 100, 6) mode:=bilinear

Trajectory Encoding Module
(Repeated for a ∈ {1, 2, ..., A} with variable encoding time length Ta

past := tas + 1)
Difference Sa

past (Ta, 2) dSa
past (Ta, 2) zero-pad (at the start time)

Fully-connected dSa
past tSa

t (Ta, 128) activation:=Linear
LSTM tSa

t ha
0 (128) zero initial states

Cross-agent Interaction Module
(Repeated for a ∈ {1, 2, ..., A})

LayerNorm ha
0 (128) ha

ln (128) Layer Normalization [2]
Fully-connected ha

ln∀a ∈ {1, 2, ..., A} Q (A, 128) activation:=Linear
Fully-connected ha

ln∀a ∈ {1, 2, ..., A} K (A, 128) activation:=Linear
Fully-connected ha

ln∀a ∈ {1, 2, ..., A} V (A, 128) activation:=Linear
Attention Qa,K,V ha

atn (128) Scaled dot-product attention

Addition ha
0 , h

a
atn h̃a (128) h̃a = ha

0 + ha
atn

Local Scene Extractor
(Repeated for a ∈ {1, 2, ..., A})

Bilinear Γl, Ŝ
a
t−1 (2) γa

t (6) 2× 2 Bilinear Interpolation

Concatenate h̃a, γa
t hga

t (134) -
Fully-connected hga

t fhga
t (50) activation:=Softplus

Fully-connected fhga
t lca

t (50) activation:=Softplus
Agent-to-scene Interaction Module

(Repeated for a ∈ {1, 2, ..., A} with the fixed decoding time length 6)

Flatten Ŝa
0:t−1 (t, 2) fŜa

0:t−1 (12) zero-pad (at the last), Ŝa
0 := Sa

0

GRU fŜa
0:t−1 ĥa

t (150) zero initial state

Fully-connected ĥa
t fha

t (150) activation:=Linear
Fully-connected Γg fΓ (32, 32, 150) activation:=Linear
Attention fha

t , fΓ αΓ a
t (32, 32, 1) Additive attention

Pool Γg, αΓ
a
t γ̃a

t (32) Pixel-wise sum (Γg � αΓ a
t )

Concatenate γ̃a
t , ĥ

a
t , lc

a
t gca

t (232) -
Flow Decoder

(Repeated for a ∈ {1, 2, ..., A})
Fully-connected gca

t fgcat (50) activation:=Softplus
Fully-connected fgcat ffgcat (50) activation:=Tanh
Fully-connected ffgcat ûa

t (2), σ̂a
t (2, 2) activation:=Linear

Expm σ̂a
t σa

t (2, 2) impl. in [3]

Constraint µ̂a
t , Ŝ

a
t−2:t−1 µa

t (2) α := 0.5
Random. - zat (2) zat ∼ N (0, I)
Transform zat , µ

a
t , σ

a
t Sa

t (2) Sa
t = σa

t z
a
t + µa

t

We first discuss the details in the encoder. As described in the main paper, the
encoder is made of the trajectory encoding module and cross-agent interaction
module. The trajectory encoding module utilizes a linear transform and a single
layer LSTM to encode the observation trajectory for each agent Sapast ≡ Satas :0. To

encode the observation trajectory Sapast, we first normalize it to dSapast by taking
the differences between the positions at each time step to have a translation-
robust representation. Then, we linearly transform the normalized sequence dSat
to a high dimensional vector tSat with Eq. (2) then the vector is fed to the LSTM
with Eq. (3) to update the state output hat and the cell state cat of the LSTM.



Diverse and Admissible Trajectory Forecasting 11

tSat = Linear1(dSat ) (2)

hat+1, c
a
t+1 = LSTM(tSat , h

a
t , c

a
t ) (3)

Wrapping Eq. (2) and Eq. (3), along with the trajectory normalization process
into a single function, we get Eq. (1) in the main paper, where the same equation
is copied as Eq. (4) for the convenience. Note that the initial states of the LSTM
are set as zero-vectors.

hat+1 = RNN1(Sat , h
a
t ) (4)

The cross-agent interaction module gets the set of agent embeddings h0 =
{h1

0, ..., h
A
0 } and models the agent-to-agent interaction via an attention architec-

ture inspired by “self-attention” [10]. For each agent encoding ha0 , we first apply
Layer Normalization [2] to get the normalized representation haln in Eq. (5) and
calculate the query-key-value triple (Qa,Ka, V a) by linearly transforming haln
with Eq. (6)-(8). Note that we empirically found that Layer Normalization gives
a slight improvement to the model performance.

haln = LayerNorm(ha0) (5)

Qa = LinearQ(haln) (6)

Ka = LinearK(haln) (7)

V a = LinearV (haln) (8)

Next, we calculate the attention weights wa ≡ {wa1 , wa2 , ..., waA} by calculating
scaled dot-product between the query Qa and each key in the set of keys K ≡
{K1,K2, ...,KA} with Eq. 9 and taking softmax over the set of products with
Eq. 10.

SDa,a′ =
Qa ·Ka′√
dim(Qa)

(9)

wa = Softmax({SDa,1,SDa,2, ...,SDa,A}) (10)

Finally, we get the interaction feature Attention1(Qa,K,V ) in Eq. (2) of the
main paper, by taking the weighted average over V ≡ {V 1, V 2, ..., V A} using the
weights wa with Eq. (11).

Attention1(Qa,K,V ) =

A∑
a′=1

waa′V
a′ = haatn (11)

We now discuss the details in decoder. As described in the main paper, the
decoder is autoregressively defined and the previous outputs Ŝa0:t−1 are fed back.



12 S. Park, et al.

We encode the previous outputs using a GRU. Since the GRU requires a static
shaped input at each time step, we reconfigure Ŝa0:t−1 by flattening and zero-

padding it with Eq. (12) and the reconfigured vector fŜa0:t−1 is fed to the GRU
at each decoding step with Eq. (13).

fŜa0:t−1 = {Flatten(Ŝa1:t−1), 0, ..., 0} (12)

ĥat = GRU(fŜa0:t−1, ĥ
a
t−1) (13)

Wrapping Eq. (12) and Eq. (13) to a single function, we get Eq. (3) in the main
paper, where the same equation is copied as Eq. 14 for the convenience. Note
that the initial state of the GRU is set as a zero-vector.

ĥat = RNN2(Ŝa1:t−1, ĥ
a
t−1) (14)

The encoding ĥat at each step is utilized in the agent-to-scene interaction module.
The module is designed with an attention architecture inspired by “visual-

attention” [11]. We first linearly transform ĥat and each pixel Γ ig in the scene

feature Γg ≡ {Γ 1
g , Γ

2
g , ..., Γ

HW
g } with Eq (15),(16).

fhat = Linearĥ(ĥat ) (15)

fΓ i = LinearΓg
(Γ ig) (16)

Then, we calculate the additive attention Attention2(ĥat ,Γ ) in Eq. (4) of the
main paper by taking the addition of fhat to each fΓ i followed by ReLU in Eq. (17),
then applying softmax with Eq. (18).

SRa,i = Relu(fhat + fΓ i) (17)

Attention2(ĥat ,Γ ) = Softmax({SRa,1,SRa,2, ...,SRa,HW }) = αΓ at (18)

Further details on our model’s architecture and the hyperparameters, for instance
the ConvNet and fully-connected layers discussed in the main paper are listed
and defined in Table 3.

References

1. Abbeel, P.: Maximum likelihood (ml), expectation maximization (em).
Course Note (2011), https://people.eecs.berkeley.edu/~pabbeel/cs287-fa11/
slides/Likelihood_EM_HMM_Kalman-v2.pdf

2. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint
arXiv:1607.06450 (2016)

3. Bernstein, D.S., So, W.: Some explicit formulas for the matrix exponential. IEEE
Transactions on Automatic Control 38(8), 1228–1232 (1993)

https://people.eecs.berkeley.edu/~pabbeel/cs287-fa11/slides/Likelihood_EM_HMM_Kalman-v2.pdf
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa11/slides/Likelihood_EM_HMM_Kalman-v2.pdf


Diverse and Admissible Trajectory Forecasting 13

4. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A.,
Pan, Y., Baldan, G., Beijbom, O.: nuscenes: A multimodal dataset for autonomous
driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 11621–11631 (2020)

5. Chang, M.F., Lambert, J., Sangkloy, P., Singh, J., Bak, S., Hartnett, A., Wang, D.,
Carr, P., Lucey, S., Ramanan, D., et al.: Argoverse: 3d tracking and forecasting
with rich maps. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 8748–8757 (2019)

6. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: Carla: An open
urban driving simulator. arxiv 2017. arXiv preprint arXiv:1711.03938 (2017)

7. Fortunato, M., Azar, M.G., Piot, B., Menick, J., Osband, I., Graves, A., Mnih, V.,
Munos, R., Hassabis, D., Pietquin, O., et al.: Noisy networks for exploration. arXiv
preprint arXiv:1706.10295 (2017)

8. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

9. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

10. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. In: Advances in neural information
processing systems. pp. 5998–6008 (2017)

11. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R.,
Bengio, Y.: Show, attend and tell: Neural image caption generation with visual
attention. In: International conference on machine learning. pp. 2048–2057 (2015)

12. Yu, B.M., Shenoy, K.V., Sahani, M.: Derivation of kalman filtering and smooth-
ing equations. Course Note (2004), http://users.ece.cmu.edu/~byronyu/papers/
derive_ks.pdf

http://users.ece.cmu.edu/~byronyu/papers/derive_ks.pdf
http://users.ece.cmu.edu/~byronyu/papers/derive_ks.pdf

	Diverse and Admissible Trajectory Forecasting through Multimodal Context Understanding Supplementary Material

