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Abstract. Multi-agent trajectory forecasting in autonomous driving re-
quires an agent to accurately anticipate the behaviors of the surrounding
vehicles and pedestrians, for safe and reliable decision-making. Due to
partial observability in these dynamical scenes, directly obtaining the
posterior distribution over future agent trajectories remains a challenging
problem. In realistic embodied environments, each agent’s future trajecto-
ries should be both diverse since multiple plausible sequences of actions
can be used to reach its intended goals, and admissible since they must
obey physical constraints and stay in drivable areas. In this paper, we pro-
pose a model that synthesizes multiple input signals from the multimodal
world—the environment’s scene context and interactions between multiple
surrounding agents—to best model all diverse and admissible trajectories.
We compare our model with strong baselines and ablations across two
public datasets and show a significant performance improvement over
previous state-of-the-art methods. Lastly, we offer new metrics incorpo-
rating admissibility criteria to further study and evaluate the diversity of
predictions. Codes are at: https://github.com/kami93/CMU-DATF.

Keywords: Trajectory Forecasting · Diversity · Admissibility · Genera-
tive Modeling · Autonomous Driving

1 Introduction

Trajectory forecasting is an important problem in autonomous driving scenarios,
where an autonomous vehicle must anticipate the behavior of other surrounding
agents (e.g., vehicles and pedestrians), within a dynamically-changing environ-
ment, in order to plan its own actions accordingly. However, since the contexts
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Fig. 1. Diverse and admissible trajectory forecasting. Based on the existing context,
there can be multiple valid hypothetical future trajectories. Therefore, the predictive
distribution of the trajectories should reflect various modes, representing different
plausible goals (diversity) while penalizing implausible trajectories that either conflict
with the other agents or are outside valid drivable areas (admissibility).

of agents’ behavior such as intentions, social interactions, or environmental con-
straints are not directly observed, predicting future trajectories is a challenging
problem [22,26,33]. It requires an estimation of most likely agent actions based on
key observable environmental features (e.g., road structures, agent interactions)
as well as the simulation of agents’ hypothetical future trajectories toward their
intended goals. In realistic embodied environments, there are multiple plausible
sequences of actions that an agent can take to reach its intended goals. However,
each trajectory must obey physical constraints (e.g., Newton’s laws) and stay in
the statistically plausible locations in the environment (i.e., the drivable areas). In
this paper, we refer to these attributes as diverse and admissible trajectories, and
illustrate some examples in Fig. 1. Achieving diverse and admissible trajectory
forecasting for autonomous driving allows each agent to make the best predictions,
by taking into account all valid actions that other agents could take.

To predict a diverse set of admissible trajectories, each agent must under-
stand its multimodal environment, consisting of the scene context as well as
interactions between other surrounding agents. Scene context refers to the typical
and spatial activity of surrounding objects, presence of traversable area, etc.
which contribute to forecasting next maneuvers. These help to understand some
semantic constraints on the agent’s motion (e.g., traffic laws, road etiquette) and
can be inferred from the present and corresponding mutlimodal data i.e spatial
as well as social, temporal motion behavior data. Therefore, the model’s ability
to extract and meaningfully represent multimodal cues is crucial.

Concurrently, another challenging aspect of trajectory forecasting lies in
encouraging models to make diverse predictions about future trajectories. Due
to high-costs in data collection, diversity is not explicitly present in most public
datasets, but only one annotated future trajectories. [7,16,18]. Vanilla predictive
models that fit future trajectories based only on the existing annotations would
severely underestimate the diversity of all possible trajectories. In addition,
measuring the quality of predictions using existing annotation-based measures
(e.g., displacement errors [23]) does not faithfully score diverse and admissible
trajectory predictions.
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Fig. 2. Overview of our multimodal attention approach. Best viewed in color. The cross-
agent attention module (left) generates an attention map over the encoded trajectories
of neighboring agents. The agent-to-scene attention model (right) generates an attention
map over the scene, based on the drivable-area map.

As a step towards multimodal understanding for diverse and admissible
trajectory forecasting, our contributions are three-fold:

1. We propose a model that addresses the lack of diversity and admissibility
for trajectory forecasting through the understanding of the multimodal
environmental context. As illustrated in Fig. 2, our approach explicitly models
agent-to-agent and agent-to-scene interactions through “self-attention” [27]
among multiple agent trajectory encodings, and a conditional trajectory-
aware “visual attention” [31] over the map, respectively. Together with a
constrained flow-based decoding, trained with symmetric cross-entropy [21],
this allows our model to generate diverse and admissible trajectory candidates
by fully integrating all environmental contexts.

2. We propose a new annotation-free approach to estimate the true trajectory
distribution based on the drivable-area map. This approximation is utilized
for evaluating hypothetical trajectories generated by our model during the
learning process. Previous methods [21] depend on ground-truth (GT) record-
ings to model the real distribution; for most of the time, only one annotation
is available per agent. Our approximation method does not rely on GT sam-
ples and empirically facilitates greater diversity in the predicted trajectories
while ensuring admissibility.

3. We propose a new metric, Drivable Area Occupancy (DAO), to evaluate
the diversity of the trajectory predictions while ensuring admissibility. This
new metric makes another use of the drivable-area map, without requiring
multiple annotations of trajectory futures. We couple this new metric with
standard metrics from prior art, such as Average Displacement Error (ADE)
and Final Displacement Error (FDE), to compare our model with existing
baselines.

Additionally, we publish tools to replicate our data and results which we hope
will advance the study of diverse trajectory forecasting. Our codes are available
at: https://github.com/kami93/CMU-DATF.

https://github.com/kami93/CMU-DATF
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2 Related Work

Multimodal trajectory forecasting requires a detailed understanding of the
agent’s environment. Many works integrate information from multiple sensory
cues, such as LiDAR point-cloud information to model the surrounding environ-
ment [17, 21, 22], high dimensional map data to model vehicle lane segmenta-
tion [3, 6,33], and RGB image to capture the environmental context [17,18,24].
Other methods additionally fuse different combinations of interactions with the
intention of jointly capturing all interactions between the agents [1, 11, 18, 24].
Without mechanisms to jointly and explicitly model such agent-to-scene and
agent-to-agent relations, we hypothesize that these models are unable to capture
complex interactions in the high-dimensional input space and propose methods
to explicitly model these interactions via sophisticated attention mechanisms.
Multi-agent modeling aims to learn representations that summarize the behav-
ior of one agent given its surrounding agents. These interactions are often modeled
through either spatial-oriented methods or neural attention-based methods. Some
of the spatial-oriented methods simply take into account agent-wise distances
through a relative coordinate system [3,13,19,22], while others utilize sophisti-
cated pooling approaches across individual agent representations [8, 11, 17, 33].
On the other hand, the attention-based methods use the attention architecture
to model multi-agent interaction in a variety of domains including pedestri-
ans [9, 24, 28] and vehicles [18, 26]. In this paper, we employ the attention based
cross-agent module to capture explicit agent-to-agent interactions. Even with the
increasing number of agents around the ego-vehicle, our cross-agent module can
successfully model the interactions between agents, as supported in one of our
experiments.
Diverse trajectory forecasting involves stochastic modeling of future trajec-
tories and sampling diverse predictions based on the model distribution. The
Dynamic Bayesian network (DBN) is a common approach without deep genera-
tive models, utilized for modelling vehicle trajectories [10, 25, 30] and pedestrian
actions [2,15]. Although the DBN enables the models to consider physical process
that generates agent trajectories, the performance is often limited for real traffic
scenarios. Most state-of-the-art models utilize deep generative models such as
GAN [11,24,33] and VAE [17] to encourage diverse predictions. However, these
approaches mostly focus on generating multiple candidates while less focusing
on analyzing the diversity across distributional modes. Recently, sophisticated
sampling functions are proposed to tackle this issue, such as Diversity Sampling
Function [32] and Latent Semantic Sampling [12]. Despite some promising empir-
ical results, it remains difficult to evaluate both the diversity and admissibility
of predictions. In this paper, we tackle the task of diverse trajectory forecasting
with a special emphasis on admissibility in dynamic scenes and propose a new
task metric that specifically assess models on the basis of these attributes.

3 Problem Formulation

We define the terminology that constitutes our problem. An agent is a dynamic
on-road object that is represented as a sequence of 2D coordinates, i.e., a spatial
position over time. We denote the position for agent a at time t as Sat ∈ R2,
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sequence of such positions from t1 to t2 as Sat1:t2 , and the full sequence as (bold)
Sa. We set t = 0 as present, t ≤ 0 as past, and t > 0 as prediction or simply, pred.
We often split the sequence into two parts, with respect to the past and pred sub-
sequences: we denote these as Sapast and Sapred. In order to clearly distinguish the

predicted values from these variables, we use ‘hats’ such as Ŝat and Ŝpred. A scene
is a high-dimensional structured data that describes the present environmental
context around the agent. For this, we utilize a bird’s eye view array, denoted as
Φ ∈ RH×W×C , where H and W are the sizes of field around the agent and C is
the channel size of the scene, where each channel consists of distinct information
such as the drivable area, position, and distance encodings.

Combining the scene and all agent trajectories yields an episode. In the
combined setting, there are a variable number of agents which we denote using
bold S ≡ {S1,S2, ...,SA} and as similarly to other variables, we may split it
into two subsets, Spast and Spred to represent the past and prediction segments.
Since Spast and Φ serve as the observed information cue used for the prediction,
they are often called observation simply being denoted as O ≡ {Spast,Φ}.

We define diversity to be the level of coverage in a model’s predictions, across
modes in a distribution representing all possible future trajectories. We denote
the model distribution as q(Sapred|O) and want the model to generate multiple
samples interpreting each sample as an independent hypothesis that might have
happened, given the same observation. We also acknowledge that encouraging
a model’s predictions to be diverse, alone, is not sufficient for accurate and
safe output; the model predictions should lie in the support of the true future
trajectory distribution p(Spred|O), i.e., predictions should be admissible. Given
the observation O, it is futile to predict samples around regions that are physically
and statistically implausible to reach.

To summarize, this paper addresses the task of diverse and admissible multi-
agent trajectory forecasting, by modeling multiple modes in the posterior distri-
bution over the prediction trajectories, given the observation.

4 Proposed Approach

We hypothesize that future trajectories of human drivers should follow distribu-
tions of multiple modes, conditioned on the scene context and social behaviors of
agents. Therefore, we design our model to explicitly capture both agent-to-scene
interactions and agent-to-agent interactions with respect to each agent of interest.
Through our objective function, we explicitly encourage the model to learn a
distribution with multiple modes by taking into account past trajectories and
attended scene context.

4.1 Model Architecture

As illustrated in Fig. 3, our model consists of an encoder-decoder architecture.
The encoder includes the cross-agent interaction module. The decoder, on the
other hand, comprises the agent-to-scene interaction module to capture the scene
interactions. Please refer to Fig. 4 for a detailed illustration of our main proposed
modules.
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Fig. 3. Model Architecture. The model consists of an encoder-decoder architecture: the
encoder takes as past agent trajectories and calculates cross-agent attention, and the
flow-based decoder predicts future trajectories by attending scene contexts for each
decoding step.

The encoder extracts past trajectory encoding for each agent, then calculates
and fuses the interaction features among the agents. Given an observation,
we encode each agent’s past trajectory Sapast by feeding it to the trajectory
encoding module. The module has the LSTM-based layer RNN1 to summarize
the past trajectory. It iterates through the past trajectory with Eq. (1) and
its final output ha0 (at present t = 0) is utilized as the agent embedding. The
collection of the embeddings for all agents is then passed to the cross-agent
interaction module, depicted in Fig. 4(a), which uses self-attention [27] to generate
a cross-agent representation. We linearly transform each agent embedding to
get a query-key-value triple, (Qa,Ka, V a). Next, we calculate the interaction
features through the self-attention layer Attention1. Finally, the fused agent
encoding h̃ ≡ {h̃1, h̃2, ..., h̃A} is calculated by adding each attended features to
the corresponding embedding (see Eq. (2) and Fig. 4(b)).

hat = RNN1(Sat−1, h
a
t−1) (1)

h̃a = ha0 + Attention1(Qa,K,V ) (2)

The decoder takes the final encoding h̃a and the scene context Φ as inputs.
We first extract the scene feature through convolutional neural networks i.e.,
Γ = CNN(Φ). The decoder then autoregressively generates the future position

Ŝat , while referring to both local and global scene context from the agent-to-
scene interaction module. The local scene feature is gathered using bilinear
interpolation at the local region of Γ , corresponding to the physical position Ŝat−1.

Then, the feature is concatenated with h̃a and processed thorough FC layers
to form the local context lcat . We call this part the local scene extractor. The
global scene feature is calculated using visual-attention [31] to generate weighted
scene features, as shown in Fig. 4(c). To calculate the attention, we first encode

previous outputs Ŝa1:t−1, using a GRU-based RNN2 in Eq. (3), whose output is
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Fig. 4. (a) Cross-agent attention. Interaction between each agent is modeled using
attention, (b) Cross-agent interaction module. Agent trajectory encodings are corrected
via cross-agent attention. (c) Visual attention. Agent-specific scene features are cal-
culated using attention. (d) Agent-to-scene interaction module. Pooled vectors are
retrieved from pooling layer after visual attention.

then used to calculate the pixel-wise attention γ̃at at each decoding step, for each
agent in Eq. (4).

ĥat = RNN2(Ŝa1:t−1, ĥ
a
t−1) (3)

γ̃at = Pool(Γ �Attention2(ĥat ,Γ )) (4)

The flow-based decoding module generates the future position Ŝat . The module
utilizes Normalizing Flow [20], a generative modeling method using bijective and
differentiable functions; in particular, we choose an autoregressive design [14,21,

22]. We concatenate γ̃at , ĥat , and lcat then project them down to 6-dimensional
vector using FC layers. We split this vector to µ̂t ∈ R2 and σ̂t ∈ R2×2. Next,
we transform a standard Gaussian sample zt ∼ N (0, I) ∈ R2, by the mapping

gθ(zt;µt, σt) = σt · zt + µt = Ŝat , where θ is the set of model parameters. ‘hats’
over µ̂t and σ̂t are removed, in order to note that they went through the following
details. To ensure the positive definiteness, we apply matrix exponential σt =
expm(σ̂t) using the formula in [4]. Also, to improve the the physical admissibility

of the prediction, we apply the constraint µt = Ŝat−1 +α(Ŝat−1− Ŝat−2) + µ̂t, where
α is a model degradation coefficient. When α = 1, the constraint is equivalent to
Verlet integration [29], used in some previous works [21, 22], which gives the a
perfect constant velocity (CV) prior to the model. However, we found empirically
that, the model easily overfits to datasets when the the perfect CV prior is used,
and perturbing the model with α prevents overfitting; we choose α = 0.5.

Iterating through time, we get the predictive trajectory Ŝapred for each agent.
By sampling multiple instances of zpred and mapping them to trajectories, we get
various hypotheses of future. Further details of the our network architecture and
experiments for the degradation coefficient α are given in the supplementary.
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4.2 Learning

Our model learns to predict the distribution over the future trajectories of agents
present in a given episode. In detail, we focus on predicting the conditional
distribution p(Spred|O) where the future trajectory Spred depends on the obser-
vation. As described in the previous sections, our model incorporates a bijective
and differentiable mapping between standard Gaussian prior q0 and the future
trajectory distribution qθ. Such technique, commonly aliased ‘normalizing flow’,
enables our model not only to generate multiple candidate samples of future,
but also to evaluate the ground-truth trajectory with respect to the predicted
distribution qθ by using the inverse and the change-of-variable formula in Eq. (5).

qθ(S
a
pred|O) = q0(g−1(Sapred))

∣∣det(∂Sapred/∂(g−1(Sapred))
∣∣−1 (5)

As a result, our model can simply close the discrepancy between the predictive
distribution qθ and the real world distribution p by optimizing our model pa-
rameter θ. In particular, we choose to minimize the combination of forward and
reverse cross-entropies, also known as ‘symmetric cross-entropy’, between the two
distributions in Eq. (6). Minimizing the symmetric cross-entropy allows model
to learn generating diverse and plausible trajectory, which is mainly used in [21].

min
θ
H(p, qθ) + βH(qθ, p) (6)

To realize this, we gather the ground-truth trajectories S and scene context Φ
from the dataset that we assume to well reflect the real distribution p, then
optimize the model parameter θ such that 1) the density of the ground-truth
future trajectories on top of the predicted distribution qθ is maximized and 2)
the density of the predicted samples on top of the real distribution p is also
maximized as described in Eq. (7). Since this objective is fully differentiable
with respect to the model parameter θ, we train our model using the stochastic
gradient descent.

min
θ

ESpred,O∼p

[
ESat ∈Spred

− log qθ(S
a
t |O) + β EŜat ∼qθ − log p(Ŝat |O)

]
(7)

Such symmetric combination of the two cross-entropies guides our model to
predict qθ that covers all plausible modes in the future trajectory while penalizing
the bad samples that are less likely under the real distribution p. However, one
major problem inherent in this setting is that we cannot actually evaluate p in
practice. In this paper, we propose a new method which approximates p using
the drivable-area map and we discuss it in the following subsection 4.3. Other
optimization details are included in the supplementary.

4.3 The Drivable-area Map and Approximating p

We generate a binary mask that denote the drivable-area around the agents. We
refer to this feature as the drivable-area map and utilize it for three different
purposes: 1) deriving the approximated true trajectory distribution p̃, 2) calcu-
lating the diversity and admissibility metrics, and 3) building the scene input Φ.
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Particularly, p̃ is a key component in our training objective, Eq. (6). Since the
reverse cross-entropy penalizes the predicted trajectories with respect to the real
distribution, the approximation should not underestimate some region of the real
distribution, or diversity in the prediction could be discouraged. Previous works
on p̃ utilize the ground-truth (GT) trajectories to model it [21]. However, there
is often only one GT annotation available thus deriving p̃ based on the GT could
assign awkwardly low density around certain region. To cope with such problem,
our method assumes that every drivable locations are equally probable for future
trajectories to appear in and that the non-drivable locations are increasingly less
probable, proportional to the distance from the drivable-area. To derive it, we
encode the distance on each non-drivable location using the distance transform
on the drivable-area maps, then apply softmax over the transformed map to
constitute it as a probability distribution. The visualizations of the p̃ are available
in Fig. 6. Further details on deriving p̃ and the scene context input Φ, as well as
additional visualizations and qualitative results are given in the supplementary.

5 Experimental Setup

The primary goal in the following experiments is to evaluate our model, baselines,
and ablations on the following criteria—(i) Leveraging mechanisms that explicitly
model agent-to-agent and agent-to-scene interactions (experiments 1 and 2). (ii)
Producing diverse trajectory predictions, while obeying admissibility constraints
on the trajectory candidates, given different approximation methods for the true
trajectory distribution p (experiment 3). (iii) Remaining robust to an increasing
number of agents in the scene (agent complexity; experiment 4). (iv) Generalizing
to other domains (experiment 5).

5.1 Dataset

We utilize two real world datasets to evaluate our model and the baselines:
nuScenes tracking [5] and Argoverse motion forecasting [7]. nuScenes con-
tains 850 different real-world driving scenarios, where each spanning 20 seconds
of frames and 3D box annotations for the surrounding objects. It also provides
drivable-area maps. Based on this setting, we generate trajectories by associating
the box annotations of the same agents. While nuScenes provides trajectories
for realistic autonomous driving scenarios, the number of episodes is limited
around 25K. On the other hand, Argoverse provides around 320K episodes from
the real world driving along with the drivable-area maps. Argoverse presents
independent episodes spanning only 5s (2s for the past and 3s for the prediction),
rather than providing long, continuing scenarios as in nuScenes. However, this
setting suffices to test our method and we evaluate baselines and our models
on these two real-world datasets to provide complementary validations of each
model’s diversity, admissibility, and generalizing performance across domains.
Further details in the data processing are available in the supplementary.

5.2 Baseline Models

Deterministic baselines: We compare three deterministic models with our
approach, to examine our model’s ability to capture agent-to-agent interaction:
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LSTM-based encoder-decoder (LSTM), LSTM with convolutional social pooling [8]
(CSP), and a deterministic version of multi-agent tensor fusion (MATF-D) [33].
For our deterministic model, we use an LSTM with our cross-agent attention
module in the encoder, which we refer to as the cross-agent attention model
(CAM). Because each model is predicated on an LSTM component, we set the
capacity to be the same in all cases, to ensure fair comparison.
Stochastic baselines: We experiment three stochastic baselines. Our first
stochastic baseline is a model based on a Variational Autoencoder structure,
(DESIRE) [17], which utilizes scene contexts and an iterative refinement pro-
cess. The second baseline model is a Generative Adversarial Network version of
multi-agent tensor fusion (MATF-GAN) [33]. Our third baseline is the Repa-
rameterized Pushforward Policy (R2P2-MA) [22] which is a modified version of
R2P2 [21] for multi-agent prediction. To validate our model’s ability to extract
scene information and generate diverse trajectories, multiple versions of our
models are tested. While these models can be used as stand-alone models to
predict diverse trajectories, comparison amongst these new models is equivalent
to an ablation study of our final model. CAM-NF is a CAM model with a
flow-based decoder. Local-CAM-NF is CAM-NF with local scene features.
Global-CAM-NF is Local-CAM-NF with global scene features. Finally,
AttGlobal-CAM-NF is Global-CAM-NF with agent-to-scene attention,
which is our main proposed model.

5.3 Metrics

We define multiple metrics that provide a thorough interpretation about the
behavior of each model in terms of precision, diversity, and admissibility. To eval-
uate precision, we calculate Euclidean errors: ADE (average displacement error)
and FDE (final displacement error), or Error to denote both. To evaluate multi-
ple hypotheses, we use the average and the minimum Error among K hypotheses:

avgError = 1
k

∑k
i=1 Error

(i) and minError = min{Error(1), ...,Error(k)}.
A large avgError implies that predictions are spread out, and a small minError
implies at least one of predictions has high precision. From this observation, we
define a new evaluation metric that capture diversity in predictions: the ratio of
avgFDE to minFDE, namely rF. rF is robust to the variability of magnitude in
velocity in predictions hence provides a handy tool that can distinguish between
predictions with multiple modes (diversity) and predictions with a single mode
(perturbation).

Ratio of avgFDE to minFDE (rF) =
avgFDE

minFDE
(8)

Drivable Area Occupancy (DAO) =
count(trajpix)

count(drivpix)
(9)

We also report performance on additional metrics that are designed to capture
diversity and admissibility in predictions. While rF measures the spread of
predictions in Euclidean distance, DAO measures diversity in predictions that
are only admissible, and DAC measures extreme off-road predictions that defy
admissibility. We follow [7] in the use of Drivable Area Count (DAC), DAC =
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Case 1 Case 2

Prediction  

GT

Fig. 5. We motivate the need for multiple metrics, to assess diversity and admissibility.
Case 1: DAO measures are equal, even though predictions have differing regard for the
modes in the posterior distribution. Case 2: rF measures are equal, despite differing
regard for the cost of leaving the drivable area. In both cases, it is important to
distinguish between conditions—we do this by using DAO, rF, and DAC together.

k−m
k , where m is the number of predictions that go out of the drivable area and k

is the number of hypotheses per agent. Next, we propose a new metric, Drivable
Area Occupancy (DAO), which measures the proportion of pixels that predicted
trajectories occupy in the drivable-area. Shown in Eq. (9), count(trajpix) is the
number of pixels occupied by predictions and count(drivpix) is the total number of
pixels of the drivable area, both within a pre-defined grid around the ego-vehicle.

DAO may seem a reasonable standalone measure of capturing both diversity
and admissibility, as it considers diversity in a reasonable region of interest. How-
ever, DAO itself cannot distinguish between diversity (Section 3) and arbitrary
stochasticity in predictions, as illustrated by Case 1 in Fig. 5: although DAO
measures of both predictions are equal, the causality behind each prediction is
different and we must distinguish the two. rF and DAO work in a complementary
way and we, therefore, use both for measuring diversity. To assure the admissi-
bility of predictions, we use DAC which explicitly counts off-road predictions, as
shown by Case 2 in Fig. 5. As a result, assessing predictions using DAO along
with rF and DAC provides a holistic view of the quantity and the quality of
diversity in predictions.

For our experiments, we use minADE and minFDE to measure precision, and
use rF, DAC, and DAO to measure both diversity and admissibility. Due to the
nature of DAO, where the denominator in our case is the number of overlapping
pixels in a 224×224 grid, we normalize it by multiplying by 10, 000 when reporting
results. For the multi-agent experiment (shown in Table 4), relative improvement
(RI) is calculated as we are interested in the relative improvement as the number
of agents increases. For all metrics, the number of trajectory hypotheses should
be set equally for fair comparison of models. If not specified, the number of
hypotheses k is set to 12 when reporting the performance metrics.

6 Results and Discussion

In this section, we show experimental results on numerous settings including the
comparison with the baseline, and ablation studies of our model. We first show
the effect of our cross-agent interaction module and agent-to-scene interaction
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Fig. 6. Our map loss and corresponding model predictions. Each pixel on our map
loss denotes probability of future trajectories; higher probability values are represented
by brighter pixels. Our approach generates diverse and admissible future trajectories.
More visualizations of qualitative results are provided in the supplementary.

module on the model performance, then we analyze the performance with respect
to different numbers of agents, and other datasets. All experiments are measured
with minADE, minFDE, rF, DAC, and DAO for holistic interpretation.

Table 1. Deterministic models on nuScenes. Our proposed model outperforms the
existing baselines.

Model minADE (↓) minFDE (↓)
LSTM 1.186 2.408
CSP 1.390 2.676
MATF-D [33] 1.261 2.538
CAM (ours) 1.124 2.318

Table 2. Stochastic models on nuScenes. Our models outperform the existing baselines,
achieving the best precisions, diversity, and admissibility. Improvements indicated by
arrows.

Model minADE (↓) minFDE (↓) rF (↑) DAO (↑) DAC (↑)
DESIRE [17] 1.079 1.844 1.717 16.29 0.776
MATF-GAN [33] 1.053 2.126 1.194 11.64 0.910
R2P2-MA [21] 1.179 2.194 1.636 25.65 0.893
CAM-NF (ours) 0.756 1.381 2.123 23.15 0.914
Local-CAM-NF (ours) 0.774 1.408 2.063 22.58 0.921
Global-CAM-NF (ours) 0.743 1.357 2.106 22.65 0.921
AttGlobal-CAM-NF (ours) 0.639 1.171 2.558 22.62 0.918

Effectiveness of cross-agent interaction module: We show the performance
of one of our proposed models CAM, which utilizes our cross-agent attention
module, along with three deterministic baselines as shown in Table 1. CSP models
the interaction through layers of convolutional networks, and the interaction is
implicitly calculated within the receptive field of convolutional layers. MATF-D
is an extension of convolutional social pooling with scene information. CAM
explicitly defines the interaction between each agent by using attention. The
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Table 3. Training AttGlobal-CAM-NF using the proposed annotation-free p̃ out-
performs the annotation-dependent counterpart (MSE) in nuScenes.

Model minADE (↓) minFDE (↓) rF (↑) DAO (↑) DAC (↑)
AttGlobal-CAM-NF (MSE) 0.735 1.379 1.918 21.48 0.924
AttGlobal-CAM-NF 0.638 1.171 2.558 22.62 0.918

Table 4. Multi-agent experiments on nuScenes (minFDE). RI denotes relative im-
provements of minFDE between 10 and 1 agent. Our approach best models multi-agent
interactions.

Model 1 agent 3 agents 5 agents 10 agents RI(1-10)
LSTM 2.736 2.477 2.442 2.268 17.1%
CSP 2.871 2.679 2.671 2.569 10.5%
DESIRE [17] 2.150 1.846 1.878 1.784 17.0%
MATF GAN [33] 2.377 2.168 2.150 2.011 15.4%
R2P2-MA [21] 2.227 2.135 2.142 2.048 8.0%
AttGlobal-CAM-NF (ours) 1.278 1.158 1.100 0.964 24.6%

result shows that CAM outperforms other baselines in both minADE and
minFDE, indicating that the explicit way of modeling agent-to-agent interaction
performs better in terms of precision than an implicit way of modeling interaction
using convolutional networks used in CSP and MATF-D. Interestingly, CAM
outperforms MATF-D that utilizes scene information. This infers that the
cross-agent interaction module has ability to learn the structure of roads and
permissible region given the trajectories of surrounding agents.
Effectiveness of agent-to-scene interaction module: The performance of
stochastic models is compared in Table 2. We experiment with removing scene
processing operations in the decoder to validate the importance of our proposed
agent-to-scene interaction module. As mentioned previously, generating multiple
modes of sample requires a strong scene processing module and a diversity-
oriented decoder. Our models achieves the best precision. MATF-GAN has a
small rF showing that predictions are unimodal, while other models such as VAE-
based model (DESIRE) and flow-based models (R2P2-MA and ours) show
spread in their predictions. R2P2-MA shows the highest DAO. We note that
ours has a comparable DAO while keeping the highest rF and DAC, indicating
that our models exhibit diverse and admissible predictions by accurately utilizing
scene context.
Effectiveness of new p̃: We compare two different versions of our AttGlobal-
CAM-NF. One is trained using mean squared error (MSE) between Spred and

Ŝpred as an example of annotation-based approximation for p, while the other
is trained with our drivable area-based (annotation-free) approximation of p
in Table 3. Using our new approximation in training shows superior results in
most of the reported metrics. In particular, the precision and the diversity of
predictions increases drastically as reflected in minError, DAO, and rF while
DAC remains comparable. Thus our p̃ considers admissibility while improving
precision and diversity i.e drivable-area related approximate enhances the estimate
on additional trajectories over the most probable one.
Complexity from number of agents: We experiment with varying number
of surrounding agents as shown in Table 4. Throughout all models, the perfor-
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Table 5. Results of baseline models (upper partition) and our proposed models (lower
partition). AttGlobal-CAM-NF is our full proposed model and others in the lower
partition are the ablations. The metrics are abbreviated as follows: minADE(A),
minFDE(B), rF(C), DAO(D), DAC(E). Improvements indicated by arrows.

Model
Argoverse nuScenes

A (↓) B (↓) C (↑)* D (↑)* E (↑)* A (↓) B (↓) C (↑)* D (↑)* E (↑)*

LSTM 1.441 2.780 1.000 3.435 0.959 1.186 2.408 1.000 3.187 0.912
CSP 1.385 2.567 1.000 3.453 0.963 1.390 2.676 1.000 3.228 0.900
MATF-D [33] 1.344 2.484 1.000 3.372 0.965 1.261 2.538 1.000 3.191 0.906
DESIRE [17] 0.896 1.453 3.188 15.17 0.457 1.079 1.844 1.717 16.29 0.776
MATF-GAN [33] 1.261 2.313 1.175 11.47 0.960 1.053 2.126 1.194 11.64 0.910
R2P2-MA [22] 1.108 1.771 3.054 37.18 0.955 1.179 2.194 1.636 25.65 0.893

CAM 1.131 2.504 1.000 3.244 0.973 1.124 2.318 1.000 3.121 0.924
CAM-NF 0.851 1.349 2.915 32.89 0.951 0.756 1.381 2.123 23.15 0.914
Local-CAM-NF 0.808 1.253 3.025 31.80 0.965 0.774 1.408 2.063 22.58 0.921
Global-CAM-NF 0.806 1.252 3.040 31.59 0.965 0.743 1.357 2.106 22.65 0.921
AttGlobal-CAM-NF 0.730 1.124 3.282 28.64 0.968 0.639 1.171 2.558 22.62 0.918

mance increases as the number of agents increases even though we observe that
many agents in the surrounding do not move significantly. In terms of relative
improvement RI, as calculated between 1 agent and 10 agents, our model has
the most improvement, indicating that our model makes the most use of the
fine-grained trajectories of surrounding agents to generate future trajectories.
Generalizability across datasets: We compare our model with baselines
extensively across another real world dataset Argoverse to test generalization
to different environments. We show results in Table 5 where we outperform or
achieve comparable results as compared to the baselines. For Argoverse, we
additionally outperform MFP3 [26] in minFDE with 6 hypotheses: our full model
shows a minFDE of 0.915, while MFP3 achieves 1.399.

7 Conclusion

In this paper, we tackled the problem of generating diverse and admissible
trajectory predictions by understanding each agent’s multimodal context. We
proposed a model that learns agent-to-agent interactions and agent-to-scene
interactions using attention mechanisms, resulting in better prediction in terms
of precision, diversity, and admissibility. We also developed a new approximation
method that provides richer information about the true trajectory distribution
and allows more accurate training of flow-based generative models. Finally, we
present new metrics that provide a holistic view of the quantity and the quality
of diversity in prediction, and a nuScenes trajectory extraction code to support
future research in diverse and admissible trajectory forecasting.

Acknowledgements. This work was supported in part by the Technology
Innovation Program under Grant 10083646 (Development of Deep Learning-Based
Future Prediction and Risk Assessment Technology considering Inter-vehicular
Interaction in Cut-in Scenario), funded by the Ministry of Trade, Industry, and
Energy, South Korea. We also acknowledge the anonymous reviewers for their
constructive comments.



Diverse and Admissible Trajectory Forecasting 15

References

1. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social
lstm: Human trajectory prediction in crowded spaces. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 961–971 (2016)

2. Ballan, L., Castaldo, F., Alahi, A., Palmieri, F., Savarese, S.: Knowledge transfer
for scene-specific motion prediction. In: European Conference on Computer Vision.
pp. 697–713. Springer (2016)

3. Bansal, M., Krizhevsky, A., Ogale, A.: Chauffeurnet: Learning to drive by imitating
the best and synthesizing the worst. arXiv preprint arXiv:1812.03079 (2018)

4. Bernstein, D.S., So, W.: Some explicit formulas for the matrix exponential. IEEE
Transactions on Automatic Control 38(8), 1228–1232 (1993)

5. Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A.,
Pan, Y., Baldan, G., Beijbom, O.: nuscenes: A multimodal dataset for autonomous
driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 11621–11631 (2020)

6. Casas, S., Luo, W., Urtasun, R.: Intentnet: Learning to predict intention from raw
sensor data. In: Conference on Robot Learning. pp. 947–956 (2018)

7. Chang, M.F., Lambert, J., Sangkloy, P., Singh, J., Bak, S., Hartnett, A., Wang, D.,
Carr, P., Lucey, S., Ramanan, D., et al.: Argoverse: 3d tracking and forecasting
with rich maps. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 8748–8757 (2019)

8. Deo, N., Trivedi, M.M.: Convolutional social pooling for vehicle trajectory predic-
tion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops. pp. 1468–1476 (2018)

9. Fernando, T., Denman, S., Sridharan, S., Fookes, C.: Soft+ hardwired attention:
An lstm framework for human trajectory prediction and abnormal event detection.
Neural networks 108, 466–478 (2018)

10. Gindele, T., Brechtel, S., Dillmann, R.: Learning driver behavior models from traffic
observations for decision making and planning. IEEE Intelligent Transportation
Systems Magazine 7(1), 69–79 (2015)

11. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social gan: Socially
acceptable trajectories with generative adversarial networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. pp. 2255–2264
(2018)

12. Huang, X., McGill, S., DeCastro, J., Fletcher, L., Leonard, J., Williams, B., Rosman,
G.: Diversitygan: Diversity-aware vehicle motion prediction via latent semantic
sampling. IEEE Robotics and Automation Letters (2020)

13. Kim, B., Kang, C.M., Kim, J., Lee, S.H., Chung, C.C., Choi, J.W.: Probabilistic
vehicle trajectory prediction over occupancy grid map via recurrent neural network.
In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems
(ITSC). pp. 399–404. IEEE (2017)

14. Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.:
Improved variational inference with inverse autoregressive flow. In: Advances in
neural information processing systems. pp. 4743–4751 (2016)

15. Kooij, J.F.P., Schneider, N., Flohr, F., Gavrila, D.M.: Context-based pedestrian path
prediction. In: European Conference on Computer Vision. pp. 618–633. Springer
(2014)

16. Krajewski, R., Bock, J., Kloeker, L., Eckstein, L.: The highd dataset: A drone
dataset of naturalistic vehicle trajectories on german highways for validation of
highly automated driving systems. In: 2018 21st International Conference on
Intelligent Transportation Systems (ITSC). pp. 2118–2125. IEEE (2018)



16 S. Park, et al.

17. Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H., Chandraker, M.: Desire:
Distant future prediction in dynamic scenes with interacting agents. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 336–345
(2017)

18. Ma, Y., Zhu, X., Zhang, S., Yang, R., Wang, W., Manocha, D.: Trafficpredict:
Trajectory prediction for heterogeneous traffic-agents. In: Proceedings of the AAAI
Conference on Artificial Intelligence. vol. 33, pp. 6120–6127 (2019)

19. Park, S.H., Kim, B., Kang, C.M., Chung, C.C., Choi, J.W.: Sequence-to-sequence
prediction of vehicle trajectory via lstm encoder-decoder architecture. In: 2018
IEEE Intelligent Vehicles Symposium (IV). pp. 1672–1678. IEEE (2018)

20. Rezende, D.J., Mohamed, S.: Variational inference with normalizing flows. arXiv
preprint arXiv:1505.05770 (2015)

21. Rhinehart, N., Kitani, K.M., Vernaza, P.: R2p2: A reparameterized pushforward pol-
icy for diverse, precise generative path forecasting. In: Proceedings of the European
Conference on Computer Vision (ECCV). pp. 772–788 (2018)

22. Rhinehart, N., McAllister, R., Kitani, K., Levine, S.: Precog: Prediction conditioned
on goals in visual multi-agent settings. In: Proceedings of the IEEE International
Conference on Computer Vision. pp. 2821–2830 (2019)

23. Rudenko, A., Palmieri, L., Herman, M., Kitani, K.M., Gavrila, D.M., Arras, K.O.:
Human motion trajectory prediction: A survey. The International Journal of
Robotics Research p. 0278364920917446 (2019)

24. Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rezatofighi, H., Savarese,
S.: Sophie: An attentive gan for predicting paths compliant to social and physical
constraints. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 1349–1358 (2019)
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