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Abstract. Predicting the class label from the partially observed activity
sequence is a very hard task, as the observed early segments of different
activities can be very similar. In this paper, we propose a novel Hardness-
AwaRe Discrimination Network (HARD-Net) to specifically investigate
the relationships between the similar activity pairs that are hard to be
discriminated. Specifically, a Hard Instance-Interference Class (HI-IC)
bank is designed, which dynamically records the hard similar pairs. Based
on the HI-IC bank, a novel adversarial learning scheme is proposed to
train our HARD-Net, which thus grants our network with the strong ca-
pability in mining subtle discrimination information for 3D early activity
prediction. We evaluate our proposed HARD-Net on two public activity
datasets and achieve state-of-the-art performance.

Keywords: Early Activity Prediction, Action/Gesture Understanding,
3D Skeleton Data, Hardness-Aware Learning

1 Introduction

Early human activity prediction (predicting the class label of an action or gesture
before it is completely performed) is an important and hot research problem
in the human behavior analysis domain, thanks to its relevance to many real-
world applications, such as online human-robot interactions, self-driving vehicles,
and security surveillance [10, 40, 42]. Existing works [32, 39] show that the 3D
skeleton data [25, 29, 35, 3, 4, 2, 5, 45], which can be conveniently acquired with
low-cost depth cameras, is a concise yet informative and powerful representation
for human behavior analysis. Therefore, in this paper, we focus on the task of
early human activity prediction from the 3D skeleton data, namely, 3D early
activity prediction.

? Corresponding authors.
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Fig. 1. Illustration of two example activities from NTU RGB+D dataset [32]. Though
sufficient discrimination information can be used to distinguish these two activities
when their full sequences are observed, at the early stages (e.g., when only 20% is
observed), these two activities are quite similar (with only subtle discrimination infor-
mation contained, as labelled by the red boxes). This makes early prediction hard.

Unlike 3D activity recognition where the full-length skeleton sequences can
be used, which often contain sufficient discrimination information, in 3D early
activity prediction, only the beginning segments of the sequences are observed.
This makes early activity prediction much more challenging than recognition.
More specifically, when performing early activity prediction, the observed be-
ginning segments of many activities can be very similar, i.e., there may be only
subtle discrepancies among them for discrimination. Thus due to the lack of
significant discrimination information, these partially observed segments can be
easily “mis-predicted” into other categories. For example, in Fig. 1, at the early
stage (20% observation ratio), the “pointing to someone” sample can be easily
mis-predicted into the “shaking hand” class, since there are only very subtle
differences between them. Here we call the easily mis-predicted segments as the
hard instances, and the classes that they are easily mis-predicted into as their
interference classes. We also call the pair containing a hard instance and its
corresponding interference class as a hard pair.

To deal with the challenging task of 3D early activity prediction, some exist-
ing works [13, 40] focus on inferring or distilling information from the full activity
sequences that contain more sufficient discrimination information, to assist ac-
tivity prediction from the partial sequences. Though remarkable progress has
been achieved by the previous methods [10, 11, 42], most of them do not explic-
itly consider the hard pair discrimination issue, i.e., specifically investigating the
relationships within each hard pair in order to exploit their minor discrepancies
for better early activity prediction.

As mentioned above, the high similarities of the partially-observed activ-
ity sequences between the hard instance and its corresponding interference class
make 3D early activity prediction challenging. Thus to achieve reliable prediction
performance, a desired prediction model should be discriminative and powerful
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enough in comprehending the relationships within the confusing hard pair sam-
ples and meanwhile prudentially investigating their inherent subtle discrepancies
that can be exploited for discrimination.

Inspired by this, in this paper, we propose a novel Hardness-AwaRe Dis-
crimination Network (HARD-Net), that is able to explicitly mine, perceive, and
exploit the relationships and also the minor discrepancies within each hard pair,
in order to achieve a discriminative model for early activity prediction. Con-
cretely, in our HARD-Net, a Hard Instance-Interference Class (HI-IC) bank is
specifically designed, that is able to dynamically record the hard pairs during
the model learning procedure. Based on our HI-IC bank, an effective adversar-
ial learning scheme for discriminating the features of the hard pair samples is
proposed. To investigate the relationship between a hard instance and its in-
terference class, a feature generator is designed, which produces confusing yet
plausible hard instance features by conditioning on the similarities of this in-
stance to the corresponding interference class. Meanwhile, to obtain the ability
of mining subtle discrimination information within the features of hard pair sam-
ples, a class discriminator is further designed that pushes the prediction model
to distinguish the confusing features of the hard instance from its interference
classes. Therefore, with the adversarial learning going on, the generated features
of the hard instance become more confusing with regard to its interference class,
which in turn promote the capability of the class discriminator in mining the
subtle differences that exist within the features of the hard pair samples for class
discrimination. As a result, the proposed HARD-Net with the class discrimina-
tor as the classifier becomes very powerful in handling hard pairs that are often
very hard to be discriminated by the early activity prediction models.

2 Related Work

3D Human Activity Recognition. Some of the existing methods [32, 26, 24,
12, 1, 46] used RNN/LSTM-based methods for 3D human activity recognition.
Besides the RNN/LSTM models, 2D convolutional neural networks (CNNs) have
also been investigated in this domain [14]. More recently, graph convolutional
networks (GCNs) become prevalent for handling 3D activity recognition [34,
44, 38, 21, 37, 33]. Yan et al. [44] proposed to use spatial-temporal GCN for 3D
activity recognition. Shi et al. [34] proposed an adaptive graph convolutional
network to adaptively learn the topology of the graph for various layers, and
employed the second-order information of the raw skeleton data as an extra
input stream to boost the performance.

Early Human Activity Prediction. Unlike the activity recognition that
is able to observe the full-length activity sequences which often contain sufficient
discrimination information, in early activity prediction, only the segments from
the beginning parts of the activity sequences can be used. Due to the drop of
discrimination information, early activity prediction becomes much more chal-
lenging than activity recognition. Different approaches [10, 18, 13, 40, 42, 17, 19,
43, 16, 7, 23] have been proposed for early activity prediction. Ke et al. [13] pro-
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posed to learn latent global information from full-length sequences and local
information from partial-length sequences. Wang et al. [40] introduced a teacher-
student learning architecture to transfer knowledge from the long-term sequences
to the shorter-term sequences.

Overall, the aforementioned works on 3D early activity prediction do not
focus on improving the discrimination ability of the prediction model by specif-
ically handling the very similar hard pair samples, though the discrimination
ability for the hard pairs is often one of the bottlenecks in early activity pre-
diction. Different from these works, we construct an HI-IC bank to explicitly
and dynamically record the hard pair samples, and propose a novel HARD-Net
with adversarial learning to push the prediction model to be able to specifically
discriminate hard pair samples by exploiting their relationships and mining their
subtle discrimination information.

Hard Example Learning. Explicitly learning from hard-to-predict exam-
ples has been shown to be very helpful for a wide range of computer vision and
machine learning tasks [27, 36, 22, 9, 28, 41, 6]. For example, Shrivastava et al. [36]
proposed a hard example mining scheme to automatically select hard data to
improve the object classification performance. Felzenszwalb et al. [6] proposed
a margin-sensitive method for handling hard negative examples with a latent
SVM to iteratively fix the latent values for positive examples and optimize the
latent SVM objective function.

Unlike these methods on hard example learning, we focus on improving the
ability of mining subtle discrimination information within the hard pairs, by
explicitly pairing the easily mis-predicted early activity segments with their cor-
responding interference classes via an adversarial learning scheme. An HI-IC
bank is also introduced to specifically store the hard instances and their inter-
ference classes, in order to facilitate the comprehending of the relationships and
minor differences within the pairs. This thus boosts the discrimination capability
of the early activity prediction model.

3 Method

3.1 Problem Formulation

Given a full-length activity sequence S = {st}Tt=1, where st denotes the tth
frame, and T represents the sequence length, following existing works [10, 13],
the full-length sequence S is first divided into N segments, i.e., each segment
contains T

N frames. Thus a partial sequence can be denoted as P = {st}τt=1,

where τ = i · TN and i ≤ N . The task of early activity prediction is to identify
the activity category c ∈ C = {1, 2, ..., C} that the partial activity sequence P
belongs to, based on various observation ratios.

3.2 Hardness-AwaRe Discrimination Network

3.2.1 Overview. The overall architecture of our end-to-end Hardness-AwaRe
Discrimination Network (HARD-Net) is shown in Fig. 2. As mentioned above,
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certain activities can be quite similar at their early stages. Thus 3D early ac-
tivity prediction often suffers from lack of sufficient discrimination information
when at low observation ratios. Here we introduce a new method that is able to
explicitly record the hard pairs, that lack sufficient discrimination information,
using an HI-IC bank, and investigate the relationship between the hard instances
and their corresponding interference classes via an adversarial learning scheme,
which thus enhances the capability of our prediction model in mining the minor
discrimination information within the hard samples in feature space, for better
activity prediction.

3.2.2 Hard Instance-Interference Class (HI-IC) Bank. We design an
HI-IC bank to record hard pairs, where each pair contains a hard instance as
well as its corresponding interference class, as shown in the top part of Fig. 2.
This thus enables our model to get aware of the specific categories that a hard
partial activity sequence can be easily mis-predicted into.

As shown in Fig. 2, the base structure of our network includes a feature
encoder E that learns features for the partial activity sequence, and a classifier
(denoted as class discriminator in Fig. 2) for class prediction. At each training
iteration, each partial activity sequence (P ) is fed to the encoder to obtain the
original features fori, which are then further fed to the class discriminator to
produce the prediction scores ŷ. If the partial sequence instance (P ) is wrongly
predicted by the class discriminator, given the prediction scores ŷ, the activity
class cr1 that has the rank-1 score in ŷ is considered as the interference class
(cI) of P (i.e., cI = cr1), as cr1 has the most ambiguous information regarding
to P .

We regard the wrongly predicted partial sequence (P ) that does not have
sufficient discrimination information, as the hard instance (PH). We can then
pack the pair of PH and cI as a hard pair that is then stored into the HI-IC
bank, as illustrated in Fig. 2.

3.2.3 Adversarial Hardness-AwaRe Discrimination Learning Scheme.
To investigate the relationship within the hard pair, we design a feature generator
(G) conditioning on the hard instance and its corresponding interference class
from the pair, in order to derive latent features that are confusing yet plausible
for representing the original hard instance. Meanwhile, to enhance the capability
of our network in mining subtle discrimination information, we design a class
discriminator (Dcls) by granting the prediction model with the power of distin-
guishing the generated latent features of the hard instance from its interference
class. With such an adversarial learning scheme, the generated latent features of
the hard instance become more and more confusing with regard to its interfer-
ence class, which in turn boosts the power of the class discriminator in mining
the subtle discrimination information to distinguish the confusing hard instance
from its interference class. As a result, the overall discrimination capability of
the prediction model is strengthened during the adversarial learning procedure.
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Fig. 2. Illustration of our end-to-end HARD-Net. Our network is constructed on a
replaceable feature encoder (e.g., CNN skeleton encoder [13] or GCN skeleton encoder
[34]) that encodes features for partial sequences. Following the red arrows representing
both backbone training phase and inference phase, partial sequences (P ) are fed to
the encoder followed by the classifier to obtain classification scores that serve as the
criterion for storing hard pairs into the HI-IC bank. Then following the green arrows
representing adversarial learning phase, we randomly select a hard pair including a
hard instance (PH) and an interference class sample (P I) from the HI-IC bank for
feature encoding. The obtained feature pairs, fhard and f inter, are further taken into
account for adversarial learning, in order to improve the capability of our prediction
model in mining subtle discrepancies within each hard pair in the feature space.

Feature Generator. We design a generator (G) that exploits the relation-
ship between the hard instance and the corresponding interference class, in order
to produce latent features that are confusing and hard to predict, yet are still
plausible and retain inherent information representing the original hard instance.

Concretely, to exploit the relationship between the hard instances and the
corresponding interference classes, for a hard instance (PH), we refer to the
HI-IC bank and identify its interference class. We then randomly sample an
interference instance (P I) from the interference class. Thus we get the paired
hard samples (PH and P I). These two samples are fed to the feature encoder
to obtain the feature pair (fhard and f inter) representing these two samples.

In our design, we aim to generate latent features (f latent) of the hard instance
that are very confusing and ambiguous w.r.t its interference class. Thus beside
feeding the original features (fhard) of the hard instance to the generator (G), the
interference class features (f inter) are used as the interference information and
are also fed to G, as shown in Fig. 2. Therefore, conditioning on the aggregated
features of PH and P I , the produced latent features (f latent) from G become
very confusing and hard for discriminating between these two classes.
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Moreover, to specifically ensure that f latent are ambiguous and hard enough
for activity prediction, we further introduce an “ambiguous label” for the hard
instance to assist the learning of G. This “ambiguous label” can be explained as
follows. Usually, in classification, the ground-truth label of the category j is a
one-hot vector (y), in which the jth element is set to 1 and other places are set
to 0. Unlike this one-hot label, our “ambiguous label” here is represented as a
vector yamb, where two positions, that correspond to the ground-truth category
of the hard instance and the category of its interference class, are both set to
0.5, and all other elements are set to 0.

Such an “ambiguous label” (yamb) can then be used as the constraint to drive
the generated latent features f latent to be ambiguous between these two classes.
This constraint can be formulated as follows:

LG
amb = −

K∑
k=1

yambk · log ŷlatentk (1)

where K denotes the total number of the activity classes, and ŷlatent is the
output vector of the class discriminator that performs classification based on
the generated latent features (f latent).

The constraint in Eq. (1) ensures that the generated latent features (f latent)
are ambiguous enough. However, as mentioned before, f latent still needs to be
plausible and retain inherent information for representing the original hard in-
stance. To achieve this, we apply a real-or-fake constraint on f latent to make it
plausible, as well as a mean absolute error constraint to drive f latent to be closer
to the features (fhard) of hard instance.

The mean absolute error constraint (LG
con), for narrowing the distance be-

tween f latent and fhard, is formulated in Eq. (2). The real-or-fake constraint
(LG

rof ), brought by the RealOrFake Discriminator (Drof ) for ensuring that the

generated features (f latent) and the original features (fhard) still stay in the
same feature domain, is formulated in Eq. (3).

LG
con = ||f latent − fhard||1 (2)

LG
rof = E[logDrof (fhard)] + E[log[1− Drof (f latent)]] (3)

The overall objective function for the generator (G) can thus be formulated as:

LG = LG
con + λ1LG

rof + λ2LG
amb (4)

With the above objective function, G is thus able to generate latent features
(f latent) that are very confusing with regard to the interference class, yet still
retain inherent information for representing the input hard instance.

Class Discriminator. To obtain strong discrimination power, we design a
class discriminator (Dcls) that is able to distinguish the generated latent features
(f latent) of each hard instance from its corresponding interference class. To learn

our class discriminator, a classification constraint (LDcls

) is applied on Dcls that
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pushes it to predict the accurate label (y) of the original hard instance based on
the confusing latent features (f latent):

LDcls

= −
K∑
k=1

yk · log ŷlatentk (5)

Therefore, with the adversarial learning going on, the generated latent fea-
tures (f latent) for representing the hard instance become more and more confus-
ing with regard to its interference class (i.e., contain less and less discrimination
information for Dcls to do class distinguishing). This, however, in turn boosts the
power of Dcls in comprehending the remaining subtle discriminative information
in f latent for distinguishing it from its interference class, i.e., Dcls thus becomes
more and more powerful in mining the very minor discrimination information
for class distinguishing.

Note that during adversarial learning, beside feeding in the generated latent
features (f latent) to train Dcls, the original features (fori) encoded from the
original samples are also fed to Dcls during training, as shown in Fig. 2. Therefore
the below objective function is also applied when learning Dcls:

LDcls

ori = −
K∑
k=1

yk · log ŷorik (6)

As mentioned before, in our adversarial learning scheme, the original features
and the generated features are kept in the same domain. Thus such a train-
ing scheme (combining Eq. (5) and (6)) is able to stabilize the overall network
learning, which further yields a powerful Dcls for mining subtle discrimination
information contained in both the latent features and the original features for
class distinguishing. Therefore the obtained class discriminator Dcls, that has
very strong power in mining subtle discrimination information for distinguishing
the hard instances from the interference classes, can act as the final classifier for
activity prediction.

3.2.4 Training and Testing. Each training iteration of our HARD-Net is
comprised of two phases, namely backbone training with HI-IC bank populating,
and adversarial learning.

Backbone training & HI-IC bank filling. The backbone of our network
mainly consists of an encoder E and a class discriminator Dcls, as shown in Fig.
2. This backbone can be trained based on Eq. (6). To fill the HI-IC bank, a mini-
batch of original partial sequences P with batch size B is first fed to the encoder
E to extract features fori. Then based on fori, the class discriminator produces
predicted scores, which serve as a criterion for storing hard pairs into our HI-IC
bank, i.e., if a sample is mis-predicted, this sample and its mis-predicted class
are packed as a hard pair, which will be stored into the HI-IC bank.

Adversarial learning scheme. During adversarial learning, the parameters
of the encoder E are first frozen. We then sample rB hard pairs from the HI-IC
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Algorithm 1: Learning procedure of our HARD-Net.

Input: Partial skeleton sequences (P ) and ground-truth labels (cτ )

while not converge do
Backbone learning and HI-IC Bank Filling

Calculate fori by E;

Calculate ŷori by Dcls;
Calculate LDcls

ori with Eq. (6);

Update E and Dcls;
if rank-1(ŷori) ! = cτ then

PH ← P ;

cI ← rank-1 (ŷ);

HI-IC Bank ← {PH ; cI} ;

end

end
Adversarial HARD-Net Learning

Freeze E;

Select and sample PH and P I from HI-IC Bank;

Calculate fhard and f inter by E;

Calculate f latent by G;

Calculate LDcls

and LDrof

;

Freeze G; Update Drof and Dcls;
Calculate LG;

Freeze Drof and Dcls; Update G;

end

end

bank, where 0 < r ≤ 1. If there are not enough pairs in the bank (i.e., at the
early stage of training process), all pairs in the bank are selected and repeated
to reach rB. Otherwise, we follow the first-in-first-out strategy to select the
rB hard pairs. Based on the interference class from each sampled hard pair,
we sample an instance of it from the dataset as P I . After that, PH and P I

are fed into the encoder E for feature encoding, and then the encoded features
fhard and f inter are fed into the generator G to attain f latent. The generated
latent features f latent are fed into the RealOrFake discriminator Drof and the
class discriminator Dcls with ground-truth category to update Drof and Dcls.
Finally, the f latent are used to update G with the ambiguous label. This training
procedure is detailed in Alg. 1.

Testing. As shown by red arrows in Fig. 2, at the inference phase, we input
a partial skeleton sequence to the encoder to obtain features, which are then fed
to Dcls for activity prediction. As Dcls has strong capabilities in mining subtle
discrimination information for distinguishing hard samples from their similar
interference classes, our network becomes powerful in early activity prediction.
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4 Experiments

We test the proposed method for 3D early action prediction on the NTU RGB+D
dataset [32], and 3D early gesture prediction on the First Person Hand Action
(FPHA) dataset [8]. We conduct extensive experiments on these two datasets as
below.

NTU RGB+D dataset [32] is a large dataset that has been widely used
for 3D action recognition and 3D early action prediction. It contains more than
56 thousands videos and over 4 million frames from 60 activity categories. Each
human skeleton in the dataset possesses 25 human body joints represented by 3D
coordinates. This dataset is very challenging for 3D early action prediction, as
it contains a large number of samples that are confusing at the beginning of the
activity sequences. There are two standard evaluation protocols provided by the
dataset. The first protocol is the Cross Subject (CS) protocol, where 20 subjects
are employed for training and the remaining 20 subjects are left for testing.
The second protocol is the Cross View (CV) protocol, where two viewpoints are
employed for training, and the third one is for testing.

First Person Hand Action (FPHA) dataset [8] is a challenging 3D hand
gesture dataset. The samples in this dataset are the first-person hand activi-
ties interacting with 3D objects recorded by six subjects. It contains over 100K
frames of 45 different hand activity categories. Each hand skeleton attains 21
hand joints interpreted by 3D coordinates. We test our method on FPHA by fol-
lowing the standard evaluation protocol as [8], where 600 activity sequences are
employed for training and the remaining 575 activity sequences are for testing.

Evaluated Models. To test the efficacy of our method, we test two different
models, namely “w/o HARD-Net” and “w/ HARD-Net”. (1) “w/o HARD-Net”:
This is actually the backbone model of our network, that contains the feature
encoder and the classifier. (2) “w/ HARD-Net”: This is our proposed activity
prediction model (HARD-Net) that has strong capabilities in discriminating hard
pair samples via Hardness-AwaRe Discrimination adversary leaning.

4.1 Implementation Details

To comprehensively evaluate the efficacy of our HARD-Net, we specifically con-
struct our method above two state-of-the-art baseline encoders, namely the CNN
encoder [20] and the GCN encoder [34], as shown in Tab. 4. The details of these
two baseline encoders can be found in the corresponding papers [20, 34]. We also
design our generator and real-or-fake discriminator by following Radford et al.
[31], and implement the class discriminator based on multi-layer perceptron. The
weights λ1 and λ2 in Eq. (4) are both set to 1.

All experiments are performed based on the Pytorch framework. Adam [15]
algorithm is used to train our end-to-end network. The batch size B, learning
rate, betas and weight decay are set to 128, 2× 10−4, (0.9, 0.999), and 1× 10−5,
respectively. We set the size of HI-IC bank to be 5000 for the very large NTU
RGB+D dataset and 100 for the much smaller FPHA dataset. In each training
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Fig. 3. Comparison of 3D early activity prediction performance on NTU RGB+D and
FPHA datasets. Our method outperforms state-of-the-arts by a large margin.

Table 1. Performance comparison (%) on NTU RGB+D (cross-subject protocol). Our
method outperforms the backbone model (“w/o HARD-Net”) significantly. It also out-
performs the state-of-the-art 3D early activity prediction methods by a large margin.

Observation Ratios

Methods 20% 40% 60% 80% 100% AUC

Ke et al. [14] 8.34 26.97 56.78 75.13 80.43 45.63

Jain et al. [12] 7.07 18.98 44.55 63.84 71.09 37.38

Aliakbarian et al. [1] 27.41 59.26 72.43 78.10 79.09 59.98

Wang et al. [40] 35.85 58.45 73.86 80.06 82.01 60.97

Pang et al. [30] 33.30 56.94 74.50 80.51 81.54 61.07

Weng et al. [42] 35.56 54.63 67.08 72.91 75.53 57.51

Ke et al. [13] 32.12 63.82 77.02 82.45 83.19 64.22

w/o HARD-Net 37.82 67.87 79.22 83.39 84.52 66.91

w/ HARD-Net 42.39 72.24 82.99 86.75 87.54 70.56

iteration, the proportion r between the original instances and the hard pair
instances used for network learning is set to 4 : 1.

4.2 Experiments on 3D Early Action Prediction

We compare the proposed HARD-Net with the state-of-the-art approaches on
NTU RGB+D. The comparison results with different observation ratios are
shown in Tab. 1 (cross subject protocol), and Tab. 2 (cross view protocol).
Results on Cross Subject Protocol. Comparison results on cross subject
protocol are shown in Tab. 1 and Fig. 3 (left). As shown in Tab. 1, our proposed
HARD-Net achieves the best performance over all observation ratios, which indi-
cates the efficacy of our proposed HARD-Net. Compared to the state-of-the-art
works and the backbone model, our method outperforms them significant, es-
pecially when the observation ratio is very low. The significant improvements
demonstrate that our proposed approach can mine minor yet significant discrep-
ancies for discrimination.

Moreover, following [30, 1, 42], we also use the area under curve metric, de-
noted as AUC, which is used to illustrate the average precision over all obser-
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Table 2. Performance comparison (%) on NTU RGB+D (cross-view protocol). We
observe only [42] has reported early action prediction results on the cross-view protocol.

Observation Ratios

Methods 20% 40% 60% 80% 100% AUC

LSTM [42] 33.86 54.70 68.85 74.86 77.84 57.93

Weng et al. [42] 37.22 57.18 69.92 75.41 77.99 59.71

w/o HARD-Net 47.71 78.95 88.49 91.51 91.79 75.50

w/ HARD-Net 53.15 82.87 91.34 93.71 94.03 78.84

vation ratios to investigate the overall efficacy of our proposed HARD-Net. As
shown in Tab. 1, our approach achieves the highest AUC of 70.56%, compared
to the existing methods and also the backbone model (“w/o HARD-Net”). Note
that our HARD-Net outperforms the backbone model by 3.65%, which further
demonstrates that the proposed adversarial learning scheme can well-perceive
and comprehend the subtle differences within hard classes and facilitate the
discrimination capabilities of the class discriminator.

Ablation study on different loss weights in Eq. 4 are also conducted. Our
method achieves AUC 70.6% under full losses (λ1 = λ2 = 1). Below we analyze
the impact of each loss: 1)When removing ambiguous loss (setting its weight
to 0) and keeping other two losses, the AUC drops to 67.9%. 2)When removing
reconstruction loss and keeping other two losses, AUC drops to 67.7%. 3)When
removing real/fake loss and keeping other two losses, AUC drops to 68.0%.

Results on Cross View Protocol. We also evaluate our HARD-Net on
cross view protocol as in [42] and the comparison results are shown in Tab. 2
and Fig. 3 (middle). As shown in Tab. 2, our proposed HARD-Net model out-
performs the existing works by a large margin over all observations ratios, which
demonstrates the efficacy of our approach.

It is worth noting that the average accuracy score AUC of the HARD-Net
exceeds the previous work [42] by 19.13% and exceeds baseline encoder by 3.34%
which indicates our class discriminator can benefit from adversarial learning
scheme and obtain more discrimination abilities for 3D early activity prediction.

4.3 Experiments on 3D Early Gesture Prediction

To demonstrate the efficacy of our proposed HARD-Net on 3D gesture dataset,
extensive experiments are conducted on a publicly available 3D hand gesture
dataset, namely FPHA. As illustrated in Tab. 3 and Fig. 3 (right), our proposed
HARD-Net achieves better performance consistently over all observation ratios
compared to Weng et al. [42].

Compared to the baseline model, at the early stages when the observation
ratio is very low that lack sufficient discrimination information, since our HARD-
Net is powerful in mining minor discrepancies, it achieves the most significant
performance gain by 9.57% at the 20% observation ratio.
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Table 3. Quantitative results (%) comparison on FPHA with state-of-the-arts.

Observation Ratios

Methods 20% 40% 60% 80% 100% AUC

LSTM [42] 54.26 63.30 69.22 72.17 74.43 64.11

Weng et al. [42] 59.65 65.91 70.43 73.57 74.96 66.66

w/o HARD-Net 62.26 74.61 79.65 82.09 83.48 72.17

w/ HARD-Net 71.83 82.78 86.09 87.13 87.30 78.56

4.4 Ablation Study

In this section, extensive ablation experiments are conducted based on the NTU-
RGB+D dataset (cross-subject protocol), that is widely used by existing works
[13, 30, 40, 42] in early activity prediction community.

1 2 3 4 5 6
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0.7000
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0 5000 10000 15000 20000
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C
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Fig. 4. Left: Evaluation of the impact of using different proportions of original samples
and hard pair samples for network training. When proportion between original sample
number and hard pair sample number is 4:1, our model achieves the highest prediction
accuracy. Right: Evaluation of the impact of different HI-IC bank sizes.

Impact of Bank Size. We evaluate the performance of the HI-IC bank in
different bank sizes. The result is shown in Fig. 4 (right). The AUC reflecting
average precision over all observation ratios increases rapidly from a smaller
bank size to a larger one, and then remains stable when the bank size is large
enough (e.g., size 5000). This can be explained by the number of hard pairs in
a dataset, and when the intrinsic threshold is reached, the further performance
gain is limited.

Impact of proportions between original features and latent features
for training. Our experimental results in Fig. 4 (left) show that the optimal
proportion of original features and latent features used for network training is
4 : 1. This can be explained as: if we use too much original features for network
training, then less useful discrimination information will be mined via our ad-
versarial learning scheme. However, if too much latent features are employed for
training, it may lead to performance drops over the original samples. Moreover,
small performance differences achieved by different ratios (1:1 to 6:1) indicate
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Table 4. Performance gain (%) brought by our HARD-Net with different backbones.

Observation Ratios

Backbone Methods 20% 40% 60% 80% 100%

CNN backbone [13]
w/o HARD-Net 34.01 63.16 75.87 81.39 82.24
w/ HARD-Net 35.86 64.97 77.12 82.22 82.98

∆ +1.85 +1.81 +1.25 +0.83 +0.74

GCN backbone [34]
w/o HARD-Net 37.82 67.87 79.22 83.39 84.52
w/ HARD-Net 42.39 72.24 82.99 86.75 87.54

∆ +4.57 +4.37 +3.77 +3.36 +3.02

that our HARD-Net is not sensitive to ratios. In Fig. 4 (left), all achieved AUCs
of the HARD-Net are in a small range (69.5% to 70.6%), which shows robustness
of our method against ratios. Besides, these AUCs achieved all outperform the
baseline (66.9%) by a large margin, validating the efficacy of our HARD-Net.

Impact of Backbone Encoder. We extensively test our algorithm on a
CNN backbone and a GCN backbone, and show the efficacy of the proposed
method. As shown in Tab. 4, our HARD-Net boosts early prediction performance
on both backbone models obviously, especially at the very low observation ratios.
This indicates that our HARD-Net is powerful in mining subtle discrimination
information for early activity prediction.

5 Conclusion

In this paper, we propose a novel Hardness-AwaRe Discrimination Network
(HARD-Net) for 3D early activity prediction. The proposed HARD-Net is able to
explicitly investigate the relationship between an easily mis-predicted instance,
named hard instance, and the particular category that it is mis-predicted into,
named interference class. An adversarial learning scheme is proposed to mine
subtle discrepancies between this hard instance - interference class pair by gen-
erating ambiguous and less discriminative latent features conditioned on that
particular pair to represent original hard instances. We further design a class
discriminator to distinguish the derived latent features from the correspond-
ing interference classes. With such a network design, our proposed HARD-Net
achieves state-of-the-art performance on two challenging datasets.
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