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1 Extended Quantitative Comparison

In this section, we report more quantitative comparisons with self-supervised
state-of-the-art frameworks on both non-occluded (Noc) and all (All) regions on
the KITTI 2015 training set, as well more detailed cross-validation on Driving-
Stereo. Both are reported in a more compact form in the main paper for the
sake of space.

Table 1 is provided as a complement to Table 5 in the main paper to allow an
exhaustive evaluation. It further confirms that stereo networks trained with our
proxies notably outperform existing approaches. It is worth to notice how our
models achieve a lower percentage of errors (D1) compared to strategies using
raw LiDAR measurements or deploying stereo videos at training time [11].

Table 2 reports iResNet [9] and GWCNet [5] experiments across KITTI (K)
and DrivingStereo (DS) datasets, as complement to Table 4 in the main paper.
In general, GWCNet and iResNet confirm the trend observed with StereoDepth
and PSMNet, with GWCNet resulting slightly more effective when transferred
from K to DS and vice-versa.

2 Configuration details

Traditional Stereo Methods. Here, we report details concerning both
SGM [6] and WILD [14] used as traditional stereo matchers. For the SGM [6]
algorithm, we compute initial matching costs applying a 9× 7 census transform
and using the Hamming distance on pixel vectors. We set parameters P1 and P2
to 7 and 17, respectively. The cost aggregation step has been performed along 8
independent paths, while the disparity range is set to [0, 192].

For WILD [14], we adopt the publicly available code provided by the authors.
Differently from the original settings used in [14], we apply a few modifications.
In particular, we select a different combination of traditional confidence measures
from [10] to retain highly accurate points from the block matching algorithm.
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Lower is better Higher is better

Method Region RMSE RMSE log D1 EPE δ <1.25 δ < 1.252 δ < 1.253

Godard et al.[3] (stereo) Noc 4.392 0.146 9.19 - 0.942 0.978 0.989
Yang et al.[16] Noc - - 8.95 1.61 - - -
Tonioni et al. [12] Noc - - 8.51 1.48 - - -
Zhou et al.[20] Noc - - 8.35 1.44 - -
Lai et al.[7] Noc 4.168 0.149 8.22 1.40 0.947 0.979 0.990
Yang et al.[16] � Noc - - 7.70 1.46 - - -
Li and Yuan [8] � Noc - - 6.65 1.73 - - -
Ours (Stereodepth) † Noc 3.894 0.116 4.21 1.06 0.971 0.988 0.993
Ours (GWCNet [5]) Noc 3.623 0.111 3.78 1.02 0.974 0.989 0.993
Ours (PSMNet [1]) Noc 3.772 0.115 3.68 0.99 0.974 0.988 0.993
Ours (iResNet [9]) Noc 3.472 0.107 3.64 0.99 0.975 0.989 0.994

Smolyanskiy et al. [11] (LiDAR) † All - - 15.00 - - - -
Smolyanskiy et al. [11] (photo) All - - 12.90 - - - -
Godard et al.[3] (stereo) All 5.742 0.202 10.80 - 0.928 0.966 0.980
Yang et al.[16] All - - 10.03 1.89 - - -
Zhou et al.[20] All - - 9.41 - - -
Smolyanskiy et al. [11] (photo + LiDAR) † All - - 8.80 - - - -
Lai et al.[7] All 4.186, 0.157 8.62 1.46 0.946 0.979 0.990
Yang et al.[16] � All - - 8.79 1.84 - - -
Tonioni et al. [12] All - - 8.78 1.48 - - -
Li and Yuan [8] � All - - 8.21 1.73 - - -
Zhou et al.[20] † All - - 7.29 - - -
Wang et al.[15] (stereo only) All 4.187 0.135 7.07 - 0.955 0.981 0.990
Wang et al.[15] (ego motion) All 3.488 0.121 6.43 - 0.964 0.985 0.992
Zhong et al.[18] All 4.857 0.165 6.42 - 0.956 0.976 0.985
Wang et al.[15] (stereo videos) All 3.404 0.121 5.94 - 0.965 0.984 0.992
Zhong et al.[19] * All (3.176) (0.125) (5.14) - (0.967) - -
Ours (Stereodepth) All 3.882 0.117 4.39 1.07 0.971 0.988 0.993
Ours (GWCNet [5]) All 3.614 0.111 3.93 1.04 0.974 0.989 0.993
Ours (iResNet [9]) All 3.464 0.108 3.88 1.02 0.975 0.988 0.993
Ours (PSMNet [1]) All 3.764 0.115 3.85 1.01 0.974 0.988 0.993

Table 1. Quantitative results on the KITTI 2015 training set. Ours indicates
networks trained using MCN-BM/W-ARC labels, † using LiDAR supervision and �
pre-training on synthetic datasets. ∗ indicates models trained on the same KITTI 2015
data, therefore not directly comparable with other methods.

Specifically, we used Disparity Agreement (DA), Disparity Scattering (DS), Left-
Right Consistency (LRC), Average Peak Ration Measure (APKR), Uniqueness
Constraint (UC) and MED (Difference with Median) by setting δ0 = 0 and
δ1 = 0.4, i.e. filtering out all wrong matches and keeping only very confident
pixels. We found out that such configuration allows keeping a larger number of
depth values while preserving accuracy. As for SGM, we use [0, 192] as disparity
range.

Monocular Completion Network. To train MCN, we follow the protocol
described in [13], using Adam optimizer with β1 = 0.9 and β2 = 0.999. The learn-
ing rate has been set to be 10−4 and halved after 180k and 240k, respectively.
We used the same parameters from [13] for the loss function which includes an
image reconstruction loss based on stereo images, a disparity smoothness loss
and, finally, a proxy supervision loss. We train with a batch size of 6 for 300k
iterations, on 640× 192 and 256× 512 random crops respectively for KITTI and
DrivingStereo. In our experiments, neither pre-training on other datasets nor
post-processing procedures have been performed.

To generate multiple inferences during the consensus phase, we perform image
augmentation and random sampling of input points, as described in the main
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Source → Target

Backbone Supervision DS → DS K → DS DS → K
D1(%) EPE D1(%) EPE D1(%) EPE

Stereodepth MCN-BM/W-ARC 2.47 0.94 2.97 0.96 5.64 1.22
PSMNet MCN-BM/W-ARC 1.87 0.86 2.32 0.88 5.16 1.17
GWCNet MCN-BM/W-ARC 2.04 0.89 2.15 0.82 4.94 1.14
iResNet MCN-BM/W-ARC 2.63 0.96 2.70 0.91 5.75 1.21

Table 2. Cross-validation analysis. We tested, on the target dataset, models trained
on the source one. Notice that no fine-tuning on the target dataset is performed in case
of cross-validation.

Fig. 1. Random Sampling Analysis. We asses the impact of sparse disparity points
given as input to the MCN network during the distillation phase on the KITTI 2015
training set. Each cell contains the ratio between the density of valid points and D1
error. Brighter colors encode higher ratio values.

paper. In particular, we apply the same color augmentation of [13] on RGB
images, random horizontal flip with a probability of 0.5 (notice that in case
of flipping the final prediction has to be flipped again to obtain a disparity
map aligned with the reference image) and random point selection. Concerning
sampling at testing time, we intuitively expect the density of sampled points
to impact on performance: using sparser inputs at test time w.r.t. the training
phase would degrade the accuracy, while a higher density of pixels results in
lower randomness, thus thwarting the consensus mechanism.

We empirically found out that the best choice consists of a broader set of
points at test time w.r.t. during training, but yet small if compared to the
total amount of available pixels. Figure 1 reports a thorough analysis concerning
the impact of points at inference time for MCN-BM/W-ARC. In particular, we
evaluate both the density (i.e. the number of valid pixels) and the D1 error metric
of the disparities output of the consensus mechanism, by varying the number N
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Network Dataset Batch Decay Ep. Total Ep.

Stereodepth K 12 90 100
PSMNet K 2 8 11
iResNet K 4 21 24
GWCNet K 2 6 8

Stereodepth DS 12 40 50
PSMNet DS 2 3 4
iResNet DS 4 5 8
GWCNet DS 2 2 3

Table 3. Stereo network training configuration.

of inferences and the percentage of sampled pixels. Each entry in the figure
represents the ratio between the density and D1. This metric assumes a higher
value in case of high density and low D1, so it is suited for selecting the best
configuration among those considered. It can be noticed that, as expected, the
consensus mechanism fails in case of configurations with low randomness (i.e. few
multiple estimates or a large set of pixels in input). Given these considerations,
we choose for our experiments the configuration N = 50 and 0.05 of sampled
pixels. A similar analysis has also been conducted for the SGM/L counterpart.

Stereo networks. To train all the stereo architectures, we define a loss L
obtained as the mean of the multi-scale losses Ls, where each term is weighted
by a factor of γ set to 0.2, 0.6, 1.0 respectively for the 1

4 ,
1
2 and full-resolution

predictions (in case of iResNet, we keep these values also for the layers in the
refinement module). At each scale s, the differences between predictions DS and
proxy values DP is computed using the smooth L1 loss H. Notice that only
valid points (i.e. those preserved by the filtering procedure) in DP are taken into
account when calculating the loss. We refer to this set of valid points as V . We set
the maximum disparity as 192. Table 2 reports the batch size, the total number
of epochs and the decaying epoch (i.e., the epoch in which the learning rate has
been halved) for each network both on K and DS. Proxy-supervised models have
been trained with 640× 192 and 256× 512 random crops respectively on K and
DS.

In case of PHOTO configuration (i.e. training exploiting only RGB images),
we leverage only image reconstruction: we rely on the framework released by
[4], where the original monocular network has been replaced by Stereodepth or
PSMNet. We train for 100 and 7 epochs Stereodepth and PSMNet, respectively,
halving the learning rate at 90 and 6. Input images are resized to 640 × 192.
Finally, all the Stereodepth models, as well as all the other architectures, have
been trained from scratch, i.e. not starting from ImageNet pretraining [2] nor
synthetic datasets.
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3 Qualitative results

We report more qualitative results, depicting both proxy labels sourced by MCN
as well as disparity estimates by stereo networks trained on such annotations.

MCN and distillation. Figure 2 reports examples from the KITTI 2015
training set, showing from left to right the reference image, provided ground
truth map and proxy labels obtained by MCN-BM/W-ARC and MCN-SGM/L-
ARC. Figure 3 collects few examples of distilled annotations from the Driv-
ingStereo dataset, showing respectively from left to right the reference image,
provided ground truth and distilled labels using MCN-BM/W-ARC.

Stereo networks results. Figure 4 shows results with stereo architectures
trained on our proxy labels, on two stereo pairs from KITTI 2015. On top, we
report the reference image and provided ground truth map, followed by four
disparity maps estimated by the four networks considered in our experiments.
Figure 5 shows the same for a stereo pair from the DrivingStereo dataset.

Reference image Ground-Truth MCN-BM/W-ARC MCN-SGM/L-ARC

Fig. 2. Distilled proxies on the KITTI 2015 training set. From left to right,
the reference image, the ground-truth and our proxies distilled using the consensus
mechanism starting from BM/W and SGM/L.
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Reference image Ground-Truth MCN-BM/W-ARC proxy

Fig. 3. Distilled proxies on DrivingStereo. From left to right, the reference image,
the ground-truth and our proxies distilled using the consensus mechanism starting from
BM/W.
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Reference Image Ground-Truth

Stereodepth iResNet [9]

GWCNet [5] PSMNet [1]

Reference Image Ground-Truth

Stereodepth iResNet [9]

GWCNet [5] PSMNet [1]

Fig. 4. Qualitative results on KITTI 2015. On the top row, reference image and
ground truth map. Then, disparity maps estimated by four different architectures,
trained on our proxies.

Reference Image Ground-Truth

Stereodepth iResNet [9]

GWCNet [5] PSMNet [1]

Fig. 5. Qualitative results on DrivingStereo. On the top row, reference image
and ground truth map. Then, disparity maps estimated by four different architectures,
trained on our proxies.
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Generalization. We also show additional qualitative results concerning gen-
eralization capability. Figures 6 and 7 collects two examples each, respectively
from Middlebury v3 and ETH3D datasets. From left to right, we report the ref-
erence image and ground truth map. Then, we show disparity maps estimated by
state-of-the-art self-supervised frameworks, i.e. Wang et al. [15] and Lai et al.
[7], followed by ours. As last, we also show estimation by [17] as state-of-the-art
supervised network. In both cases, networks have been trained or fine-tuned
on KITTI, but never on Middlebury nor ETH3D. It can be perceived how our
results are much more detailed than those by other self-supervised techniques
and, sometimes, even better than those produced by a supervised network.

Reference GT Wang [15] Lai [7] Ours [1] Zhang [17]

Fig. 6. Qualitative results on Middlebury v3. Methods in blue are self-
supervised, while in red are supervised with ground-truth. We test networks trained
on the KITTI dataset to estimate disparity on Middlebury v3, framing completely
different environments.

Reference GT Wang [15] Lai [7] Ours [1] Zhang [17]

Fig. 7. Qualitative results on ETH3D. Methods in blue are self-supervised, while
in red are supervised with ground-truth. We test networks trained on the KITTI
dataset to estimate disparity on ETH3D, framing completely different environments.
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4 Augmentation strategy for occlusions

Neither traditional stereo algorithms nor image reconstruction losses provide
guidance on occlusions, i.e. where pixels do not have matches on the other view.
Both stereo and monocular networks, when self-supervised from stereo pairs,
fail to explain such regions because of the lack of supervision there, predicting
inconsistent values for occluded pixels (e.g. treating the occlusion as part of the
foreground object).

In this section, we detail our augmentation strategy tailored to handle oc-
clusions, coupling with monocular networks only. Occlusions occur near depth
boundaries, opposite in position w.r.t. the other view (i.e. on the left image, they
occur behind foreground objects, on their left), as shown on top of Figure 8. By
flipping the image, occluded regions are mirrored and thus appear on the right of
foreground elements, as shown in the second row of Figure 8. By randomly feed-
ing the network at training time with a flipped image we can provide supervision
for regions that, otherwise, would never receive it (e.g. left border of the car in
figure). Thus, we force the network to handle both object boundaries in order
to minimize the loss function. This strategy alleviates the occlusion artefacts at
testing time since the network has learned to explain such critical regions with
plausible values.

We point out that this strategy is effective with monocular networks only.
Indeed, by flipping the images, we also invert the relative order between reference
and target image (i.e. left to right before, right to left after flipping). In order
to preserve the usual direction of matching of the stereo network (that is, the
correspondent pixel, if it exists, is placed further left along the epipolar line) the
right and the left images have to be switched, making the right the new reference
image. However, this moves the occlusion on the left again, as depicted at the
bottom of Figure 8.

Fig. 8. Augmentation for occlusion. Given a stereo pair (first row), the occluded
area appears on the left side. If horizontal flip without switching is applied (second
row) both to RGB and supervision, the occlusion moves on the right side. Instead, by
flipping and switching the occlusion returns on the left (third row).
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