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Abstract. Explaining a deep learning model can help users understand
its behavior and allow researchers to discern its shortcomings. Recent
work has primarily focused on explaining models for tasks like image
classification or visual question answering. In this paper, we introduce
Salient Attributes for Network Explanation (SANE) to explain image
similarity models, where a model’s output is a score measuring the sim-
ilarity of two inputs rather than a classification score. In this task, an
explanation depends on both of the input images, so standard methods
do not apply. Our SANE explanations pairs a saliency map identify-
ing important image regions with an attribute that best explains the
match. We find that our explanations provide additional information
not typically captured by saliency maps alone, and can also improve
performance on the classic task of attribute recognition. Our approach’s
ability to generalize is demonstrated on two datasets from diverse do-
mains, Polyvore Outfits and Animals with Attributes 2. Code available
at: https://github.com/VisionLearningGroup/SANE

Keywords: Explainable AI, Image Similarity Models, Fashion Compat-
ibility, Image Retrieval

1 Introduction

Many problems in artificial intelligence that require reasoning about complex
relationships can be solved by learning a feature embedding to measure simi-
larity between images and/or other modalities such as text. Examples of these
tasks include image retrieval [18,27,38], zero-shot recognition [2,23,35] or scoring
fashion compatibility [11,15,31,33]. Reasoning about the behavior of similarity
models can aid researchers in identifying potential improvements, show where
two images differ for anomaly detection, promote diversity in fashion recom-
mendation by ensuring different traits are most prominent in the top results, or
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Fig. 1. Existing explanation methods focus on image classification problems (left),
whereas we explore explanations for image similarity models (right). We pair a saliency
map, which identifies important image regions but often provides little interpretable
information, with an attribute (e.g ., golden), which is more human-interpretable and,
thus, a more useful explanation than saliency alone

simply help users understand the model’s predictions which can build trust [32].
However, prior work on producing explanations for neural networks has primar-
ily focused on explaining classification models [7,25,26,28,29,40] and does not
directly apply to similarity models. Given a single input image, such methods
produce a saliency map which identifies pixels that played a significant role to-
wards a particular class prediction (see Figure 1a for an example). On the other
hand, a similarity model requires at least two images to produce a score. The
interaction between both images defines which features are more important, so
replacing just one of the images can result in identifying different salient traits.

Another limitation of existing work is that saliency alone may be insufficient
as an explanation of (dis)similarity. When similarity is determined by the pres-
ence or absence of an object, a saliency map may be enough to understand model
behavior. However, for the image pair in Figure 1b, highlighting the necklace as
the region that contributes most to the similarity score is reasonable, but un-
informative given that there are no other objects in the image. Instead, what
is important is that the necklace shares a similar color with the ring. Whether
these attributes or salient parts are a better fit can vary depending on the image
pairs and the domain they come from. For example, an image can be matched as
formal-wear because of a shirt’s collar (salient part), while two images of animals
can match because both have stripes (attribute).

Guided by this intuition, we introduce Salient Attributes for Network Expla-
nation (SANE). Our approach generates a saliency map to explain a model’s
similarity score, paired with an attribute explanation that identifies important
image properties. SANE is a “black box” method, meaning it can explain any
network architecture and only needs to measure changes to a similarity score
with different inputs. Unlike a standard classifier, which simply predicts the
most likely attributes for a given image, our explanation method predicts which
attributes are important for the similarity score predicted by a model. Predic-
tions are made for each image in a pair, and allowed to be non-symmetric: e.g .,
the explanation for why the ring in Figure 1b matches the necklace may be that
it contains “black”, even though the explanation for why the necklace matches
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the ring could be that it is “golden.” A different similarity model may also result
in different attributes being deemed important for the same pair of images.

SANE combines three major components: an attribute predictor, a prior on
the suitability of each attribute as an explanation, and a saliency map generator.
Our underlying assumption is that at least one of the attributes present in each
image should be able to explain the similarity score assigned to the pair. Given
an input image, the attribute predictor provides a confidence score and activa-
tion map for each attribute, while the saliency map generator produces regions
important for the match. During training, SANE encourages overlap between
the similarity saliency and attribute activation. At test time, we rank attributes
as explanations for an image pair based on a weighted sum of this attribute-
saliency map matching score, the explanation suitability prior of the attribute,
and the likelihood that the attribute is present in the image. Although we only
evaluate the top-ranked attribute, in practice multiple attributes could be used
to explain a similarity score. We find that using saliency maps as supervision for
the attribute activation maps during training not only improves the attribute-
saliency matching, resulting in better attribute explanations, but also boosts
attribute recognition performance using standard metrics like average precision.

We evaluate several candidate saliency map generation methods which are
primarily adaptations of “black box” approaches that do not rely on a particular
model architecture or require access to network parameters to produce a saliency
map [7,26,28,40]. These methods generally identify important regions by measur-
ing a change in the output class score resulting from a perturbation of the input
image. Similarity models, however, often rely on a learned embedding space to
reason about relationships between images, where proximity between points or
the lack thereof indicates some degree of correspondence. An explanation system
for embedding models must therefore consider how distances between embedded
points, and thus their similarity, change based on perturbing one or both input
images. We explore two strategies for adapting these approaches to our task.
First, we manipulate just a single image (the one we wish to produce an ex-
planation for) while keeping the other image fixed. Second, we manipulate both
images to allow for more complex interactions between the pair. See Section 3.2
for details and a discussion on the ramifications of this choice.

Our paper makes the following contributions: 1) we provide the the first
quantitative study of explaining the behavior of image similarity models; 2)
we propose a novel explanation approach that combines saliency maps and at-
tributes; 3) we validate our method with a user study combined with metrics
designed to link our explanations to model performance, and find that it pro-
duces more informative explanations than adaptations of prior work to this task,
and further improves attribute recognition performance.

2 Related Work

Saliency-based Explanations. Saliency methods can generally be split into
“white box” and “black box” approaches. “White box” methods assume access
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Fig. 2. Approach Overview. (a) During training we use the saliency map generator
(Section 3.2) to the important regions when compared to many reference images. Then,
we encourage at least one ground truth attribute’s activation maps to match each
saliency map (details in Section 3.1). (b) At test time, we rank attribute explanations
by how well the saliency and attribute activation maps match, along with the likelihood
of the attribute and its explanation suitability prior (details in Section 3.3). We assume
the image similarity model has been pretrained and is kept fixed in all our experiments

to internal components of a neural network, either in the form of gradients
or activations of specific layers [4,5,25,29,30,39,41,43]. Most of these methods
produce a saliency map by using some version of backpropagation from class
probability to an input image. In contrast, “black box” methods require no
knowledge of model internals (e.g . weights or gradients). They obtain saliency
maps by perturbing the input in a predefined way and measuring the effect
of that perturbation on the model output, such as class score. We adapt and
compare three “black box” and one “white box” methods for our saliency map
generator in Figure 2. “Black box” approaches include a Sliding Window [40],
which masks image regions sequentially, and Randomized Input Sampling for
Explanations (RISE) [26], which masks random sets of regions. Both measure
the effect removing these regions has on the class score. LIME [28] first obtains a
super-pixel representation of an image. Super-pixel regions are randomly deleted,
and their importance is estimated using Lasso. “White box” Mask [7] learns a
saliency map directly by using different perturbation operators and propagating
the error to a low resolution mask. Although there exists limited work that
adapts certain saliency methods to the image similarity setting [8], they present
qualitative results only, i.e., these methods are not evaluated quantitatively on
their explanation accuracy as done in our work.

Natural Language and Attribute-based Explanations. Instead of produc-
ing saliency maps, which can sometimes be difficult to interpret, researchers have
explored methods of producing text-based explanations. These include methods
which justify a model’s answer in the visual question answering task [17,22],
rationalize the behavior of a self-driving vehicle [20], or describe why a cate-
gory was selected in fine-grained object classification [13]. Lad et al . [21] used
human-generated attribute explanations describing why two images are similar
or dissimilar as guidance for image clustering. Our approach could be used to au-
tomatically generate these explanations rather than relying on human feedback.
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Several works exist which learn attribute explanations either to identify impor-
tant concepts [3,6] or to justify a model’s decision by pointing to evidence [14].
Kim et al . [19] learns a concept activation vector that separates examples with
an attribute against examples without it, then scores the sensitivity of attributes
based on how often a directional derivative changes the inputs towards the con-
cept. However, all these methods were designed to explain categorical predictions
rather than similarity models. To the best of our knowledge, ours is the first work
which uses attribute explanations in the image similarity setting.

Interpretable Image Similarity. Attributes are often used to provide a sense
of interpretability to for image similarity tasks [9,24,37] or aid in the retrieval
of similar images using attribute information [1,42]. However, these methods
typically require that a model be trained with a particular architecture in order
to provide an interpretabile output (i.e., they cannot be directly applied to any
pretrained model). In contrast, SANE is able to explain the predictions of any
image similarity model regardless of architecture.

3 Salient Attributes for Network Explanations (SANE)

We are given a fixed model that predicts the similarity between two images, and
must explain why a query image is similar to a reference image. While typical
models for predicting similarity are learned from data, e.g ., with an embedding
method and triplet loss, our approach is agnostic as to how the model being
explained is built. SANE consists of three components: the attribute explanation
model (Section 3.1), the saliency map generator (Section 3.2), and an attribute
explanation suitability prior (Section 3.3). Although we train a CNN to produce
attribute predictions, the image similarity model we wish to explain is kept fixed.
At test time, one recovers a saliency map for the match from the query image
in a pair, then uses the attribute explanation model and attribute suitability
prior to rank each attribute’s ability to explain the image similarity model. See
Figure 2 for an overview of our approach.

3.1 Attribute Explanation Model

Suppose we have access to pairs of images (Ir, Iq), where Ir denotes a reference
image, and Iq a query image. We wish to obtain an explanation for the match
between Ir and Iq. Associated with each pair is a saliency map mq produced by a
saliency map generator (described in Section 3.2). To compute a saliency map for
mr instead, we need simply to swap the query and reference images, which would
likely result in a different saliency map than mq. Finally, assume we have access
to binary attribute annotations ai, i = 1, . . . , A, and let agt ∈ {0, 1}A be the set
of ground truth attribute annotations for a given query image. If no attribute
annotations are provided, an attribute discovery method could be employed
(e.g ., [10,34]). We explore an attribute discovery method in the supplementary.

Our attribute explanation model produces confidence scores â ∈ RA for Iq.
Unlike a standard attribute classifier, however, our goal is not just to predict the
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most likely attributes in Iq, but rather to identify which attributes contribute the
most to the similarity score s(Ir, Iq) produced by the similarity model we wish to
obtain explanations for. To accomplish this, the layer activations for attribute ai
before the global average pooling layer are defined as an attribute activation map
ni. This attribute activation map represents a downsampled mask of an image
that identifies prominent regions in Iq for that attribute. We encourage at least
one ground truth attribute’s activation map for image Iq to match saliency map
mq as a form of regularization. Our underlying assumption, which we validate
empirically, is that at least one of the ground truth attributes of Iq should be able
to explain why Iq is similar to Ir. Thus, at least one of the attribute activation
maps ni should closely resemble the saliency map for the match, mq.

Each attribute confidence score is obtained using a global average pooling
layer on its attribute activation map, followed by a softmax. A traditional loss
function for multi-label classification would be binary cross-entropy, which makes
independent (i.e., noncompetitive) predictions reflecting the likelihood of each
attribute in an image. However, this typically results in a model where attribute
scores are not comparable. For example, a confidence score of 0.6 may be great
for attribute A, but a horrible score for attribute B. Thus, such a loss function
would be ill-suited for our purposes since we need a ranked list of attributes for
each image. Instead, our attribute explanation model is trained using a Huber
loss [16], sometimes referred to as a smooth `1 loss, which helps encourage spar-
sity in predictions. This provides a competitive loss across attributes and thus
can help ensure calibrated attribute confidence scores that can be used to rank
attribute prevalence in an image. More formally, given a set of confidence scores
â and attribute labels agt, our loss is,

LHuber(â,agt) =

{
1
2 (agt − â)2 for |agt − â| ≤ 1

|agt − â| otherwise.
(1)

Note that multiple attributes can be present in the image; and that this loss
operates on attributes, not attribute activation maps. Since the confidence scores
sum to one (due to the softmax), we scale a binary label vector by the number
of ground truth attributes Agt (e.g ., if there are four attributes for an image, its
label would be 0.25 for each ground truth attribute, and zero for all others).

Leveraging saliency maps during training. We explicitly encourage our
model to identify attributes that are useful in explaining the predictions of an
image similarity model by finding which attributes best describe the regions of
high importance to similarity predictions. To accomplish this, we first find a set
of regions that may be important to the decisions of an image similarity model
by generating a set of K saliency mapsMq for up to K reference images similar
to the query. For the query image under consideration, we also construct a set
of attribute activation maps Ngt corresponding to each ground truth attribute.
Then, for each saliency map in Mq, we find its best match in Ngt. We match
saliency maps to attributes rather than the other way around since not all anno-
tated attributes are necessarily relevant to the explanation of s(Ir, Iq). We use
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an `2 loss between the selected attribute activation map and saliency map, i.e.,

Lhm =
1

K

∑
∀m∈Mq

min
∀n∈Ngt

‖m− n‖2 . (2)

Combined with the attribute classification loss, our model’s complete loss is:

Ltotal = LHuber + λLhm, (3)

where λ is a scalar parameter.

3.2 Saliency Map Generator

Most “black box” methods produce a saliency map by measuring the effect ma-
nipulating the input image (e.g ., by removing image regions) has on a model’s
similarity score. If a large drop in similarity is measured, then the region must
be significant. If almost no change is measured, then the model considers the
image region irrelevant. The saliency map is generated by averaging the similar-
ity scores for each pixel over all instances where it was altered. The challenge
is determining the best way of manipulating the input image to discover these
important regions. A key benefit of “black box” methods is that they do not re-
quire having access to underlying model parameters. We compare three black box
methods: a simple Sliding Window baseline [40], LIME [28], which determines
how much super-pixel regions affect the model predictions, and RISE [26], an
efficient high-performing method that constructs a saliency map using random
masking. We also compare to “white box” learned Mask [7], which was selected
due to its high performance and tendency to produce compact saliency maps.
We now describe how we adapt these models for our task; see supplementary for
additional details on each method.

Computing similarity scores. Each saliency method we compare is designed
to operate on a single image, and measures the effect manipulating the image has
on the prediction of a specific object class. However, an image similarity model’s
predictions are arrived at using two or more input images. Let us consider the
case where we are comparing only two images – a query image (i.e. the image
we want to produce an explanation for) and a single reference image, although
our approach extends to consider multiple reference images. Even though we
do not have access to a class label, we can measure the effect manipulating an
image has on the similarity score between the query and reference images. Two
approaches are possible: manipulating both images, or only the query image.

Manipulating both images would result in NM forward passes through
the image similarity model (for N query and M reference image manipulations),
which is prohibitively expensive unless M << N . But we only need an accurate
saliency map for the query image, so we set M << N in our experiments. There
is another danger: for example, consider two images of clothing items that are
similar if either they both contain or do not contain a special button. Masking
out the button in one image and not the other would cause a drop in similarity
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score, but masking out the button in both images would result in high image
similarity. These conflicting results could make accurately identifying the correct
image regions contributing to a score difficult.

The alternative is to manipulate the query image alone, and use a fixed
reference. We evaluate saliency maps produced by both methods in Section 4.1.

3.3 Selecting Informative Attributes

At test time, given a similarity model and a pair of inputs, SANE generates
a saliency map and selects an attribute to show to the user. We suspect that
some attributes are not useful for explaining a given image similarity model.
Thus, we take into account each attribute’s usefulness by learning concept ac-
tivation vectors (CAVs) [19] over the final image similarity embedding. These
CAVs identify which attributes are useful in explaining a layer’s activations by
looking at whether an attribute positively affects the model’s predictions. CAVs
are defined as the vectors that are orthogonal to the classification boundary of a
linear classifier trained to recognize an attribute over a layer’s activations. Then,
the sensitivity of each concept to an image similarity model’s predictions (the
TCAV score) is obtained by finding the fraction of features that are positively
influenced by the concept using directional derivatives computed via triplet loss
with a margin of machine epsilon. Note that this creates a single attribute rank-
ing over the entire image similarity embedding (i.e., it is agnostic to the image
pair being explained), which we use as an attribute explanation suitability prior.
Finally, attributes are ranked as explanations using a weighted combination of
the TCAV scores, the attribute confidence score â, and how well the attribute
activation map n matches the generated saliency map mq. I.e.,

e(mq, â,n,TCAV) = φ1â + φ2 dcos(mq,n) + φ3TCAV, (4)

where dcos denotes cosine similarity, and φ1−3 are scalars estimated via grid
search on held out data. See the supplementary for additional details.

4 Experiments

Datasets. We evaluate our approach using two datasets from different domains
to demonstrate its ability to generalize. The Polyvore Outfits dataset [33] consists
of 365,054 fashion product images annotated with 205 attributes and composed
into 53,306/10,000/5,000 train/test/validation outfits. Animals with Attributes
2 (AwA) [36] consists of 37,322 natural images of 50 animal classes annotated
with 85 attributes, and is split into 40 animal classes for training, and 10 used
at test time. To evaluate our explanations, we randomly sample 20,000 (query,
reference) pairs of images for each dataset from the test set, where 50% of the
pairs are annotated as similar images.

Image Similarity Models. For Polyvore Outfits we use the type-aware em-
bedding model released by Vasileva et al . [33]. This model captures item com-
patibility (i.e. how well two pieces of clothing go together) using a set of learned
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projections on top of a general embedding, each of which compares a specific pair
of item types (i.e. a different projection is used when comparing a top-bottom
pair than when comparing a top-shoe pair). For AwA we train a feature repre-
sentation using a 18-layer ResNet [12] with a triplet loss function that encourages
animals of the same type to embed nearby each other. For each dataset/model,
cosine similarity is used to compare an image pair’s feature representations.

4.1 Saliency Map Evaluation

Metrics. Following Petsiuk et al . [26], we evaluate the generated saliency maps
using insertion and deletion metrics which measure the change in performance
of the model being explained as pixels are inserted into a blank image, or deleted
from the original image. For our task, we generate saliency maps for all query
images, and insert or delete pixels in that image only. If a saliency map correctly
captures the most important image regions, we should expect a sharp drop in
performance as pixels are deleted (or a sharp increase as they are inserted). We
report the area under the curve (AUC) created as we insert/delete pixels at a
rate of 1% per step for both metrics. We normalize the similarity scores for each
image pair across these thresholds so they fall in a [0-1] interval.

Results. Table 1 compares the different saliency map generation methods on
the insertion and deletion tasks. RISE performs best on most metrics, with
the exception of LIME doing better on the deletion metric on AwA. This is
not surprising, since LIME learns which super-pixels contribute to a similarity
score. For AwA this means that parts of the animals could be segmented out
and deleted or inserted in their entirety before moving onto the next super-
pixel. On Polyvore Outfits, however, the important components may be along
the boundaries of objects (e.g . the cut of a dress), something not well represented
by super-pixel segmentation. Although Mask does not perform as well as other
approaches, it tends to produce the most compact regions of salient pixels as
it searches for a saliency map with minimal support (see the supplementary for
examples). Notably, we generally obtain better performance when the reference
image is kept fixed and only the query image is manipulated. This may be due
to issues stemming from noisy similarity scores as discussed in Section 3.2, and
suggests extra care must be taken when manipulating both images.

4.2 Attribute Prediction Evaluation

Metrics. For the standard task of attribute recognition we use mean average
precision (mAP) computed over predictions of all images in the test set. Two
additional metrics are used to evaluate our attribute explanations using the
(query, reference) image pairs from the saliency map experiments, which are
similar to the evaluation of saliency maps. Given the set of attributes we know
exist in the image, we select which attribute among them best explains the
similarity score using Eq. (4), and then see the effect deleting that attribute
from the image has on the similarity score. Analogically, we select the attribute
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Table 1. Comparison of candidate saliency map generator methods described in Sec-
tion 3.2. We report AUC for the insertion and deletion metrics described in Section 4.1

Fixed Polyvore Outfits Animals with Attributes 2
Method Reference? Insertion (↑) Deletion (↓) Insertion (↑) Deletion (↓)

Sliding Window Y 57.1 50.6 76.9 76.9
LIME Y 55.6 52.7 76.9 71.7
Mask Y 56.1 51.8 72.4 75.9
RISE Y 61.2 46.8 77.8 74.9

Sliding Window N 56.6 51.1 77.6 76.5
Mask N 55.6 52.6 72.9 76.6
RISE N 58.5 50.6 77.7 73.8

Reference	
Image

Query
Image Replacing	Color

“black” “white”Attribute	Explanation:

Similarity	Score: 0.16 -0.08 -0.34 -0.15 0.67

Fig. 3. Attribute replacement example. First, SANE explains why the similarity
model predicted that the leggings (reference) and dress (query) have a compatibility
score 0.16 – because the dress is ”white” and leggings are ”black.” Then, we artificially
change the color of the dress and re-compute similarity. Since our explanation was a
good one, this lowers compatibility most of the time. However, this can be noisy as
compatibility did improve for the black dress, but still useful as we show in Section 4.3

which best explains the similarity score from those which are not present in
the image, and measure the effect inserting that attribute has on the similarity
score. Intuitively, if an attribute is critical for an explanation, the similarity score
should shift more than if a different attribute is selected. Scores for these metrics
are expressed in terms of relative change. When inserting important missing
attributes, we expect that the similarity score to improve, and vice versa: when
deleting important attributes, we would expect the similarity score to drop.

We provide an example of attribute removal and its effect on similarity in
Figure 3. Note that, because the attribute explanation is a color in this example,
we can easily remove the attribute by replacing with another color. We see that
when we modify the white dress to be a different color, the similarity score
drops significantly. The only exception is when we make the dress the same
color (black) as the attribute explanation of the pants it is being compared to.
This demonstrates in a causal way how our predicted explanation attributes can
play a significant role in the similarity scores.

Since most attributes are not as easily replaced as colors, in order to insert
or remove a particular attribute, we find a representative image in the test set
which is most similar to the query image in all other attributes. For example,
let us consider a case where we want to remove the attribute “striped” from
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a query image. We would search through the database for images which are
most similar in terms of non-striped attributes, but which have not been labeled
as being “striped”. We rank images using average confidence for each attribute
computed over the three attribute models we compare in Table 2. After obtaining
these average attribute confidence scores, we use cosine similarity between the
non-explanatory attributes to score candidate representative images. On the
Polyvore Outfits dataset we restrict the images considered to be of the same
type as the query image. For example, if the query image is a shoe, then only a
shoe can be retrieved. After retrieving the representative image, we compute its
similarity with the reference image using the similarity model to compare with
the original (query, reference) pair. Examples of this process can be found in the
supplementary. Since any retrieved image may inadvertently change multiple
attributes, we average the scores over the top-k representative images.

Compared methods. We provide three baseline approaches: a random base-
line, a sample attribute classifier (i.e. no attribute activation maps), and a mod-
ified version of FashionSearchNet [1] – an attribute recognition model which
also creates a weakly-supervised attribute activation map, for comparison. To
validate our model choices, we also compare using a binary cross-entropy loss
LBCE to the Huber loss for training our attribute predictors. Additional details
on these models can be found in the supplementary.

Results. Table 2 shows the performance of the compared attribute models for
our metrics. Our attribute explanation metrics demonstrate the effectiveness of
our attribute explanations, with our model, which matches saliency maps and
includes TCAV scores, obtaining best performance on both datasets. This shows
that “inserting” or “deleting” the attribute predicted by SANE from the query
image affects the similarity model’s predicted score more than inserting or delet-
ing the attribute suggested by baselines. Notably, our approach outperforms
FashionSearchNet + Map Matching (MM), which can be considered a weakly-
supervised version of SANE trained for attribute recognition. The fifth line of
Table 2 reports that TCAV consistently outperforms many methods on inser-
tion, but has mixed results on deletion. This is partly due to the fact that other
models, including SANE, are trained to reason about attributes that actually
exist in an image, whereas for insertion the goal is to predict which attribute not
present in the image would affect the similarity score most significantly. Thus,
using a bias towards globally informative attributes (i.e., TCAV scores) is more
consistently useful for insertion. Finally, training an attribute classifier using
saliency maps for supervision (Lhm) leads to a 3% improvement on the standard
attribute recognition task measured in mAP over a simple attribute classifier
while using the same number of parameters. This also outperforms Fashion-
SearchNet, which treats localizing important image regions as a latent variable
rather than using saliency maps for supervision. While LBCE does perform well
for attribute recognition, it does poorly as an explanation as shown in Table 2.

We provide qualitative examples of our explanations in Figure 4. Examples
demonstrate that our explanations pass important sanity checks. Notice that
“golden”, “striped” and “printed” in the first two columns of Figure 4 are sensi-
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Table 2. Comparison of how attribute recognition (mAP) and attribute explana-
tion (insertion, deletion) metrics described in Section 4.2 are affected for different ap-
proaches. We use fixed-reference RISE as our saliency map generator for both datasets

Polyvore Outfits Animals with Attributes 2

Method mAP Insert (↑) Delete (↓) mAP Insert (↑) Delete (↓)

Random – 25.3 -6.3 – 2.1 -8.5

Attribute Classifier - LBCE 53.2 25.7 -5.8 65.1 -2.5 -2.3
Attribute Classifier - LBCE + Lhm 56.0 25.8 -5.9 67.2 -1.7 -2.0
FashionSearchNet - LBCE [1] 54.7 25.5 -5.2 65.9 -1.6 -2.6

TCAV [19] – 28.0 -8.5 – 3.4 -22.0
Attribute Classifier - LHuber – 25.9 -8.1 – -0.8 -2.8
FashionSearchNet - LHuber [1] – 26.1 -7.6 – -0.3 -3.5
FashionSearchNet - LHuber + MM – 26.6 -10.1 – 1.2 -6.8
SANE – 26.3 -9.8 – 0.1 -3.0
SANE + MM – 27.1 -10.9 – 6.0 -10.7
SANE + MM + TCAV (Full) – 31.5 -11.8 – 6.2 -24.1

Fig. 4. Qualitative results of our attribute explanations for pairs of examples on the
Polyvore Outfits and the AwA datasets. The attribute predicted as explanation for
each reference-query match is shown above the saliency map. The most likely attribute
for the query image as predicted by our attribute classifier is shown directly above it

bly localized, and are also reasonable explanations for the match, while a more
abstract explanation like “fashionable” is linked to the high heel, the curve of
the sole, and the straps of the shoe. Note further that the explanations are non-
trivial: they more often than not differ from the most likely attribute in the query
image, as predicted by a standard attribute classifier. In other words, our expla-
nation model is utilizing information from each pair of images and the saliency
map characterizing the match to produce a sensible, interpretable explanation.

4.3 User Study

A key component of evaluating whether our explanations are sensible and inter-
pretable is conducting a user study. This is not a straightforward task, as one
has to carefully formulate the prompts asked in a manner suitable for answering
questions like, Are our explanations useful? Do they provide insight that helps
users understand what the similarity model is doing? Are they consistent?
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We formulate our study as a “guessing game” whereby a unique image triplet
(A,B,C) is presented in each question that asks users to select whether the im-
age similarity model predicted B or C as a better match for A. Images B and
C are selected such that the pairs (A,B) and (A,C) have sufficiently differ-
ent similarity scores. We adopt an A/B testing methodology and present seven
different versions of the study: (a) a control case whereby no explanations are
presented and users have to guess whether (A,B) or (A,C) are more similar
based on their own intuition; (b) image pairs (A,B) and (A,C) are presented
along with a random saliency map for images B and C; (c) image pairs (A,B)
and (A,C) are presented along with the corresponding saliency maps for B and
C generated using RISE [26]; (d) (A,B) and (A,C) are presented along with a
sentence explanation containing the most likely predicted attribute made by our
attribute predictor for B and C; (e) image pairs (A,B) and (A,C) are presented
along with a sentence explanation containing the SANE explanation attribute
for each pair; (f) image pairs (A,B) and (A,C) are presented along with both
randomly generated saliency maps for B and C and the SANE attributes for
each pair; and (g) image pairs (A,B) and (A,C) are presented along with both
the corresponding RISE saliency maps for B and C and the SANE attributes for
each pair. Examples of each question type are provided in the supplementary.

Our underlying hypothesis is that, if our model produces sensible and human-
interpretable explanations, there must be a correlation between the resulting
explanations and the similarity score for an image pair, and that relationship
should be discernible by a human user. Thus, user accuracy on guessing which
pair the model predicted is a better match based on the provided explanations or
lack thereof should be a good indicator as to the reliability of our explanations.

Using a web form, we present a total of 50 unique image triplets to 59 subjects
in the age range 14-50, each triplet forming a question as described above. We
keep question order the same for each subject pool and question type. Each user
sees 10 unique questions, and subject pools across different study versions are
kept disjoint. Each question type received 1-4 unique responses.

Study Results. Table 3 reports the results of our study. In addition to report-
ing the user’s ability to correctly identify the image pair the similarity model
thought was a better match, we also report the percent of subjects for each study
type that reported finding the provided explanations helpful in answering the
questions. Comparing lines 1 and 2 of Table 3, we see that, as expected, users
find random saliency maps to be confusing, as 20% or fewer ever report them
as useful. Comparing lines 1 and 3 of Table 3, we see that accuracy goes down
on the Polyvore Outfits dataset when users are shown saliency maps, suggesting
that users may have misinterpreted why the particular image regions were high-
lighted; yet all users thought the maps were helpful in answering the questions.
However, on AwA, accuracy increases significantly with providing saliency in
addition to image pairs, along with 87.5% of users finding them helpful.

Comparing the most likely attribute vs. our SANE explanation attributes in
lines 4 and 5 of Table 3, respectively, we see that users demonstrate improved
understanding of the image similarity model’s behavior and also find the at-
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Table 3. User study results. We report user’s accuracy given different information in
guessing which image pair the image similarity model thought was a better match and
the portion of users who felt the explanations were helpful

Polyvore Outfits Animals with Attributes 2

Explanation type Accuracy Helpful? Accuracy Helpful?

(a) Control Case (no explanations) 66.0 – 42.0 –

(b) Random Maps 66.0 20.0 50.0 18.2
(c) Saliency Maps 56.7 100.0 53.8 87.5

(d) Predicted Attr’s 62.5 66.7 53.1 69.2
(e) SANE Attr’s 68.9 66.7 61.3 87.5

(f) Random Maps + SANE Attr’s 65.8 75.0 59.2 66.7
(g) Saliency Maps + SANE Attr’s 70.0 55.6 52.5 62.5

tribute explanations to be helpful. On Polyvore Outfits, although users consider
the most likely attributes as explanations about as helpful as SANE explana-
tions, the 6.4% difference in accuracy suggests that SANE explanations do indeed
provide valuable information about the match. On AwA, SANE attributes re-
sult in the highest user accuracy, with 87.5% of users reporting them useful vs.
only 69.2% reporting most likely attributes used as explanations useful. Notably,
SANE attributes reports improving user accuracy by 3-7.5% on both datasets
over the control case or using saliency maps alone. Line 7 of Table 3 shows that
on Polyvore Outfits, users do best if they are provided both saliency maps and
SANE attributes as explanations, even though they did not find this type of
explanation most useful. We suspect this could be due to natural human bias,
i.e. users’ intuition disagreeing with the image similarity model’s predictions.

Overall, the study results suggest that (1) users find our explanations helpful;
(2) our explanations consistently outperform baselines; (3) the type of explana-
tion that proves most helpful depends on the dataset: users like having saliency
maps as a guide, although their performance is best using both saliency maps and
explanation attributes on a fashion dataset, while on a natural image dataset,
having attribute explanations for each image pair helps the most.

5 Conclusion

In this paper we introduced SANE, a method of explaining an image similarity
model’s behavior by identifying attributes that are important to the similarity
score paired with saliency maps indicating significant image regions. We confirm
that our SANE explanations improve a person’s understanding of a similarity
model’s behavior through a user study to supplement automatic metrics. In
future work, we believe closely integrating the saliency generator and attribute
explanation model, enabling each component to take advantage of the predictions
of the other, would help improve performance.
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