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Abstract. In this paper, we introduce Foley Music, a system that can
synthesize plausible music for a silent video clip about people playing mu-
sical instruments. We first identify two key intermediate representations
for a successful video to music generator: body keypoints from videos
and MIDI events from audio recordings. We then formulate music gener-
ation from videos as a motion-to-MIDI translation problem. We present a
Graph— Transformer framework that can accurately predict MIDI event
sequences in accordance with the body movements. The MIDI event can
then be converted to realistic music using an off-the-shelf music syn-
thesizer tool. We demonstrate the effectiveness of our models on videos
containing a variety of music performances. Experimental results show
that our model outperforms several existing systems in generating music
that is pleasant to listen to. More importantly, the MIDI representations
are fully interpretable and transparent, thus enabling us to perform mu-
sic editing flexibly. We encourage the readers to watch the supplementary
video with audio turned on to experience the results.
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1 Introduction

Date Back to 1951, British computer scientist, Alan Turing was the first to record
computer-generated music that took up almost an entire floor of the laboratory.
Since then, computer music has become an active research field. Recently, the
emergence of deep neural networks facilitates the success of generating expressive
music by training from large-scale music transcriptions datasets [10,28,11,62,46].
Nevertheless, music is often accompanied by the players interacting with the
instruments. Body and instrument interact with nuanced gestures to produce
unique music [23]. Studies from cognitive psychology suggest that humans, in-
cluding young children, are remarkably capable of integrating the correspon-
dences between acoustic and visual signals to perceive the world around them.
For example, the McGurk effect [37] indicates that the visual signals people
receive from seeing a person speak can influence the sound they hear.
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Fig. 1. Given a video of people playing instrument, our system can predict the corre-
sponding MIDI events, and generate plausible musics.

An interesting question then arises: given a silent video clip of a musician
playing an instrument, could we develop a computational model to automati-
cally generate a piece of plausible music in accordance with the body movements
of that musician? Such capability serves as the foundations for a variety of ap-
plications, such as adding sound effects to videos automatically to avoid tedious
manual efforts; or creating auditory immersive experiences in virtual reality;

In this paper, we seek to build a system that can learn to generate music by
seeing and listening to a large-scale music performance videos (See Figure 1).
However, it is an extremely challenging computation problem to learn a mapping
between audio and visual signals from unlabeled video in practice. First, we need
a visual perception module to recognize the physical interactions between the
musical instrument and the player’s body from videos; Second, we need an audio
representation that not only respects the major musical rules about structure
and dynamics but also easy to predict from visual signals. Finally, we need
to build a model that is able to associate these two modalities and accurately
predict music from videos.

To address these challenges, we identify two key elements for a successful
video to music generator. For the visual perception part, we extract key points
of the human body and hand fingers from video frames as intermediate visual
representations, and thus can explicitly model the body parts and hand move-
ments. For the music, we propose to use Musical Instrument Digital Interface
(MIDI), a symbolic musical representation, that encodes timing and loudness
information for each note event, such as note-on and note-off. Using MIDI mu-
sical representations offers several unique advantages: 1) MIDI events capture
the expressive timing and dynamics information contained in music; 2) MIDI is
a sequence of symbolic representation, thus relatively easy to fit into machine
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learning models; 3) MIDI representation is fully interpretable and flexible; 4)
MIDI could be easily converted to realistic music with a standard audio synthe-
sizer.

Given paired data of body keypoints and MIDI events, music generation
from videos can be posed as a motion to MIDI translation problem. We develop a
Graph— Transformer module, which consists of a GCN encoder and a Transfomer
decoder, to learn a mapping function to associate them. The GCN encoder takes
input the coordinates of detected keypoints and applies a spatial-temporal graph
convolution strategy to produce latent feature vectors over time. The transformer
decoder can then effectively capture the long-term relationships between human
body motion and MIDI events using the self-attention mechanism. We train the
model to generate music clips of accordion, bass, bassoon, cello, guitar, piano,
tuba, ukulele, and violin, using large-scale music performance videos. To evalu-
ate the quality of our predicted sounds, we conduct listener study experiments
measured by correctness, least noise, synchronization, and overall preferences.
We show the music generated by our approach significantly outperforms several
strong baselines. In summary, our work makes the following contributions:

— We present a new model to generate synchronized and expressive music from
videos.

— This paper proposes body keypoint and MIDI as an intermediate represen-
tation for transferring knowledge across two modalities, and we empirically
demonstrate that such representations are key to success.

— Our system outperforms previous state-of-the-art systems on music genera-
tion from videos by a large margin.

— We additionally demonstrate that MIDI musical representations facilitate
new applications on generating different styles of music, which seems impos-
sible before.

2 Related Work

2.1 Awudio-Visual Learning

Cross-modal learning from vision and audio has attracted increasing interest
in recent years [44,2,4,57,32]. The natural synchronization between vision and
sound has been leveraged for learning diverse tasks. Given unlabeled training
videos, Owens et al. [44] used sound clusters as supervision to learn visual fea-
ture representation, and Aytar et al. [4] utilized the scene to learn the au-
dio representations. Follow up works [2,33] further investigated to jointly learn
the visual and audio representation using a visual-audio correspondence task.
Instead of learning feature representations, recent works have also explored

to localize sound source in images or videos [29,26,3,18,64], biometric match-
ing [39], visual-guided sound source separation [64,15,19,60], auditory vehicle
tracking [18], multi-modal action recognition [30,35,21], audio inpainting [66],
emotion recognition [1], audio-visual event localization [56], multi-modal physical
scene understanding [16], audio-visual co-segmentation [17], aerial scene recog-

nition [27] and audio-visual embodied navigation [17].



4 C. Gan et al.

2.2 Motion and Sound

Several works have demonstrated the strong correlations between sound and
motion. For example, the associations between speech and facial movements
can be used for facial animations from speech [31,55], generating high-quality
talking face from audio [54,30], separate mixed speech signals of multiple speak-
ers [14,42], and even lip-reading from raw videos [12]. Zhao et al. [63] and Zhou
et al. [68] have demonstrated to use optical flow like motion representations to
improve the quality of visual sound separations and sound generations. There
are also some recent works to explore the correlations between body motion and
sound by predicting gestures from speech [22], body dynamics from music [50],
or identifying a melody through body language [15]. Different from them, we
mainly focus on generating music from videos according to body motions.

2.3 Music Generation

Generating music has been an active research area for decades. As opposed
to handcrafted models, a large number of deep neural network models have
been proposed for music generation [10,11,28,62,24,59,16,65,8]. For example,
MelodyRNN [59] and DeepBach [24] can generate realistic melodies and bach
chorales. WaveNet [410] showed very promising results in generating realistic
speech and music. Song from PI [11] used a hierarchical RNN model to simulta-
neously generate melody, drums, and chords, thus leading to a pop song. Huang
et al. [28] proposed a music transformer model to generate expressive piano mu-
sic from MIDI event. Hawlhorne et al. [25] created a new MAESTRO Dataset
to factorize piano music modeling and generation. A detailed survey on deep
learning for music generation can be found at [5]. However, there is little work
on exploring the problem of generating expressive music from videos.

2.4 Sound Generation from Videos

Back in the 1920s, Jack Foley invented Foley, a technique that can create con-
vincing sound effects to movies. Recently, a number of works have explored the
ideas of training neural networks to automate Foley. Owens et al. [413] investi-
gated the task of predicting the sound emitted by interacting objects with a
drumstick. They first used a neural network to predict sound features and then
performed an exemplar-based retrieval algorithm instead of directly generating
the sound. Chen et al. [10] proposed to use the conditional generative adversarial
networks for cross-modal generation on lab-collected music performance videos.
Zhou et al. [68] introduced a SampleRNN-based method to directly predict a
generate waveform from an unconstraint video dataset that contains 10 types of
sound recorded in the wild. Chen et al. [9] proposed a perceptual loss to improve
the audio-visual semantic alignment. Chen et al. [15] introduced an information
bottleneck to generate visually aligned sound. Recent works [20,38,67] also at-
tempt to generate 360/stereo sound from videos. However, these works all use
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appearances or optical flow for visual representations, and spectrograms or wave-
form for audio representations. Concurrent to our work, [32,52] also study using
MIDI for music transcription and generation.

3 Approach

In this section, we describe our framework of generating music from videos. We
first introduce the visual and audio representations used in our system (Section
3.1). Then we present a new Graph—Tansformer model for MIDI events predic-
tion from body pose features (Section 3.2). Finally, we introduce the training
objective and inference procedures (Section 3.3). The pipeline of our system is
illustrated in Figure 2.

3.1 Visual and Audio Representations

Visual Representations. Existing work on video to sound generation either
use the appearances [13,68] or optical flow [68] as the visual representations.
Though remarkable results have achieved, they exhibit limited abilities to ap-
plications that require the capture of the fine-grained level correlations between
motion and sound. Inspired by previous success on associating vision with audio
signals through the explicit movement of the human body parts and hand fin-
gers [50,22], we use the human pose features to capture the body motion cues.
This is achieved by first detecting the human body and hand keypoints from
each video frame and then stacking their 2D coordinates over time as structured
visual representations. In practice, we use the open-source OpenPose toolbox [6]
to extract the 2D coordinates of human body joints and adopt a pre-trained
hand detection model and the OpenPose [6] hand API [51] to predict the coor-
dinates of hand keypoints. In total, we obtain 25 keypoints for the human body
parts and 21 keypoints for each hand.
Audio Representations. Choosing the correct audio representations is very
important for the success of generating expressive music. We have explored sev-
eral audio representations and network architectures. For example, we have ex-
plored to directly generate raw waveform using RNN [43,68] or predict sound
spectrograms using GAN [10]. However, none of these models work well on gen-
erating realistic music from videos. These results are not surprising since music is
highly compositional and contains many structured events. It is extremely hard
for a machine learning model to discover these rules contained in the music.
We choose the Musical Instrument Digital Interface (MIDI) as the audio
representations. MIDI is composed of timing information note-on and note-off
events. Each event also defines note pitch. There is also additional velocity infor-
mation contained in note-on events that indicates how hard the note was played.
We first use a music transaction software ! to automatically detect MIDI events
from the audio track of the videos. For a 6-second video clip, it typically contains

! https://www.lunaverus.com/
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Fig. 2. An overview of our model architecture. It consists of three components:
a visual encoder, a MIDI decoder, and an audio synthesizer. The visual encoder takes
video frames to extract keypoint coordinates, use GCN to capture the body dynamic
and produce a latent representation over time. The MIDI decoder take the video se-
quence representation to generate a sequence of MIDI event. Finally the MIDI event
is converted to the waveform with a standard audio synthesizer.

around 500 MIDI events, although the length might vary for different music. To
generate expressive timing information for music modeling, we adopt similar
music performance encoding proposed by Oore et al. [11], which consists of
a vocabulary of 88 note-on events, 88 note-off events, 32 velocity bins and 32
time-shift events. These MIDI events could be easily imported into a standard
synthesizer to generate the waveforms of music.

3.2 Body Motions to MIDI Predictions

We build a Graph— Tansformer module to model the correlations between the
human body parts and hand movements with the MIDI events. In particular,
we first adopt a spatial-temporal graph convolutional network on body keypoint
coordinates over time to capture body motions and then feed the encoded pose
features to a music transformer decoder to generate a sequence of the MIDI
events.

Visual Encoder. Given the 2D keypoints coordinates are extracted from the
raw videos, we adopt a Graph CNN to explicitly model the spatial-temporal
relationships among different keypoints on the body and hands. Similar to [61],
we first represent human skeleton sequence as an undirected spatial-temporal
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graph G = (V, E), where the node v; € {V'} corresponds to a key point of the
human body and edges reflect the natural connectivity of body keypoints.

The input for each node are 2D coordinates of a detected human body key-
point over time 7. To model the spatial-temporal body dynamics, we first per-
form a spatial GCN to encode the pose features at each frame independently
and then a standard temporal convolution is applied to the resulting tensor to
aggregate the temporal cues. The encoded pose feature P is defined as:

P=AXWsWr, (1)

where X € RV*T*Cn is the input features; V and C,, represent the number of
keypoints and the feature dimension for each input node, respectively; A € RV*V
is the row-normalized adjacency matrix of the graph; Wg and Wy are the weight
matrices of spatial graph convolution and temporal convolution. The adjacency
matrix is defined based on the joint connections of the body and fingers. Through
GCN, we update the keypoint node features over time. Finally, we aggregate the
node features to arrive an encoded pose feature P € RT»*% where T, and C,
indicate the number of temporal dimension and feature channels.

MIDI Decoder. Since the music signals are represented as a sequence of MIDI
events, we consider music generation from body motions as a sequence prediction
problem. To this end, we use the decoder portion of the transformer model [28],
which has demonstrated strong capabilities to capture the long-term structure
in sequence predictions.

The transformer model [58] is an encoder-decoder based autoregressive gen-
erative model, which is originally designed for machine translation applications.
We adapt this model to our motion to MIDI translation problem. Specifically,
given a visual representation P € RTv*Cv the decoder of transformers is re-
sponsible for predicting a sequence of MIDI events M € RT~*L where T},
and L denote a total number of MIDI events contained in a video clip and the
vocabulary size of MIDI events. At each time step, the decoder takes the pre-
viously generated feature encoding over the MIDI event vocabulary and visual
pose features as input and predicts the next MIDI event.

The core mechanism used in the Transformer is the scale dot-product self-
attention module. This self-attention layer first transforms a sequence of vectors
into query @, key K, and values V', and then output a weighted sum of valueV,
where the weight is calculated by dot products of the key K and query Q.
Mathematical:

QK’
VDy

Instead of performing single attention function, multi-head attention is a common
used strategy, which allows the model to integrate information from different
independent representations.

Different from the vanilla Transformer model, which only uses positional
sinusoids to represent timing information, we adopt relative position representa-
tions [49] to allow attention to explicitly know the distance between two tokens

Attention(Q, K, V') = softmax( 4 (2)
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in a sequence. This is s critically important for modeling music application [28],
since music has rich polyphonic sound, and the relative difference matter signif-
icantly to timing and pitch. To address this issue, we follow the strategy used
in [28] to jointly learn an ordered relative position embedding R for each possible
pairwise distance among pairs of query and key on each head as:

QK'+ R
VDy,

For our MIDI decoder, we first use a masked self-attention module with
relative position embedding to encode input MIDI events, where queries, keys,
and values are all from the same feature encoding and only depend only on
the current and previous positions to maintain the auto-aggressive property.
The output of masked self-attention module M € RTm*¢m and pose features
P € RT»*C are then passed into a multi-head attention module, computed as:

Relative Attention(Q, K, V') = softmax( 4 (3)

MWM(pwP)t
VD

The pointwise feed-forward layer takes the input from cross multi-head at-
tention layer, and further transforms it through two fully connected layers with
ReLU activation as:

Cross Attention(M, P) = softmax( Y(PWY) (4)

Feed Foward = max(0,xW7 + b1)Ws + by (5)

The output of feed-forward layers is passed into a softmax layer to produce
probability distributions of the next token over the vocabulary.

Music Synthesizer. MIDI can get rendered into a music waveform using a
standard synthesizer. It is also possible to train a neural synthesizer [25] for the
audio rendering. We leave it to future work.

3.3 Training and Inference

Our graph—transformer model is fully differentiable, thus can be trained in an
end-to-end fashion. During training, we take input 2D coordinates of the human
skeleton and predict a sequence of MIDI events. At each generation process, the
MIDI decoder takes visual encoder features over time, previous and current MIDI
event tokens as input and predict the next MIDI event. The training objective
is to minimize the cross-entropy loss given a source target sequence of MIDI
events. Given the testing video, our model generates MIDI events by performing
a beam-search with a beam size of 5.

4 Experiments

In this section, we introduce the experimental setup, comparisons with state-of-
the-arts, and ablation studies on each model component.



Foley Music: Learning to Generate Music from Videos 9

4.1 Experimental Setup

Datasets: We conduct experiments on three video datasets of music perfor-
mances, namely URMP [34]; AtinPiano and MUSIC [64]. URMP is a high-quality
multi-instrument video dataset recorded in a studio and provides MIDI file for
each recorded video. AtinPiano is a YouTube channel, including piano video
recordings with camera looking down on the keyboard and hands. We use [53]
to extract the hands from the videos. MUSIC is an untrimmed video dataset
downloaded by querying keywords from Youtube. It contains around 1000 music
performance videos belonging to 11 categories. In the paper, we MUSIC and
AtinPiano datasets for comparisons with state-of-the-arts, and URMP dataset
for ablated study.

Implementation Details: We implement our framework using Pytorch. We
first extract the coordinates of body and hand keypoints for each frame using
OpenPose [6]. Our GCN encoder consists of 10-layers with residual connections.
When training the graph CNN network, we use a batch normalization layer for
input 2D coordinates to keep the scale of the input the same. During training,
we also perform random affine transformations on the skeleton sequences of all
frames as data augmentationto avoid overfitting. The MIDI decoder consists of 6
identical decoder blocks. For each block, the dimension of the attention layer and
feed-forward layer are set to 512 and 1024, respectively. The number of attention
head is set to 8. For the audio data pre-processing, we first use the toolbox to
extract MIDI events from audio recordings. During training, we randomly take a
6-second video clip from the dataset. A software synthesizer? is applied to obtain
the final generated music waveforms.

We train our model using Adam optimizer with 8; = 0.9, 5> = 0.98 and
€ = 1079, We schedule the learning rate during training with a warm-up period.
Specifically, the learning rate is linearly increased to 0.0007 for the first 4000
training steps, and then decreased proportionally to the inverse square root of
the step number.

4.2 Comparisons with State-of-the-arts

We use 9 instruments from MUSIC and AtinPiano dataset to compare against
previous systems, including accordion, bass, bassoon, cello, guitar, piano, tuba,
ukulele, and violin.

Baseline: we consider 3 state-of-the-art systems to compare against. For fair
comparisons, we use the same pose feature representations extracted from GCN
for all these baselines.

— SampleRNN: We follow the sequence-to-sequence pipeline used in [68].
Specifically, we used the pose features to initial the coarsest tier RNN of the
SampleRNN, which serves as a sound generator.

— WaveNet: We take a conditional WaveNet as our sound generator. To con-
sider the video content during sound generation, we use pose features as the
local condition. All other settings are the same as [40].

% https://github.com/FluidSynth /fluidsynth
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Table 1. Human evaluation on model comparisons.

Method GAN-based SampleRNN WaveNet Ours

Accordion 12% 16% 8% 64%
Bass 8% 8% 12% 72%
Bassoon 10% 14% 6% 70%
Cello 8% 14% 12% 66%
Guitar 12% 26% 6% 56%
Piano 14% 10% 10% 66%
Tuba 8% 20% 10% 62%
Ukulele 10% 14% 14%  62%
Violin 10% 18% 14% 58%
1o Correctness o Least noise 1o Synchronization
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Fig. 3. Human evaluation results of forced-choice experiments in term of correctness,
least noise, and synchronization.

— GAN-based Model: We adopt the framework proposed in [10]. Specif-
ically, taking the pose feature as input, an encoder-decoder is adopted to
generate a spectrogram. A discriminator is designed to determine whether
the spectrogram is real or fake, conditional on the input pose feature. We
transform the spectrogram to waveform by iSTFT.
Qualitative Evaluation with Human Study: Similar to the task of image
or video generation, the quality of the generated sound can be very subjective.
For instance, it could be possible to generate music not similar to the ground
truth by applying distance metrics, but still sound like a reasonable match to
the video content. We carried out a listening study to qualitatively compare the
perceived quality of generated music on the Amazon Mechanical Turk (AMT).

We first conduct a forced-choice evaluation [68] to directly compare the pro-
posed method against three baselines. Specifically, we show the four videos with
the same video content but different sounds synthesized from our proposed
method and three baselines to AMT turkers. They are instructed to choose
the best video-sound pair. We use four criteria proposed in [68]:

— Correctness: which music recording is most relevant to video content;

— Least noise: which music recording has least noise;

— Synchronization: which music recording temporally aligns with the video
content best;
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Fig. 4. Visualization of MIDI prediction results.

Table 2. Human evaluation on real-fake. Success mean the percentage of generate
sound that were considered real by worker.

Method Sample RNN WaveNet GAN Ours Oracle
Success 12% 8% 12% 38% 50%

— Overall: which sound they prefer to listen to overall.

For each instrument category, we choose 50 video clips for evaluation. There

are 450 video clips in total. Every question for each test video has been la-
beled by three independent turkers and the results are reported by majority
voting. Table 1 shows overall preference rate for all categories. We find that our
method beat the baseline systems for all the instrument categories. To in-depth
understand the benefit of our approach, we further analyze the correctness, least
noise and synchronization in Figure 3. We can observe that our approach also
consistently outperform baseline systems across all the evaluation criteria by
a large-margin. These results further support our claims that the MIDI event
representations help improve sound quality, semantic alignment, and temporal
synchronization for music generation from videos.
Visualizations: In figure 4, we first show the MIDI prediction and ground
truth. We can observe that our predicted MIDI event are reasonable similar
to the ground truth. We also visualize the sound spectrogram generated by
different approaches in Figure 5. We can find that our model does generate more
structured harmonic components than other baselines.
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Fig. 5. Qualitative comparison results on sound spectrogram generated by different
methods. We report the fraction of generated images

Qualitative Evaluation with real or fake study In this task, we would like
to assess whether the generated audios can fool people into thinking that they
are real. We provide two videos with real (originally belonging to this video)
and fake (generated by computers) audio to the AMT turkers. The turkers are
required to choose the video that they think is real. The criteria for being fake can
be bad synchronization, artifacts, or containing noise. We evaluated the ranking
of 3 AMT turkers, each was given 100 video pairs. To be noted, an oracle score
of 50% would indicate perfect confusions between real and fake. The results in
Table 2 demonstrate that, our generated music was hard to distinguish from the
real audio recordings than other systems.

Quantitative Evaluation with Automatic Metrics We adopt the Num-
ber of Statistically-Different Bins (NDB) [13] as automatic metrics to evaluate
the diversity of generated sound. Specifically, we first transform sound to log-
spectrogram. Then, we cluster the spectrogram in the training set into k = 50
Voronoi cells by k-means algorithm. Each generated sound in the testing set is
assigned to the nearest cell. NDB indicated the number of cells in which the
training samples are significantly different from the number of testing examples.
Except for the baselines mentioned above, we also compare with VIG baseline []
which uses perception loss. The results are listed in Table 3. Our method achieve
significantly lower NDB, demonstrating that we can generate more diverse sound.

4.3 Ablated Study

In this section, we perform in-depth ablation studies to assess the impact of
each component of our model. We use 5 instruments from URMP dataset for
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Table 3. Automatic metrics for different models. For NDB, lower is better.

Metric VIG WaveNet GAN SampleRNN Ours
NDB 33 32 25 30 20

Table 4. Ablated study on visual representation in term of NELL loss on MIDI pre-
diction. Lower number means Better results.

Method violin viola cello trumpet flute

RGB image 1.586 3.772 3.077 2.748 2.219
Optical Flow 1.581 3.859 3.178 3.013  2.046

Skeleton (Ours) 1.558 3.603 2.981 2.512 1.995

quantitative evaluations, including violin, viola, cello, trumpet, and flute. Since
this dataset provides the ground-truth MIDI file, we use negative log-likelihood
(NLL) of MIDI event prediction on the validation set as an evaluation metric.
The effectiveness of Body Motions. In our system, we exploit explicit body
motions through keypoint-based structure representations to guide music gener-
ation. To further understand the ability of these representations, we conduct an
ablated study by replacing keypoint-based structure representation with RGB
image and optical flow representation. For these two baselines, we extract the
features using I3D network [7] pre-trained on Kinetics. As results shown in Ta-
ble 4, keypoint-based representation achieve better MIDI prediction accuracy
than other options. We hope our findings could inspire more works using the
keypoints-based visual representations to solve more challenging audio-visual
scene analysis tasks.

The effectiveness of Music Transformers. We adopt a music transformers
framework for the sequence predictions. To verify its efficacy, we replace this
module with GRU, and keep the other parts of the pipeline the same. The
comparison results are shown in Table 5. We can find that the music transformer
module improves NEL loss over the GRU baseline. These results demonstrated
the benefits of our designed choices using the transformer to capture the long-
term dependencies in music.

4.4 Music Editing with MIDI

Since MIDI representation is fully interpretable and transparent, we can easily
perform the music editing by manipulating the MIDI file. To demonstrate the
flexibility of MIDI representations, we show an example in Figure 6. Here, we
simply manipulate the key of the predicted MIDI, showing its capability to
generate music with different styles. These result validate that the MIDI events
are flexible and interpretable, thus enabling new applications on controllable
music generation, which seem impossible for previous systems which use the
waveform or spectrogram as the audio representations.
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Table 5. Ablated study on sequence prediction model in term of NELL loss on MIDI
prediction. Lower number means Better results.

Method violin viola cello trumpet flute
GRU 1.631 3.747 3.06 2.631 2.101
Transformers w/o hands (Ours) 1.565 3.632 3.014 2.805 2.259
Transformers w hands (Ours)  1.558 3.603 2.981 2.512 1.995

cs cs cs

c7 c7 cr

6 —_— c6 e c6 —_— —
9 Cs _ = g% — = - —
Zedf 2l ——— — __ Zoa—m— — _—— —

.- — = c3 - - c3 - E—

c2 c2 c2

c c c1

60 60
-10 _10 -10
40 40
11 20 20 s
0.
% 100 200 300 400 500 o 100 200 300 400 500

Fig. 6. Music key editing results by manipulating MIDI.

5 Conclusions and Future Work

In this paper, we introduce a foley music system to generate expressive music
from videos. Our model takes video as input, detects human skeletons, rec-
ognizes interactions with musical instruments over time and then predicts the
corresponding MIDI files. We evaluated the quality of our approach using hu-
man evaluation, showing that the performance of our algorithm was significantly
better than baselines. The results demonstrated that the correlations between vi-
sual and music signals can be well established through body keypoints and MIDI
representations. We additionally show our framework can be easily extended to
generate music with different styles through the MIDI representations.

In the future, we plan to train a WaveNet [10] like neural music synthesizer
that can generate waveform from MIDI events. Therefore, the whole system can
be end-to-end trainable. We envision that our work will open up future research
on studying the connections between video and music using intermediate body
keypoints and MIDI event representations.
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