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Abstract. Deep neural networks are vulnerable to adversarial attacks,
in which imperceptible perturbations to their input lead to erroneous
network predictions. This phenomenon has been extensively studied in the
image domain, and has only recently been extended to 3D point clouds.
In this work, we present novel data-driven adversarial attacks against
3D point cloud networks. We aim to address the following problems
in current 3D point cloud adversarial attacks: they do not transfer well
between different networks, and they are easy to defend against via simple
statistical methods. To this extent, we develop a new point cloud attack
(dubbed AdvPC) that exploits the input data distribution by adding an
adversarial loss, after Auto-Encoder reconstruction, to the objective it
optimizes. AdvPC leads to perturbations that are resilient against current
defenses, while remaining highly transferable compared to state-of-the-
art attacks. We test AdvPC using four popular point cloud networks:
PointNet, PointNet++ (MSG and SSG), and DGCNN. Our proposed
attack increases the attack success rate by up to 40% for those transferred
to unseen networks (transferability), while maintaining a high success
rate on the attacked network. AdvPC also increases the ability to break
defenses by up to 38% as compared to other baselines on the ModelNet40
dataset. The code is available at https://github.com/ajhamdi/AdvPC.

1 Introduction

Deep learning has shown impressive results in many perception tasks. Despite its
performance, several works show that deep learning algorithms can be susceptible
to adversarial attacks. These attacks craft small perturbations to the inputs that
push the network to produce incorrect outputs. There is significant progress made
in 2D image adversarial attacks, where extensive work shows diverse ways to
attack 2D neural networks [23,6,11,18,4,2,35,8,7]. In contrast, there is little focus
on their 3D counterparts [31,38,37,25]. 3D point clouds captured by 3D sensors
like LiDAR are now widely processed using deep networks for safety-critical
applications, including but not limited to self-driving [3,27]. However, as we show
in this paper, 3D deep networks tend to be vulnerable to input perturbations, a
fact that increases the risk of using them in such applications. In this paper, we
present a novel approach to attack deep learning algorithms applied to 3D point
clouds with a primary focus on attack transferability between networks.

https://github.com/ajhamdi/AdvPC
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Fig. 1: Transferable Adversarial Perturbations on 3D point clouds: Generating
adversarial attacks to fool PointNet [21](PN) by perturbing a Table point cloud. The
perturbed 3D object not only forces PointNet to predict an incorrect class, but also
induces misclassification on other unseen 3D networks (PointNet++ [22], DGCNN [29])
that are not involved in generating the perturbation. Fooling unseen networks poses a
threat to 3D deep vision models.

The concept of attack transferability has been extensively studied in the
2D image domain [17,19,20]. Transferability allows an adversary to fool any
network, without access to the network’s architecture. Clearly, transferable
attacks pose a serious security concern, especially in the context of deep learning
model deployment. In this work, the goal is to generate adversarial attacks with
network-transferability, i.e. the attack to a given point cloud is generated using
a single and accessible victim network, and the perturbed sample is directly
applied to an unseen and inaccessible transfer network.Accessibility here refers
to whether the parameters and architecture of the network are known, while
optimizing the attack (white-box). Fig. 1 illustrates the concept of transferability.
The perturbation generated by our method for a 3D point cloud not only flips
the class label of a victim network to a wrong class (i.e. it is adversarial), but it
also induces a misclassification for the transfer networks that are not involved in
generating the perturbation (i.e. it is transferable).

Very few adversarial attacks have been developed for 3D point clouds. The first
method was introduced by Xiang et. al. [31] and it proposes point perturbation
and adversarial point generation as two attack modes. More recently, Tsai et.
al. [25] proposed to make point cloud attacks more smooth and natural by
incorporating a K-Nearest Neighbor (KNN) loss on the points, thus making the
attacks physically realizable. We identify two main shortcomings in current 3D
adversarial perturbations methods [31,25]. First, their attacks are unsuccessful in
the presence of simple defenses, such as Statistical Outlier Removal [38]. Second,
they are limited to the victim network and do not transfer well to other networks
[31]. In contrast, our work not only focuses on adversarial perturbations that are
significantly more resilient against currently available point cloud defenses, but
also on those that transfer well between different point cloud networks.
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To generate more transferable attacks, we use a point cloud Auto-Encoder
(AE), which can effectively reconstruct the unperturbed input after it is perturbed,
and then add a data adversarial loss. We optimize the perturbation added to the
input to fool the classifier before it passes through the AE (regular adversarial
loss) and after it passes through the AE (data adversarial loss). In doing so, the
attack tends to be less dependent on the victim network, and generalizes better
to different networks. Our attack is dubbed “AdvPC”, and our full pipeline is
optimized end-to-end from the classifier output to the perturbation. The AE
learns the natural distribution of the data to generalize the attack to a broader
range of unseen classifiers [26], thus making the attack more dangerous. Our
attacks surpass state-of-the-art attacks [31,25] by a large margin (up to 40%) on
point cloud networks operating on the standard ModelNet40 dataset [30] and for
the same maximum allowed perturbation norms (norm-budgets).
Contributions. Our contributions are two-fold. (1) We propose a new pipeline
and loss function to perform transferable adversarial perturbations on 3D point
clouds. By introducing a data adversarial loss targeting the victim network
after reconstructing the perturbed input with a point cloud AE, our approach
can be successful in both attacking the victim network and transferring to
unseen networks. Since the AE is trained to leverage the point cloud data
distribution, incorporating it into the attack strategy enables better transferability
to unseen networks. To the best of our knowledge, we are the first to introduce
network-transferable adversarial perturbations for 3D point clouds. (2) We
perform extensive experiments under constrained norm-budgets to validate the
transferability of our attacks. We transfer our attacks between four point cloud
networks and show superiority against the state-of-the-art. Furthermore, we
demonstrate how our attacks outperform others when targeted by currently
available point cloud defenses.

2 Related Work

2.1 Deep Learning for 3D Point Clouds

PointNet [21] paved the way as the first deep learning algorithm to operate
directly on 3D point clouds. PointNet computes point features independently, and
aggregates them using an order invariant function like max-pooling. An update
to this work was PointNet++ [22], where points are aggregated at different 3D
scales. Subsequent works focused on how to aggregate more local context [5] or on
more complex aggregation strategies like RNNs [9,33]. More recent methods run
convolutions across neighbors of points, instead of using point-wise operations
[29,15,24,13,12,15,28,14]. Contrary to PointNet and its variants, these works
achieve superior recognition results by focusing on local feature representation.
In this paper and to evaluate/validate our adversarial attacks, we use three point-
wise networks, PointNet [21] and PointNet++ [22] in single-scale (SSG) and
multi-scale (MSG) form, and a Dynamic Graph convolutional Network, DGCNN
[29]. We study the sensitivity of each network to adversarial perturbations and
show the transferability of AdvPC attacks between the networks.
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2.2 Adversarial Attacks

Pixel-based Adversarial Attacks. The initial image-based adversarial attack
was introduced by Szegedy et. al. [23], who cast the attack problem as optimization
with pixel perturbations being minimized so as to fool a trained classifier into
predicting a wrong class label. Since then, the topic of adversarial attacks has
attracted much attention [6,11,18,4,16]. More recent works take a learning-based
approach to the attack [19,20,36]. They train a neural network (adversary) to
perform the attack and then use the trained adversary model to attack unseen
samples. These learning approaches [19,20,36] tend to have better transferability
properties than the optimizations approaches [6,11,18,4,16], while the latter tend
to achieve higher success rates on the victim networks. As such, our proposed
AdvPC attack is a hybrid approach, in which we leverage an AE to capture
properties of the data distribution but still define the attack as an optimization
for each sample. In doing so, AdvPC captures the merits of both learning and
optimization methods to achieve high success rates on the victim networks as
well as better transferability to unseen networks.
Adversarial Attacks in 3D. Several adversarial attacks have moved beyond
pixel perturbations to the 3D domain. One line of work focuses on attacking
image-based CNNs by changing the 3D parameters of the object in the image,
instead of changing the pixels of the image [8,35,2,7,32]. Recently, Xiang et. al. [31]
developed adversarial perturbations on 3D point clouds, which were successful in
attacking PointNet [21]; however, this approach has two main shortcomings. First,
it can be easily defended against by simple statistical operations [38]. Second, the
attacks are non-transferable and only work on the attacked network [31,38]. In
contrast, Zheng et. al. [37] proposed dropping points from the point cloud using a
saliency map, to fool trained 3D deep networks. As compared to [37], our attacks
are modeled as an optimization on the additive perturbation variable with a
focus on point perturbations instead of point removal. As compared to [31], our
AdvPC attacks are significantly more successful against available defenses and
more transferable beyond the victim network, since AdvPC leverages the point
cloud data distribution through the AE. Concurrent to our work is the work of
Tsai et. al. [25], in which the attack is crafted with KNN loss to make smooth
and natural shapes. The motivation of their work is to craft natural attacks on
3D point clouds that can be 3D-printed into real objects. In comparison, our
novel AdvPC attack utilizes the data distribution of point clouds by utilizing an
AE to generalize the attack.
Defending Against 3D Point Cloud Attacks. Zhou et. al. [38] proposed
a Statistical Outlier Removal (SOR) method as a defense against point cloud
attacks. SOR uses KNN to identify and remove point outliers. They also propose
DUP-Net, which is a combination of their SOR and a point cloud up-sampling
network PU-Net [34]. Zhou et. al. also proposed removing unnatural points by
Simple Random Sampling (SRS), where each point has the same probability of
being randomly removed. Adversarial training on the attacked point cloud is
also proposed as a mode of defense by [31]. Our attacks surpass state-of-the-art
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Fig. 2: AdvPC Attack Pipeline: We optimize for the constrained perturbation
variable ∆ to generate the perturbed sample X ′ = X +∆. The perturbed sample fools a
trained classifier F (i.e. F(X ′) is incorrect), and at the same time, if the perturbed sample
is reconstructed by an Auto-Encoder (AE) G, it too fools the classifier (i.e. F(G(X ′))
is incorrect). The AdvPC loss for network F is defined in Eq (6) and has two parts:
network adversarial loss (purple) and data adversarial loss (green). Dotted lines are
gradients flowing to the perturbation variable ∆.

attacks [31,25] on point cloud networks by a large margin (up to 38%) on the
standard ModelNet40 dataset [30] against the aforementioned defenses [38].

3 Methodology

The pipeline of AdvPC is illustrated in Fig. 2. It consists of an Auto-Encoder (AE)
G, which is trained to reconstruct 3D point clouds and a point cloud classifier
F. We seek to find a perturbation variable ∆ added to the input X to fool F
before and after it passes through the AE for reconstruction. The setup makes
the attack less dependent on the victim network and more dependent on the
data. As such, we expect this strategy to generalize to different networks. Next,
we describe the main components of our pipeline: 3D point cloud input, AE, and
point cloud classifier. Then, we present our attack setup and loss.

3.1 AdvPC Attack Pipeline

3D Point Clouds (X ). We define a point cloud X ∈ RN×3, as a set of N 3D
points, where each point xi ∈ R3 is represented by its 3D coordinates (xi, yi, zi).
Point Cloud Networks (F). We focus on 3D point cloud classifiers with a
feature max pooling layer as detailed in Eq (1), where hmlp and hconv are MLP
and Convolutional (1× 1 or edge) layers, respectively. This produces a K-class
classifier F.

F(X ) = hmlp(max
xi∈X

{hconv (xi)}) (1)

Here, F : RN×3 → RK produces the logits layer of the classifier with size K. For
our attacks, we take F to be one of the following widely used networks in the
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literature: PointNet [21], PointNet++ [22] in single-scale form (SSG) and multi-
scale form (MSG), and DGCNN [29]. Section 5.2 delves deep into the differences
between them in terms of their sensitivities to adversarial perturbations.
Point Cloud Auto-Encoder (G). An AE learns a representation of the data
and acts as an effective defense against adversarial attacks. It ideally projects a
perturbed point cloud onto the natural manifold of inputs. Any AE architecture
in point clouds can be used, but we select the one in [1] because of its simple
structure and effectiveness in recovering from adversarial perturbation. The AE
G consists of an encoding part, gencode : RN×3 −→ Rq (similar to Eq (1)), and an
MLP decoder, gmlp : Rq −→ RN×3, to produce a point cloud. It can be described
formally as: G(.) = gmlp

(
gencode(.)

)
. We train the AE with the Chamfer loss as

in [1] on the same data used to train F, such that it can reliably encode and
decode 3D point clouds. We freeze the AE weights during the optimization of
the adversarial perturbation on the input. Since the AE learns how naturally
occurring point clouds look like, the gradients updating the attack, which is also
tasked to fool the reconstructed sample after the AE, actually become more
dependent on the data and less on the victim network. The enhanced data
dependency of our attack results in the success of our attacks on unseen transfer
networks besides the success on the victim network. As such, the proposed
composition allows the crafted attack to successfully attack the victim classifier,
as well as, fool transfer classifiers that operate on a similar input data manifold.

3.2 AdvPC Attack Loss
Soft Constraint Loss. In AdvPC attacks, like the ones in Fig. 3, we focus
solely on perturbations of the input. We modify each point xi by a an addictive
perturbation variable δi. Formally, we define the perturbed point set X ′ =
X + ∆, where ∆ ∈ RN×3 is the perturbation parameter we are optimizing for.
Consequently, each pair (xi,x′i) are in correspondence. Adversarial attacks are
commonly formulated as in Eq (2), where the goal is to find an input perturbation
∆ that successfully fools F into predicting an incorrect label t′, while keeping
X ′ and X close under distance metric D : RN×3 × RN×3 → R.

min
∆

D (X ,X ′) s.t.
[
arg max

i
F (X ′)i

]
= t′ (2)

The formulation in Eq (2) can describe targeted attacks (if t′ is specified
before the attack) or untargeted attacks (if t′ is any label other than the
true label of X ). We adopt the following choice of t′ for untargeted attacks:
t′ =

[
arg maxi 6=true F (X ′)i

]
. Unless stated otherwise, we primarily use untar-

geted attacks in this paper. As pointed out in [4], it is difficult to directly
solve Eq (2). Instead, previous works like [31,25] have used the well-known
C&W formulation, giving rise to the commonly known soft constraint attack:
min∆ ft′ (F(X ′)) +λD (X ,X ′) where ft′ (F(X ′)) is the adversarial loss function
defined on the network F to move it to label t′ as in Eq (3).

ft′ (F(X ′)) = max
(

max
i6=t′

(F (X ′)i)− F (X ′)t′ + κ, 0
)
, (3)
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Fig. 3: Examples of AdvPC Attacks: Adversarial attacks are generated for victim
networks PointNet, PointNet ++ (MSG/SSG) and DGCNN using AdvPC. The unper-
turbed point clouds are in black (top) while the perturbed examples are in blue (bottom).
The network predictions are shown under each point cloud. The wrong prediction of
each perturbed point cloud matches the target of the AdvPC attack.

where κ is a loss margin. The 3D-Adv attack [31] uses `2 for D (X ,X ′), while the
KNN Attack [25] uses Chamfer Distance.
Hard Constraint Loss. An alternative to Eq (2) is to put D (X ,X ′) as a
hard constraint, where the objective can be minimized using Projected Gradient
Descent (PGD) [11,16] as follows.

min
∆

ft′ (F(X ′)) s.t. D (X ,X ′) ≤ ε (4)

Using a hard constraint sets a limit to the amount of added perturbation in
the attack. This limit is defined by ε in Eq (4), which we call norm-budget in
this work. Having this bound ensures a fair comparison between different attack
schemes. We compare these schemes by measuring their attack success rate at
different levels of norm-budget. Using PGD, the above optimization in Eq (4) with
`p distance D`p

(X ,X ′) can be solved by iteratively projecting the perturbation
∆ onto the `p sphere of size εp after each gradient step such that: ∆t+1 =
Πp (∆t − η∇∆tft′ (F(X ′)) , εp). Here, Πp (∆, εp) projects the perturbation ∆
onto the `p sphere of size εp, and η is a step size. The two most commonly
used `p distance metrics in the literature are `2, which measures the energy of
the perturbation, and `∞, which measures the maximum point perturbation of
each δi ∈ ∆. In our experiments, we choose to use the `∞ distance defined as
D`∞ (X ,X ′) = maxi ‖δi‖∞, The projection of ∆ onto the `∞ sphere of size ε∞
is: Π∞ (∆, ε∞) = SATε∞(δi), ∀δi ∈ ∆, where SATε∞ (δi) is the element-wise
saturation function that takes every element of vector δi and limits its range to
[−ε∞, ε∞]. Norm-budget ε∞ is used throughout the experiments in this work.

In supplement, we detail our formulation when `2 is used as the distance
metric and report similar superiority over the baselines just as the `∞ results.
For completeness, we also show in the supplement the effect of using different
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distance metrics (`2, Chamfer, and Earth Mover Distance) as soft constraints on
transferability and attack effectiveness.
Data Adversarial Loss. The objectives in Eq (2, 4) focus solely on the network
F. We also want to add more focus on the data in crafting our attacks. We do
so by fooling F using both the perturbed input X ′ and the AE reconstruction
G(X ′) (see Fig. 2). Our new objective becomes:

min
∆

D (X ,X ′) s.t. [arg max
i

F (X ′)i] = t′; [arg max
i

F (G(X ′))i] = t′′ (5)

Here, t′′ is any incorrect label t′′ 6= arg maxi F (X )i and t′ is just like Eq (2). The
second constraint ensures that the prediction of the perturbed sample after the
AE differs from the true label of the unperturbed sample. Similar to Eq (2), this
objective is hard to optimize, so we follow similar steps as in Eq (4) and optimize
the following objective for AdvPC using PGD (with `∞ as the distance metric):

min
∆

(1− γ) ft′ (F(X ′)) + γ ft′′ (F (G(X ′))) s.t. D`∞ (X ,X ′) ≤ ε∞ (6)

Here, f is as in Eq (3), while γ is a hyper-parameter that trades off the attack’s
success before and after the AE . When γ = 0, the formulation in Eq (6) becomes
Eq (4). We use PGD to solve Eq (6) just like Eq (4). We follow the same
procedures as in [31] when solving Eq (6) by keeping a record of any ∆ that
satisfies the constraints in Eq (5) and by trying different initializations for ∆.

4 Experiments

4.1 Setup

Dataset and Networks. We use ModelNet40 [30] to train the classifier network
(F) and the AE network (G), as well as test our attacks. ModelNet40 contains
12,311 CAD models from 40 different classes. These models are divided into 9,843
for training and 2,468 for testing. Similar to previous work [38,31,37], we sample
1,024 points from each object. We train the F victim networks: PointNet[21],
PointNet++ in both Single-Scale (SSG) and Multi-scale (MSG) [22] settings, and
DGCNN [29]. For a fair comparison, we adopt the subset of ModelNet40 detailed
in [31] to perform and evaluate our attacks against their work (we call this the
attack set). In the attack set, 250 examples are chosen from 10 ModelNet40
classes. We train the AE using the full ModelNet40 training set with the Chamfer
Distance loss and then fix the AE when the attacks are being generated.
Adversarial Attack Methods. We compare AdvPC against the state-of-the-
art baselines 3D-Adv [31] and KNN Attack [25]. For all attacks, we use Adam
optimizer [10] with learning rate η = 0.01, and perform 2 different initializations
for the optimization of ∆ (as done in [31]). The number of iterations for the
attack optimization for all the networks is 200. We set the loss margin κ = 30 in
Eq (3) for both 3D-Adv [31] and AdvPC and κ = 15 for KNN Attack [25] (as
suggested in their paper). For other hyperparameters of [31,25], we follow what
is reported in their papers. We pick γ = 0.25 in Eq (6) for AdvPC because it
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Fig. 4: Transferability Across Different Norm-Budgets: Here, the victim network
is DGCNN [29] and the attacks are optimized using different ε∞ norm-budgets. We
report the attack success on DGCNN and on the transfer networks (PointNet, PointNet
++ MSG, and PointNet++ SSG). We note that our AdvPC transfers better to the other
networks across different ε∞ as compared to the baselines 3D-Adv[31] and KNN Attack
[25]. Similar plots for the other victim networks are provided in the supplement.

strikes a balance between the success of the attack and its transferability (refer
to Section 5.1 for details). In all of the attacks, we follow the same procedure as
[31], where the best attack that satisfies the objective during the optimization
is reported. We add the hard `∞ projection Π∞ (∆, ε∞) described in Section 3
to all the methods to ensure fair comparison on the same norm-budget ε∞. We
report the best performance of the baselines obtained under this setup.
Transferability. We follow the same setup as [19,20] by generating attacks
using the constrained `∞ metric and measure their success rate at different
norm-budgets ε∞ taken to be in the range [0, 0.75]. This range is chosen because
it enables the attacks to reach 100% success on the victim network, as well as
offer an opportunity for transferability to other networks. We compare AdvPC
against the state-of-the-art baselines [31,25] under these norm-budgets (e.g. see
Fig. 4 for attacking DGCNN). To measure the success of the attack, we compute
the percentage of samples out of all attacked samples that the victim network
misclassified. We also measure transferability from each victim network to the
transfer networks. For each pair of networks, we optimize the attack on one
network (victim) and measure the success rate of this optimized attack when
applied as input to the other network (transfer). We report these success rates for
all network pairs. No defenses are used in the transferability experiment. All the
attacks performed in this section are untargeted attacks (following the convention
for transferability experiments [31]).
Attacking the Defenses. We also analyze the success of our attacks against
point cloud defenses. We compare AdvPC attacks and the baselines [31,25] against
several defenses used in the point cloud literature: SOR, SRS, DUP-Net [38], and
Adversarial Training [31]. We also add a newly trained AE (different from the one
used in the AdvPC attack) to this list of defenses. For SRS, we use a drop rate
of 10%, while in SOR, we use the same parameters proposed in [38]. We train
DUP-Net on ModelNet40 with an up-sampling rate of 2. For Adversarial Training,
all four networks are trained using a mix of the training data of ModelNet40 and
adversarial attacks generated by [31]. While these experiments are for untargeted
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- - ε∞ = 0.18 ε∞ = 0.45
Victim
Network

Attack PN PN++
(MSG)

PN++
(SSG)

DGCNN PN PN++
(MSG)

PN++
(SSG)

DGCNN

PN
3D-Adv [31] 100 8.4 10.4 6.8 100 8.8 9.6 8.0
KNN [25] 100 9.6 10.8 6.0 100 9.6 8.4 6.4

AdvPC (Ours) 98.8 20.4 27.6 22.4 98.8 18.0 26.8 20.4

PN++
(MSG)

3D-Adv [31] 6.8 100 28.4 11.2 7.2 100 29.2 11.2
KNN [25] 6.4 100 22.0 8.8 6.4 100 23.2 7.6

AdvPC (Ours)13.2 97.2 54.8 39.6 18.4 98.0 58.0 39.2

PN++
(SSG)

3D-Adv [31] 7.6 9.6 100 6.0 7.2 10.4 100 7.2
KNN [25] 6.4 9.2 100 6.4 6.8 7.6 100 6.0

AdvPC (Ours)12.0 27.2 99.2 22.8 14.0 30.8 99.2 27.6

DGCNN
3D-Adv [31] 9.2 11.2 31.2 100 9.6 12.8 30.4 100
KNN [25] 7.2 9.6 14.0 99.6 6.8 10.0 11.2 99.6

AdvPC (Ours)19.6 46.0 64.4 94.8 32.8 48.8 64.4 97.2

Table 1: Transferability of Attacks: We use norm-budgets (max `∞ norm allowed
in the perturbation) of ε∞ = 0.18 and ε∞ = 0.45 . All the reported results are the
untargeted Attack Success Rate (higher numbers are better attacks). Bold numbers
indicate the most transferable attacks. Our attack consistently achieves better transfer-
ability than the other attacks for all networks, especially on DGCNN [29]. For reference,
the classification accuracies on unperturbed samples for networks PN, PN++(MSG),
PN++(SSG) and DGCNN are 92.8%, 91.5%, 91.5%, and 93.7%, respectively.

attacks, we perform similar experiments under targeted attacks and report the
results in supplement for reference and completeness.

4.2 Results

We present quantitative results that focus on two main aspects. First, we show the
transferable power of AdvPC attacks to different point cloud networks. Second,
we highlight the strength of AdvPC under different point cloud defenses.
Transferability. Table 1 reports transferability results for ε∞ = 0.18 and ε∞ =
0.45 and compares AdvPC with the baselines [31,25]. The value ε∞ = 0.18
is chosen, since it allows the DGCNN attack to reach maximum success (see
Section 5.2), and the value ε∞ = 0.45 is arbitrarily chosen to be midway in the
remaining range of ε∞. It is clear that AdvPC attacks consistently beat the
baselines when transferring between networks (up to 40%). Our method shows
substantial gains in the case of DGCNN. We also report transferability results
for a range of ε∞ values in Fig. 4 when the victim network is DGCNN, and the
attacks transferred to all other networks. In supplement, we show the same plots
when the victim network is taken to be PN and PN++. To represent all these
transferability curves compactly, we aggregate their results into a Transferability
Matrix. Every entry in this matrix measures the transferability from the victim
network (row) to the transfer network (column), and it is computed as the
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Fig. 5: Transferability Matrix: Visualizing the overall transferability for 3D-Adv
[31] (left), KNN Attack [25] (middle), and our AdvPC (right). Elements in the same
row correspond to the same victim network used in the attack, while those in the same
column correspond to the network that the attack is transferred to. Each matrix element
measures the average success rate over the range of ε∞ for the transfer network. We
expect the diagonal elements of each transferability matrix (average success rate on the
victim network) to have high values, since each attack is optimized on the same network
it is transferred to. More importantly, brighter off-diagonal matrix elements indicate
better transferability. We observe that our proposed AdvPC attack is more transferable
than the other attacks and that DGCNN is a more transferable victim network than the
other point cloud networks. The transferability score under each matrix is the average
of the off-diagonal matrix values, which summarizes overall transferability for an attack.

average success rate of the attack evaluated on the transfer network across all ε∞
values. This value reflects how good the perturbation is at fooling the transfer
network overall. As such, we advocate the use of the transferability matrix as
a standard mode of evaluation for future work on network-transferable attacks.
In Fig. 5, we show the transferability matrices for our attack and the baselines.
AdvPC transfers better overall, since it leads to higher (brighter) off-diagonal
values in the matrix. Using the average of off-diagonal elements in this matrix
as a single scalar measure of transferability, AdvPC achieves 24.9% average
transferability, as compared to 11.5% for 3D-Adv [31] and 8.92% for KNN Attack
[25]. We note that DGCNN [29] performs best in terms of transferability and is
the hardest network to attack (for AdvPC and the baselines).
Attacking Defenses. Since DGCNN performs the best in transferability, we use
it to evaluate the resilience of our AdvPC attacks under different defenses. We
use the five defenses described in Section 4.1 and report their results in Table 2.
Our attack is more resilient than the baselines against all defenses. We note that
the AE defense is very strong against all attacks compared to other defenses [38],
which explains why AdvPC works very well against other defenses and transfers
well to unseen networks. We also observe that our attack is strong against simple
statistical defenses like SRS (38% improvement over the baselines). We report
results for other victim networks (PN and PN++) in the supplement , where
AdvPC shows superior performance against the baselines under these defenses.
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ε∞ = 0.18 ε∞ = 0.45

Defenses 3D-Adv
[31]

KNN
[25]

AdvPC
(ours)

3D-Adv
[31]

KNN
[25]

AdvPC
(ours)

No defense 100 99.6 94.8 100 99.6 97.2
AE (newly trained) 9.2 10.0 17.2 12.0 10.0 21.2
Adv Training [31] 7.2 7.6 39.6 8.8 7.2 42.4

SOR [38] 18.8 17.2 36.8 19.2 19.2 32.0
DUP Net [38] 28 28.8 43.6 28 31.2 37.2

SRS [38] 43.2 29.2 80.0 47.6 31.2 85.6

Table 2: Attacking Point Cloud Defenses: We evaluate untargeted attacks using
norm-budgets of ε∞ = 0.18 and ε∞ = 0.45 with DGCNN [29] as the victim network under
different defenses for 3D point clouds. Similar to before, we report attack success rates
(higher indicates better attack). AdvPC consistently outperforms the other attacks
[31,25] for all defenses. Note that both the attacks and evaluations are performed on
DGCNN, which has an accuracy of 93.7% without input perturbations (for reference).

5 Analysis

We perform several analytical experiments to further explore the results obtained
in Section 4.2. We first study the effect of different factors that play a role in the
transferability of our attacks. We also show some interesting insights related to
the sensitivity of point cloud networks and the effect of the AE on the attacks.

5.1 Ablation Study (hyperparameter γ)

Here, we study the effect of γ used in Eq (6) on the performance of our attacks.
While varying γ between 0 and 1, we record the attack success rate on the victim
network and report the transferability to all of the other three transfer networks
(average success rate on the transfer networks). We present averaged results
over all norm-budgets in Fig. 6 for the four victim networks. One observation
is that adding the AE loss with γ > 0 tends to deteriorate the success rate,
even though it improves transferability. We pick γ = 0.25 in our experiments to
balance success and transferability.

5.2 Network Sensitivity to Point Cloud Attacks

Fig. 7 plots the sensitivity of the various networks when they are subject to
input perturbations of varying norm-budgets ε∞. We measure the classification
accuracy of each network under our AdvPC attack (γ = 0.25), 3D-Adv [31], and
KNN Attack [25]. We observe that DGCNN [29] tends to be the most robust to
adversarial perturbations in general. This might be explained by the fact that the
convolution neighborhoods in DGCNN are dynamically updated across layers and
iterations. This dynamic behavior in network structure may hinder the effect of
the attack because gradient directions can change significantly from one iteration
to another. This leads to failing attacks and higher robustness for DGCNN [29].



AdvPC: Transferable Adversarial Perturbations on 3D Point Clouds 13

0.00 0.25 0.50 0.75 1.00
Hyperparameter  

50

60

70

80

90
Su

cc
es

s R
at

e 
(%

)

Success

PN
PN++(MSG)
PN++(SSG)
DGCNN

0.00 0.25 0.50 0.75 1.00
Hyperparameter  

10

15

20

25

30

35

Tr
an

sf
er

ab
ilit

y 
(%

)

Transferability
PN
PN++(MSG)
PN++(SSG)
DGCNN

Fig. 6: Ablation Study: Studying the effect of changing AdvPC hyperparameter (γ) on
the success rate of the attack (left) and on its transferability (right). The transferability
score reported for each victim network is the average success rate on the transfer
networks averaged across all different norm-budgets ε∞. We note that as γ increases,
the success rate of the attack on the victim network drops, and the transferability varies
with γ. We pick γ = 0.25 in all of our experiments.
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Fig. 7: Sensitivity of Architectures: We evaluate the sensitivity of each of the four
networks for increasing norm-budget. For each network, we plot the classification accu-
racy under 3D-Adv perturbation [31] (left), KNN Attack [25] (middle), and our AdvPC
attack (right). Overall, DGCNN [29] is affected the least by adversarial perturbation.

5.3 Effect of the Auto-Encoder (AE)

In Fig. 8, we show an example of how AE reconstruction preserves the details of
the unperturbed point cloud and does not change the classifier prediction. When a
perturbed point cloud passes through the AE, it recovers a natural-looking shape.
The AE’s ability to reconstruct natural-looking 3D point clouds from various
perturbed inputs might explain why it is a strong defense against attacks in Table
2. Another observation from Fig. 8 is that: when we fix the target t′ and do not
enforce a specific incorrect target t′′ (i.e. untargeted attack setting) for the data
adversarial loss on the reconstructed point cloud in the AdvPC attack (Eq (6)),
the optimization mechanism tends to pick t′′ to be a similar class to the correct
one. For example, a Toilet point cloud perturbed by AdvPC can be transformed
into a Chair (similar in appearance to a toilet), if reconstructed by the AE. This
effect is not observed for the other attacks [31,25], which do not consider the
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unperturbed
point cloud 3D-adv [31] KNN [25] AdvPC (ours)

before AE after AE before AE after AE before AE after AE before AE after AE

PN: PN: PN: PN: PN: PN: PN: PN:
Toilet 3 Toilet 3 Bed 6 Toilet 3 Bed 6 Toilet 3 Bed 6 Chair 6

Fig. 8: Effect of the Auto-Encoder (AE): The AE does not affect the unperturbed
point cloud (classified correctly by PN before and after AE). The AE cleans the point
cloud perturbed by 3D-Adv and KNN [31,25], which allows PN to predict the correct
class label. However, our AdvPC attack can fool PN before and after AE reconstruction.
Samples perturbed by AdvPC, if passed through the AE, transform into similar looking
objects from different classes (Chair looks similar to Toilet).

data distribution and optimize solely for the network. For completeness, we tried
replacing the AE with other 3D generative models from [1] in our AdvPC attack,
and we tried to use the learning approach in [19,20] instead of optimization, but
the attack success was less than satisfactory in both cases (refer to supplement).

6 Conclusions

In this paper, we propose a new adversarial attack for 3D point clouds that
utilizes a data adversarial loss to formulate network-transferable perturbations.
Our attacks achieve better transferability to four popular point cloud networks
than other 3D attacks, and they improve robustness against popular defenses.
Future work would extend this attack to other 3D deep learning tasks, such as
detection and segmentation, and integrate it into a robust training framework
for point cloud networks.
Acknowledgments. This work was supported by the King Abdullah University
of Science and Technology (KAUST) Office of Sponsored Research under Award
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