BBS-Net: RGB-D Salient Object Detection with a Bifurcated Backbone Strategy Network (Supplementary Material)

Anonymous ECCV submission

Paper ID 1547

Abstract. In this supplementary material, we introduce the evaluation metrics in detail, and provide more exprimental results to demonstrate the effectiveness of our model and for better comparison with state-ofthe-art methods.

Evaluation Metric

In this section, we introduce the detailed definations of the metrics for the binary foreground map evaluation used in our experiments, including F-measure (F_{β}) , S-measure (S_{α}) , E-measure (E_{ξ}) , MAE and PR curve.

F-measure [1] is a common evaluation metric based on region similarity. It is defined as:

$$F^i_{\beta} = \frac{(1+\beta^2)P^i \times R^i}{\beta^2 \times P^i + R^i},\tag{1}$$

where P^i and R^i are the corresponding precision and recall for the threshold *i* $(i \in \{1, 2, \dots, 255\})$, respectively. β controls the trade-off between P^i and R^i . In our experiments, we set β^2 to 0.3, as proposed by [1]. In the manuscript, we utilize the maximum F-measure (for all thresholds) to evaluate different methods. Besides, we also provide results of the adaptive F-measure (*i.e.*, the threshold is defined as the double mean value of the saliency map) and mean F-measure (*i.e.*, the average F-measure for all thresholds) in this material.

S-measure [16] is a structure measure which combines the region-aware structural similarity (S_r) and object-aware structural similarity (S_o) . It is on the basis of behavioral vision studies that huaman vision pays more attention to the structures and is represented by:

$$S_{\alpha} = \alpha \times S_o + (1 - \alpha) \times S_r, \tag{2}$$

where $\alpha \in [0, 1]$ is a hyper-parameter to balance the (S_r) and (S_{α}) . We set it to 0.5 as the default setting.

E-measure is recently proposed by [17], which is based on the cognitive vision studies and utilizes both image-level and local pixel-level statistics for evaluating the binary saliency map. It is defined as:

$$E_{\xi} = \frac{1}{w \times h} \sum_{x=1}^{w} \sum_{y=1}^{h} \phi(x, y),$$
(3)

where w and h are the width and height of the saliency map, ϕ is the enhanced alignment matrix. Similar to the aforementioned F-measure, we also provide the results of max E-measure, adaptive E-measure and mean E-measure.

The **MAE** represents the average absolute error between the predicted saliency map and the ground truth. It is denoted as:

$$M = \frac{1}{N}|S - G|,\tag{4}$$

where S and G are the prediced saliency map and ground-truth binary map. respectively. N represents the total number of pixels.

PR curve is generated by a series of Precision-Recall (PR) pairs, which is calculated by the binarized saliency map with its thresholds varying from 0-255. In detail, the Precision (P) and Recall (R) are calculated by:

$$P = \frac{|S' \cap G|}{|S'|}, R = \frac{|S' \cap G|}{|G|},$$
(5)

where S' is the binary mask for the predicted map S according to the threshold.

Additional Experimental Results

Tab. 1. We show additional results on the recent proposed DUT [45] dataset. Tab. 2. To further demonstrate the effectiveness of GCM module in the cascaded decoder, we conduct experiments without using GCM (*i.e.*, replace GCM with a 1×1 convolution).

Tab. 3. We make an analysis of different data augumentation strategies, *i.e.*, random flipping, border clipping and random rotating.

Tab. 4. We test the speed of the proposed model using different settings.

Tab. 5. We compare the runtime of different models. The timings are borrowed from original paper or provided by authors.

Tab. 6. We make quantitative comparisons of different models using 4 more metrics (*i.e.*, adaptive F-measure, adaptive E-measure, mean F-measure and mean E-measure) on 7 public datasets.

Fig. 1. We show 6 representative failure cases selected from several datasets.

Fig. 2. We give a rank of 19 state-of-the-art models using the metric of max F-measure on 7 datasets (Tab. 6).

Fig. 3. We shows the complete version of PR curves for various methods on 7 datasets.

Fig. 4. We draw the F-measure curves of our method and 18 state-of-the-art methods on 7 datasets.

Fig. $5 \sim$ Fig. 9. We show a large quantity of predicted saliency maps of our model and 18 state-of-the-art methods.

Table 1: Performance comparisons of different models on the recent DUT [45] dataset. The models are trained and tested on the DUT dataset using the proposed training and test sets split from [45].

Mala	LHM	DESM	DCMC	CDCP	\mathbf{DF}	CTMF	MMCI	PDNet	PCF	DMRA	BBS-Net
Methods	[44]	[9]	[12]	[68]	[47]	[24]	[5]	[66]	[3]	[45]	(ours)
$S_{\alpha} \uparrow$.568	.659	.499	.687	.730	.834	.791	.799	.801	.888	.912
$F_{\beta} \uparrow$.659	.668	.406	.633	.748	.792	.753	.757	.760	.883	.904
$E_{\xi} \uparrow$.767	.733	.712	.794	.842	.884	.855	.861	.858	.927	.942
$M\downarrow$.174	.280	.243	.159	.145	.097	.113	.112	.100	.048	.038

Table 2: Ablation study of GCM module, 'w/' and 'w/o' represent that we implement our model with and without (*i.e.* replace GCM with a 1×1 convolution) GCM module

Modela	NJU	J2K	[29]	NL	PR [44]	STI	ERE	[42]	E	DES [9]	LF	SD [36]	SS	SD [6	7]
models	$S_{\alpha} \uparrow$	$F_{\beta} \uparrow$	$M\downarrow$	$S_{\alpha}\uparrow$	$F_{\beta} \uparrow$	$M\downarrow$	$S_{\alpha} \uparrow$	$F_{\beta} \uparrow$	$M\downarrow$									
w/o GCM	.916	.914	.037	.925	.907	.026	.901	.895	.044	.923	.914	.023	.853	.852	.075	.877	.863	.048
w/ GCM	.921	.920	.035	.930	.918	.023	.908	.903	.041	.933	.927	.021	.864	.859	.072	.882	.859	.044

Table 3: Analysis of different data augumentation strategies. We conduct experiemnts using different data augumentation strategies, *i.e.*, random flipping, border clipping and random rotating.

Ctustom	NJI	J2K	[29]	NL	PR [44]	STI	ERE	[42]	D	ES [9	9]	LF	SD [36]	SS	SD [6	7]
Strategy	$S_{\alpha} \uparrow$	$F_{\beta} \uparrow$	$M\downarrow$	$S_{\alpha} \uparrow$	$F_{\beta} \uparrow$	$M\downarrow$	$S_{\alpha} \uparrow$	F_{β} \uparrow	$M\downarrow$	$S_{\alpha} \uparrow$	$F_{\beta} \uparrow$	$M\downarrow$	$S_{\alpha} \uparrow$	F_{β} \uparrow	$M\downarrow$	$S_{\alpha} \uparrow$	$F_{\beta} \uparrow$	M
None	.906	.906	.039	.919	.903	.025	.894	.887	.043	.907	.896	.026	.848	.849	.077	.860	.842	.05
Flip	.913	.914	.038	.937	.913	.023	.900	.893	.041	.909	.898	.025	.854	.852	.073	.868	.849	.04
Crop	.912	.912	.037	.922	.906	.025	.901	.896	.041	.924	.914	.022	.848	.846	.081	.854	.827	.05
Rotate	.916	.917	.037	.922	.906	.025	.902	.893	.042	.917	.905	.024	.859	.859	.073	.860	.829	.05
All	.921	.920	.035	.930	.918	.023	.908	.903	.041	.933	.927	.021	.864	.859	.072	.882	.859	.04

Table 4: Speed test of *BBS-Net*. We test the speed of only predicting the initial saliency map S_1 , and the final map S_2 , respectively. 'BS' denotes the batch size, of which the maximum value for a single GTX 1080Ti GPU is 10. 'io' is the time consumed by reading and writing.

		#	BS:1	BS:10	w/io	w/o io	S_1 (fps)	S_2 (fps)		
		1	 ✓ 		\checkmark		17	14		
		2	 ✓ 			\checkmark	19	15		
		3	[\checkmark	\checkmark	[56	48		
		4		\checkmark		\checkmark	133	123		
Table	5: Runt	ime c	of diffe	erent meth	nods. Th	e timings	are borr	owed from	n original	paper
Table or pro	5: Runt vided by	ime c auth	of diffe nors.	erent meth	nods. Th	e timings	are borr	owed from	n original	paper
Table or pro Metho	5: Runt vided by d LHM[4	ime c auth 4] CE	of diffe nors. DB[37]	rent meth	nods. Th $GP[48]$	e timings	are borr	owed from DCMC[12]	n original	paper SE[23]
Table or pro Metho Time (5: Runt vided by d LHM[4 s) 2.130	ime c auth 4] CE 0	of diffe nors. DB[37] .600	DESM[9]	GP[48] 12.98	e timings CDCP[68] >60.0	are borr LBE[21] 3.110	owed from DCMC[12] 1.200	n original MDSF[51] 1.570	paper SE[23] >60.0
Table or pro Metho Time (Type	5: Runt vided by d LHM[4 s) 2.130 CPU	ime c auth 4] CE 0 0	of diffe nors. DB[37] .600 CPU	DESM[9] 7.790 CPU	GP[48] 12.98 CPU	CDCP[68]	are borr LBE[21] 3.110 CPU	DCMC[12] 1.200 CPU	n original MDSF[51] 1.570 CPU	paper SE[23] >60.0 CPU
Table or pro Metho Time (Type Metho	5: Runt vided by d LHM[4 s) 2.130 CPU d DF[47	ime c auth 4] CE 0 0 0	of diffe nors. DB[37] .600 CPU Net[55]	DESM[9] 7.790 CPU CTMF[24]	GP[48] 12.98 CPU MMCI[5]	CDCP[68] >60.0 CPU PCF[3]	are borr LBE[21] 3.110 CPU TANet[4]	owed from DCMC[12] 1.200 CPU CPFP[65]	n original MDSF[51] 1.570 CPU BBS-Net	paper SE[23] >60.0 CPU (ours)
Table or pro Metho Time (Metho Time (5: Runt vided by d LHM[4 s) 2.130 CPU d DF[47 s) 10.36	ime c auth 4] CE 0 0 0 0 1 AFI 0	of diffe nors. DB[37] .600 CPU Net[55] .030	DESM[9] 7.790 CPU CTMF[24] 0.630	GP[48] 12.98 CPU MMCI[5] 0.050	CDCP[68] >60.0 CPU PCF[3] 0.060	are borr LBE[21] 3.110 CPU TANet[4] 0.070	owed from DCMC[12] 1.200 CPU CPFP[65] 0.170	MDSF[51] 1.570 CPU BBS-Net 0.02	paper SE[23] >60.0 CPU (ours) 1

Fig. 1: Representative failure cases selected from several datasets. (a)&(b): The model may not detect the salient object or detect the salient object imperfectly. (c)&(d): The model takes the background as the salient parts. (e): The model fails to find all salient objects, especially for those objects far from the lens. (f): The model may not deal with the circumstances when the salient objects are occluded by non-salient objects.

Fig. 2: Ranking 19 models in Tab. 6 with the metric of max F-measure. Element(i,j)represents the number of times that model *i* ranks at j^{th} . Models are ranked by the mean rank (shown in brackets) over the 7 datasets.

Fig. 3: The complete PR curves of our method and 18 SOTA methods on 7 datasets. Dots on curves represent the values of precision and recall at the maximum F-measure.

ECCV-20 submission ID 1547

on the curves represent the values of the maximum F-measure.

Table 6: Quantitative comparison of models using S-measure (S_{α}) , adaptive F-measure $(adaF_{\beta})$, mean F-measure $(meanF_{\beta})$, max F-measure $(maxF_{\beta})$, adaptive E-measure $(adpE_{\xi})$, mean E-measure $(meanE_{\xi})$, max E-measure $(maxE_{\xi})$ and MAE (M) scores on 7 public datasets. $\uparrow(\downarrow)$ denotes that the higher (the lower) the better. The best score and the best score of the compared methods in each row are highlighted in **red** and blue. From left to right: 10 models based on hand-crafted features and 8 CNNs-based models. Besides, 'S1' and 'S2' denote the initial and final saliency outputs results of the proposed method respectively ~~~

tase	Metric	LHM	CDB	DESM	-craft GP	CDCP	ACSD	ased N LBE	DCMC	MDSF	SE	DF	AFNet	CTMF	' MMCI	PCF	ouels TANet	CPFP	DMRA	Ours	Ours
Da		[44]	[37]	[9]	[48]	[68]	[29]	[21]	[12]	[51]	[23]	[47]	[55]	[24]	[5]	[3]	[4]	[65]	[45]	(S1)	(S2)
	$S_{\alpha} \uparrow$.514	.624	.665	.527	.669	.699	.695	.686	.748	.664	.763	.772	.849	.858	.877	.878	.879	.886	.914	.921
	$adpF_{\beta}$ \uparrow	.638	.648	.632	.655	.624	.696	.740	.717	.757	.734	.804	.768	.788	.730	.844	.844	.837	.872	.889	.902
67 m	$eanF_{\beta}$ \uparrow	.328	.482	.550	.357	.595	.512	.606	.556	.682	.583	.784	.764	.779	.737	.840	.841	.850	.873	.889	.902
Σ r	$naxF_{\beta}\uparrow$.632	.648	.717	.647	.621	.711	.748	.715	.775	.748	.650	.775	.845	.852	.872	.874	.877	.886	.911	.920
62	$adpE_{\varepsilon} \uparrow$.708	.745	.682	.716	.747	.786	.791	.791	.812	.772	.864	.846	.864	.872	.896	.893	.895	.908	.917	.924
2 m	$eanE_{\varepsilon} \uparrow$.447	.565	.590	.446	.706	.593	.655	.619	.677	.624	.835	.826	.846	.841	.895	.895	.910	.920	.930	.938
r	$naxE_{\xi} \uparrow$.724	.742	.791	.703	.741	.803	.803	.799	.838	.813	.696	.853	.913	.915	.924	.925	.926	.927	.948	.949
	$M \downarrow$.205	.203	.283	.211	.180	.202	.153	.172	.157	.169	.141	.100	.085	.079	.059	.060	.053	.051	.040	.035
	$S_{\alpha} \uparrow$.630	.629	.572	.654	.727	.673	.762	.724	.805	.756	.802	.799	.860	.856	.874	.886	.888	.899	.923	.930
	$adpF_{\beta} \uparrow$.664	.613	.563	.659	.608	.535	.736	.614	.665	.692	.744	.747	.724	.730	.795	.796	.823	.854	.867	.882
₹ m	$eanF_{\beta} \uparrow$.427	.422	.430	.451	.609	.429	.626	.543	.649	.624	.664	.755	.740	.737	.802	.819	.840	.864	.881	.896
π π	$naxF_{\beta}\uparrow$.622	.618	.640	.611	.645	.607	.745	.648	.793	.713	.778	.771	.825	.815	.841	.863	.867	.879	.892	.918
5	$adpE_{\xi}\uparrow$.813	.809	.698	.804	.800	.742	.855	.786	.812	.839	.868	.884	.869	.872	.916	.916	.924	.941	.947	.952
Ż m	$eanE_{\xi} \uparrow$.560	.565	.541	.571	.781	.578	.719	.684	.745	.742	.755	.851	.840	.841	.887	.902	.918	.940	.942	.950
r	$naxE_{\xi}\uparrow$.766	.791	.805	.723	.820	.780	.855	.793	.885	.847	.880	.879	.929	.913	.925	.941	.932	.947	.959	.961
	$M \downarrow$.108	.114	.312	.146	.112	.179	.081	.117	.095	.091	.085	.058	.056	.059	.044	.041	.036	.031	.028	.023
	$S_{\alpha} \uparrow$.562	.615	.642	.588	.713	.692	.660	.731	.728	.708	.757	.825	.848	.873	.875	.871	.879	.835	.899	.908
_	$adpF_{\beta}\uparrow$.703	.713	.594	.711	.666	.661	.595	.742	.744	.748	.742	.807	.771	.829	.826	.835	.830	.844	.867	.885
<u></u> 3 m	$eanF_{\beta}$ \uparrow	.378	.489	.519	.405	.638	.478	.501	.590	.527	.610	.617	.806	.758	.813	.818	.828	.841	.837	.863	.883
j r	$naxF_{\beta} \uparrow$.683	.717	.700	.671	.664	.669	.633	.740	.719	.755	.757	.823	.831	.863	.860	.861	.874	.847	.892	.903
Ē	$adpE_{\xi} \uparrow$.770	.808	.675	.784	.796	.793	.749	.831	.830	.825	.838	.886	.864	.901	.897	.906	.903	.900	.918	.925
5m	$eanE_{\xi} \uparrow$.484	.561	.579	.509	.751	.592	.601	.655	.614	.665	.691	.872	.841	.873	.887	.893	.912	.879	.917	.928
r	$naxE_{\xi} \uparrow$.771	.823	.811	.743	.786	.806	.787	.819	.809	.846	.847	.887	.912	.927	.925	.923	.925	.911	.938	.942
	$M \downarrow$.172	.166	.295	.182	.149	.200	.250	.148	.176	.143	.141	.075	.086	.068	.064	.060	.051	.066	.048	.041
	$S_{\alpha} \uparrow$.562	.645	.622	.636	.709	.728	.703	.707	.741	.741	.752	.770	.863	.848	.842	.858	.872	.900	.929	.933
	$adpF_{\beta} \uparrow$.631	.729	.698	.686	.625	.717	.796	.702	.744	.726	.753	.730	.778	.762	.782	.795	.829	.866	.895	.906
م ش	$eanF_{\beta} \uparrow$.345	.502	.483	.412	.585	.513	.576	.542	.523	.617	.604	.713	.756	.735	.765	.790	.824	.873	.896	.910
n n	$naxF_{\beta} \uparrow$.511	.723	.765	.597	.631	.756	.788	.666	.746	.741	.766	.728	.844	.822	.804	.827	.846	.888	.919	.927
ä	$adpE_{\xi} \uparrow$.761	.868	.795	.785	.816	.855	.911	.849	.869	.852	.877	.874	.911	.904	.912	.919	.927	.944	.966	.967
m	$ean E_{\xi} \uparrow$.477	.572	.565	.503	.748	.612	.649	.632	.621	.707	.684	.810	.826	.825	.838	.863	.889	.933	.940	.949
T	$nax E_{\xi} $.003	.830	.808	.070	.811	.850	.890	.//3	.851	.850	.870	.881	.932	.928	.893	.910	.923	.943	.965	.900
	<i>M</i> ↓ <i>C</i> ♠	.114	.100	.299	.108	.115	.109	.208	.111	.122	.090	.093	.008	.055	.005	.049	.040	.038	.030	.024	.021
	$D_{\alpha} \mid$ adm $E \uparrow$.000	.515	./10	.035	.(12	.121	.729	.703	.694	.092	.183	.738	.188	.181	.180	.801	.828	.839	.859	.804
-	$aapr_{\beta} \mid$	205	.078	.070	.102	.095	.701	.705	.812	.795	.114	.802	.738	.118	.770	.188	.790	.809	.840	.850	.838
<u> </u>	$ean F_{\beta} $.395	.314	.011	.510	.079	.302	799	.032	.318	.030	.070	.132	.132	.710	775	.707	.007	.041	.020	.040
£ '	$adnE_{*}\uparrow$	730	696	701	776	773	70/	763	.017	.119	777	836	802	844	832	835	838	859	892	886	.000
Ĕ.,,	$ean E_{\xi} \uparrow$	188	.050	632	580	748	620	664	677	583	648	710	788	802	767	810	813	856	885	871	.000
110	$naxE_{\epsilon} \uparrow$.763	.871	.811	.824	.780	.829	.797	.856	.819	.832	.857	.815	.857	.839	.827	.847	.863	.893	.896	.901
,		.218	.225	.253	.190	.172	.195	.214	.155	.197	.174	.145	.133	.127	.132	.119	.111	.088	.083	.079	.072
	¥ 	.566	.562	.602	.615	.603	.675	.621	.704	.673	.675	.747	.714	.776	.813	.841	.839	.807	.857	.878	.882
	$adpF_{\beta}$ \uparrow	.580	.628	.614	.749	.522	.656	.613	.679	.674	.693	.724	.694	.710	.748	.791	.767	.726	.821	.829	.849
<i>m</i>	$eanF_{\beta}$ \uparrow	.367	.347	.502	.453	.515	.469	.489	.572	.470	.564	.624	.672	.689	.721	.777	.773	.747	.828	.829	.843
5 r	$naxF_{\beta}$ \uparrow	.568	.592	.680	.740	.535	.682	.619	.711	.703	.710	.735	.687	.729	.781	.807	.810	.766	.844	.853	.859
B	$adpE_{\varepsilon}^{-\uparrow}$.730	.737	.683	.795	.705	.765	.729	.786	.772	.778	.812	.803	.838	.860	.886	.879	.832	.892	.903	.912
ν ^ο m	$eanE_{\xi} \uparrow$.498	.477	.560	.529	.676	.566	.574	.646	.576	.631	.690	.762	.796	.796	.856	.861	.839	.897	.894	.904
r	$naxE_{\xi}\uparrow$.717	.698	.769	.782	.700	.785	.736	.786	.779	.800	.828	.807	.865	.882	.894	.897	.852	.906	.922	.919
	$M\downarrow$.195	.196	.038	.180	.214	.203	.278	.169	.192	.165	.142	.118	.099	.082	.062	.063	.082	.058	.050	.044
	$S_{\alpha} \uparrow$.511	.557	.616	.588	.595	.732	.727	.683	.717	.628	.653	.729	.716	.833	.842	.835	.850	.806	.875	.879
	$adpF_{\beta}\uparrow$.592	.624	.644	.699	.495	.727	.733	.645	.694	.662	.673	.705	.684	.795	.825	.809	.819	.819	.862	.872
\overline{m}^{m}	$eanF_{\beta} \uparrow$.287	.341	.496	.411	.482	.542	.571	.499	.568	.515	.464	.702	.608	.771	.814	.803	.82 1	.811	.855	.868
ĩ r	$naxF_{\beta}\uparrow$.574	.620	.669	.687	.505	.763	.751	.618	.698	.661	.657	.712	.694	.818	.838	.830	.851	.821	.877	.883
Ê	$adpE_{\xi}\uparrow$.719	.771	.742	.774	.722	.827	.841	.786	.805	.756	.794	.815	.824	.886	.899	.893	.899	.863	.913	.916
<i>m</i>	$eanE_{\xi}\uparrow$.437	.455	.564	.511	.683	.614	.651	.598	.645	.592	.565	.793	.705	.845	.878	.870	.893	.844	.898	906
r	$naxE_{\xi}\uparrow$.716	.737	.770	.768	.721	.838	.853	.743	.798	.771	.759	.819	.829	.897	.901	.895	.903	.875	.921	.922
	3.6	104	109	208	173	224	172	200	186	167	164	195	118	139	086	071	075	064	085	060	055

Our (S1)

CPFP

TANot

PCF

DMPA

ммсі

CTME

AUNot

DF

CF

Ours (S2)

DCD

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
225

Fig. 5: Quantitative visual results of our method and 18 SOTA methods. 'RGB', 'Depth', 'GT' denote the input RGB image, depth map and ground-truth, respectively. 'S1' and 'S2' represent the initial and final saliency output of the proposed method.

Fig. 6: Quantitative visual results of our method and 18 SOTA methods. 'RGB', 'Depth', 'GT' denote the input RGB image, depth map and ground-truth, respectively. 'S1' and 'S2' represent the initial and final saliency output of the proposed method.

PCP

Depth

RCB

RGB

Denth

RGB

Depth

RGB

Depth

RGB

Depth

mr (S2)

Ours (S2)

 Ours (S2) Ours (S1)

C

MDSF

Ours (S1)

Ours (S1)

MDSF

Ours (S1)

Ours (S1)

la la

MDSF

C

ст

Fig. 7: Quantitative visual results of our method and 18 SOTA methods. 'RGB', 'Depth', 'GT' denote the input RGB image, depth map and ground-truth, respectively. 'S1' and 'S2' represent the initial and final saliency output of the proposed method.

Fig. 8: Quantitative visual results of our method and 18 SOTA methods. 'RGB',
'Depth', 'GT' denote the input RGB image, depth map and ground-truth, respectively.
'S1' and 'S2' represent the initial and final saliency output of the proposed method.

RCB	Ours (S2)	Ours (S1)	DMRA	C PFP	TANet	PCF	MMCI	CTMF	AFNet	DF	SF	
									Å	1		
									15		1	
Depth	GT	MDSF	DCMC	LBE	ACSD	CDCP	GP	DESM	CDB	LHM	RGB	
			1			1.14			1	l 💦	1 1 1 B	
				2 . Sala		1 7		and Carlo	3 A 4			
RGB	Ours (S2)	Ours (S1)	DMRA	CPFP	TANet	PCF	MMCI	CTMF	AFNet	DF	SE	
-			700			100	19				-	
- 0- 1°										En O	and and	
Depth	GT	MDSF	DCMC	LBE	ACSD	CDCP	GP	DESM	CDB	LHM	RGB	
-						E and	1					
				-		- 0						
RGB	Ours (S2)	Ours (S1)	DMRA	CPFP	TANet	PCF	MMCI	CTMF	AFNet	DF	SE	
							- 1	×.,		,		
-2.	k	, K				A						
Depth	GT	MDSF	DCMC	LBE	ACSD	CDCP	GP	DESM	CDB	LHM	RGB	
			1			Lest				۲. ۱		
		100				and the second	7.1.		$\sim \lambda$		Contra to	
RGB	Ours (S2)	Ours (S1)	DMRA	CPFP	TANet	PCF	MMCI	CTMF	AFNet	DF	SE	
			Í.	`& \								
Denth	GT	MDSE	DCMC	LBE	ACSD	CDCP	CP	DESM	CDB	1 HM	RCB	
Con a			Deme			c.ber						
	S	5	1	10. T	and the second		2		•	1	and the second	
RGB	Ours (S2)	Ours (S1)	DMRA	CPFP	TANet	PCF	MMCI	CTMF	AFNet	DF	SE	
				. × .						4	4	
							47		and a			
Depth	GT	MDSF	DCMC	LBE	ACSD	CDCP	GP	DESM	CDB	LHM	RGB	
6		E		123	C.A			(1) ×		R.		
		- T		-								
RGB	Ours (S2)	Ours (S1)	DMRA	CPFP	TANet	PCF	MMCI	CTMF	AFNet	DF	SE	
X	200	1	10 S	2	1		N.	Sec.	Sec.			
Depth	GT	MDSF	DCMC	LBE	ACSD	CDCP	GP	DESM	CDB	LHM	RGB	
-	7	1			-	-	~	1	1. A.	\sim	The	
		300		14 15				1			5	

Fig. 9: Quantitative visual results of our method and 18 SOTA methods. 'RGB', 'Depth', 'GT' denote the input RGB image, depth map and ground-truth, respectively. 'S1' and 'S2' represent the initial and final saliency output of the proposed method.