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Abstract. In this supplementary material, we introduce the evaluation
metrics in detail, and provide more exprimental results to demonstrate
the effectiveness of our model and for better comparison with state-of-
the-art methods.

1 Evaluation Metric

In this section, we introduce the detailed definations of the metrics for the binary
foreground map evaluation used in our experiments, including F-measure (Fjg),
S-measure (S, ), E-measure (E¢), MAE and PR curve.

F-measure [1] is a common evaluation metric based on region similarity. It
is defined as: . 2 pi o pi

R o

52 x P+ R

where P? and R? are the corresponding precision and recall for the threshold 4
(i € {1,2,---,255}), respectively. 3 controls the trade-off between P¢ and R’. In
our experiments, we set 32 to 0.3, as proposed by [1]. In the manuscript, we uti-
lize the maximum F-measure (for all thresholds) to evaluate different methods.
Besides, we also provide results of the adaptive F-measure (i.e., the threshold
is defined as the double mean value of the saliency map) and mean F-measure
(i.e., the average F-measure for all thresholds) in this material.

S-measure [16] is a structure measure which combines the region-aware
structural similarity (S,) and object-aware structural similarity (S,). It is on
the basis of behavioral vision studies that huaman vision pays more attention to
the structures and is represented by:

Sa=axS,+(1—a)xS5,, (2)

where a € [0, 1] is a hyper-parameter to balance the (S,) and (S,). We set it to
0.5 as the default setting.

E-measure is recently proposed by [17], which is based on the cognitive
vision studies and utilizes both image-level and local pixel-level statistics for
evaluating the binary saliency map. It is defined as:

w h
Es=w1thZ¢(x,y), 3)

r=1y=1
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where w and h are the width and height of the saliency map. ¢ is the enhanced
alignment matrix. Similar to the aforementioned F-measure, we also provide the
results of max E-measure, adaptive E-measure and mean E-measure.

The MAE represents the average absolute error between the predicted saliency
map and the ground truth. It is denoted as:

1
M=—|S— 4

where S and G are the prediced saliency map and ground-truth binary map,
respectively. N represents the total number of pixels.

PR curve is generated by a series of Precision-Recall (PR) pairs, which is
calculated by the binarized saliency map with its thresholds varying from 0—255.
In detail, the Precision (P) and Recall (R) are calculated by:

S NG| S NG|
P = =
|S/| 7R |G| b (5)

where S’ is the binary mask for the predicted map S according to the threshold.

2 Additional Experimental Results

Tab. 1. We show additional results on the recent proposed DUT [45] dataset.

Tab. 2. To further demonstrate the effectiveness of GCM module in the
cascaded decoder, we conduct experiments without using GCM (i.e., replace
GCM with a 1x 1 convolution).

Tab. 3. We make an analysis of different data augumentation strategies, i.e.,
random flipping, border clipping and random rotating.

Tab. 4. We test the speed of the proposed model using different settings.

Tab. 5. We compare the runtime of different models. The timings are bor-
rowed from original paper or provided by authors.

Tab. 6. We make quantitative comparisons of different models using 4 more
metrics (i.e., adaptive F-measure, adaptive E-measure, mean F-measure and
mean E-measure) on 7 public datasets.

Fig. 1. We show 6 representative failure cases selected from several datasets.

Fig. 2. We give a rank of 19 state-of-the-art models using the metric of max
F-measure on 7 datasets (Tab. 6).

Fig. 3. We shows the complete version of PR curves for various methods on
7 datasets.

Fig. 4. We draw the F-measure curves of our method and 18 state-of-the-art
methods on 7 datasets.

Fig. 5~ Fig. 9. We show a large quantity of predicted saliency maps of our
model and 18 state-of-the-art methods.
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Table 1: Performance comparisons of different models on the recent DUT [45] dataset.
The models are trained and tested on the DUT dataset using the proposed training
and test sets split from [45].

LHM DESM DCMC CDCP DF CTMF MMCI PDNet PCF DMRA | BBS-Net
Methods
[44] (9] [12] (68] [47]  [24] (5] [66] (3] [45] (ours)
Sa T 568 .659 499 687 .730 .834 791 799 .801 .888 912
Fg 1 .659 .668 .406 633 748 792 753 757 760 .883 .904
E¢: 1 767 .733 712 794 842  .884 .855 .861 .858 927 .942
M | 174 .280 .243 .159 .145 .097 113 112 .100 .048 .038

Table 2: Ablation study of GCM module. ‘w/’ and ‘w/0’ represent that we implement
our model with and without (z.e., replace GCM with a 1 x 1 convolution) GCM module.

Models

NJU2K [29]

So TFs T M

NLPR [44]

So tFg M|

STERE [42]

Sa 1Fs M|

DES [9]

So 1Fs M|

LFSD [36]
So 1 Fs M

SSD [67]
LSa M Fgt M

w/o GCM
w/ GCM

916 .914 .037
.921.920.035

.925 .907 .026
.930.918.023

.901 .895 .044
.908.903.041

1923 .914 .023
.933.927.021

.853 .852 .075
.864.859.072

.877 .863 .048
.882.859.044

Table 3: Analysis of different data augumentation strategies. We conduct experiemnts
using different data augumentation strategies, i.e., random flipping, border clipping
and random rotating.

Strategy] NJUZK [29] | NLPR [44] | STERE [42] DES [9] LFSD [36] SSD [67]
So TFs M L|Sa 1 Fs + M {|Sa 1 Fs t M L|Sa 1Fs M ||Sa tFg t M }|Sq 1 Fs + M |
None |.906 .906 .039].919 .903 .025].894 .887 .043].907 .896 .026|.848 .849 .077|.860 .842 .054
Flip |.913 .914 .038|.937 .913 .023|.900 .893 .041|.909 .898 .025|.854 .852 .073|.868 .849 .048
Crop |.912 .912 .037(.922 .906 .025|.901 .896 .041|.924 .914 .022|.848 .846 .081|.854 .827 .056
Rotate |.916 .917 .037|.922 .906 .025|.902 .893 .042|.917 .905 .024|.859 .859 .073|.860 .829 .052
All  [.921.920.035(.930.918.023|.908.903.041|.933.927.021|.864.859.072.882 .859.044

Table 4: Speed test of BBS-Net. We test the speed of only predicting the initial
saliency map S7, and the final map Sy, respectively. ‘BS’ denotes the batch size,
of which the maximum value for a single GTX 1080Ti GPU is 10. ‘io’ is the time
consumed by reading and writing.

# ‘ BS:1 ‘ BS:10 ‘ w/ io ‘ w/o io ‘ S1 (fps) ‘ Sa (fps)

1
2
3
4

v
v

v 17
v 19
v 56
v 133

14
15
48
123

Table 5: Runtime of different methods. The timings are borrowed from original paper
or provided by authors.

Method |LHM[44]| CDB[37] | DESM[9] | GP[48] |CDCP[68]| LBE[21] |[DCMC[12]|MDSF[51]|SE[23]
Time (s)| 2.130 | 0.600 7.790 12.98 | >60.0 | 3.110 1.200 1.570 |>60.0
Type | CPU CPU CPU CPU CPU CPU CPU CPU |CPU
Method | DF[47] [AFNet[55][CTMF[24]]MMCI[5]] PCF[3] |TANet[4]] CPFP[65] | BBS-Net (ours)
Time (s)| 10.36 | 0.030 0.630 0.050 | 0.060 | 0.070 0.170 0.021
Type | GPU GPU GPU GPU GPU GPU GPU GPU

132
133
134
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Fig. 1: Representative failure cases selected from several datasets. (a)&(b): The model
may not detect the salient object or detect the salient object imperfectly. (¢)&(d): The
model takes the background as the salient parts. (e): The model fails to find all salient
objects, especially for those objects far from the lens. (f): The model may not deal with
the circumstances when the salient objects are occluded by non-salient objects.

Rank
12345678 910111213141516171819

BBS-Net[1.0]
DMRA[3.0] 11
CPFP[3.1]| 12 1
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MMCI[6.4] 1 1.& 1
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DF[9.9] 1
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CDCP[17.7] 1

N
AN =

N N
AN AN

N

-
_ N =
_S AN

El v
-_— -— -_—

Fig. 2: Ranking 19 models in Tab. 6 with the metric of max F-measure. Element(i,j)
represents the number of times that model ¢ ranks at j**. Models are ranked by the
mean rank (shown in brackets) over the 7 datasets.
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Fig. 3: The complete PR curves of our method and 18 SOTA methods on 7 datasets.
Dots on curves represent the values of precision and recall at the maximum F-measure.
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Table 6: Quantitative comparison of models using S-measure (S, ), adaptive F-measure
(adaFg), mean F-measure (meanFg), max F-measure (maxFg), adaptive E-measure
(adpE¢), mean E-measure (meanFEg), max E-measure (maxE¢) and MAE (M) scores
on 7 public datasets. 1 (].) denotes that the higher (the lower) the better. The best score
and the best score of the compared methods in each row are highlighted in red and
blue. From left to right: 10 models based on hand-crafted features and 8 CNNs-based
models. Besides, ‘S1’ and ‘S2’ denote the initial and final saliency outputs results of
the proposed method, respectively.

g Metric Hand-crafted-features-Based Models CNNs-Based Models BBS-Net
{_f; LHM CDB DESM GP CDCP ACSD LBE DCMC MDSF SE |DF AFNet CTMF MMCI PCF TANet CPFP DMRA |Ours Ours
a (44 [37) (o) (8 (68 [29) (2] [12] [51] [23)|[a7) [55] [2a] 5] (3 (4] [65) [45] |(SL) (2)
Sa 1| .514 .624 .665 .527 .669 .699 .695 .686 .748 .664|.763 .772 849 .858 .877 .878 .879 .886 |.914 .921

adpFs 1| .638 .648 .632 .655 .624 .696 .740 .717  .757 .734|.804 .768 .788 .730 .844 .844 .837 .872 |.889 .902

g meanFg 1| .328 482 550 .357 .595 512 .606 .556 .682 .583|.784 .764 .779 .737 .840 .841 .850 .873 |.889 .902
s maxFg T|.632 .648 717 .647 .621 .711 .748 715 775 .748|.650 .775 .845 .852 .872 .874 877 .886 |.911 .920
S adpEe 1| .708 .745 .682 .716 .747 .786 .791 .791 812 .772|.864 .846  .864 .872 .896 .893 .895 .908 |.917 .924
Z meanEg T| 447 .565 .590 .446 .706 .593 .655 .619 .677 .624/.835 .826 .846 .841 .895 .895 910 .920 |.930 .938
mazEe T|.724 742 791 .703 .741 .803 .803 .799  .838 .813|.696 .853 .913 915 .924 925 926 .927 |.948 .949

M ]| .205 203 .283 211 .180 .202 .153 .172 .157 .169|.141 .100 .085 .079 .059 .060 .053 .051 |.040 .035

So 1 .630 .629 572 .654 .727 .673 .762 .724 .805 .756|.802 .799  .860 .856 .874 .886 .888 .899 |.923 .930

adpFs 1| .664 .613 .563 .659 .608 .535 .736 .614 .665 .692|.744 .747 724 730 .795 .796 .823 .854 |.867 .882

:T meanFg 1| 427 422 430 451 .609 429 .626 .543 .649 .624|.664 .755 .740 .737 .802 .819 .840 .864 |.881 .896
E mazFs 1| .622 618 .640 .611 .645 .607 .745 .648 .793 .713|.778 .771 .825 815 .841 .863 .867 .879 |.892 .918
S adpFe 1| .813 .809 .698 .804 .800 .742 .855 .786 .812 .839|.868 .884 .869 .872 916 .916 .924 .941 |.947 .952
Z meanFEe 1| .560 .565 541 .571 .781 578 .719 .684 .745 .742|.755 .851 840 .841 .887 .902 918 .940 |.942 .950
mazEe T|.766 .791 .805 .723 .820 .780 .855 .793 .885 .847|.880 .879 .929 913 925 .941 932 .947 |.959 .961

M ]|.108 .114 312 .146 .112 .179 .081 .117 .095 .091{.085 .058 .056 .059 .044 .041 .036 .031 |.028 .023

So 1| .562 .615 .642 .588 .713 .692 .660 .731 .728 .708|.757 .825 .848 .873 .875 .871 .879 .835 |.899 .908

adpFs 1| .703 .713 .594 .711 .666 .661 .595 .742 744 .748|.742 .807 .771 .829 .826 .835 .830 .844 |.867 .885

§ meankFg 1| .378 489 519 .405 .638 .478 .501 .590 .527 .610(.617 .806 .758 .813 .818 .828 .841 .837 |.863 .883
m maxFg 1| .683 .717 .700 .671 .664 .669 .633 .740 .7T19 .755|.757 .823 .831 .863 .860 .861 .874 .847 |.892 .903
5 adpEe T|.770 .808 .675 .784 .796 .793 .749 .831 .830 .825|.838 .886  .864 .901 .897 .906 .903 .900 |.918 .925
S meanEe 1| .484 561 .579 .509 .751 .592 .601 .655 .614 .665|.691 .872  .841 873 .887 .893 .912 879 |.917 .928
mazEe T|.771 .823 811 .743 .786 .806 .787 .819 .809 .846|.847 .887 .912 .927 925 .923 925 911 |.938 .942

M || .172 166 295 .182 .149 .200 .250 .148 .176 .143|.141 .075 .086 .068 .064 .060 .051 .066 |.048 .041

So 1| .562 .645 622 .636 .709 .728 .703 .707 .741 .741|.752 .770  .863 .848 .842 .858 .872 .900 |.929 .933

adpFs 1| .631 .729 .698 .686 .625 .717 .796 .702 .744 .726|.753 .730 .778 762 .782 .795 .829 .866 |.895 .906

= meanFg 1| .345 .502 483 .412 .585 513 .576 .542 .523 .617|.604 .713 .756 .735 .765 .790 .824 .873 |.896 .910
; mazxFg | .511 .723 765 .597 .631 .756 .788 .666 .746 .741|.766 .728 844  .822 .804 .827 .846 .888 |.919 .927
E adpEe 1| .761 .868 .795 .785 .816 .855 .911 .849  .869 .852|.877 .874 911 .904 .912 .919 927 .944 |.966 .967
meanFEe 1| 477 572 565 .503 .748 .612 .649 .632 .621 .707|.684 .810 .826 .825 .838 .863 .889 .933 |.940 .949
mazEe T|.653 .830 .868 .670 .811 .850 .890 .773  .851 .856|.870 .881 .932 .928 .893 .910 .923 .943 |.965 .966

M ||.114 .100 299 .168 .115 .169 .208 .111  .122 .090{.093 .068 .055 .065 .049 .046 .038 .030 |.024 .021

So 1 .553 515 716 .635 .712 727 .729 753  .694 .692|.783 .738 .788 .787 .786 .80l .828 .839 |.859 .864

adpFs 1| .714 678 .676 .752 .695 .751 .705 .812 .795 .774[.802 .738 .778 775 .788 .790 .809 .845 |.850 .858

g meanFg 1|.395 .374 611 .516 .679 .562 610. .652 .518 .636(.676 .732 .752 .718 .757 .767 .807 .841 |.828 .843
E maxFg 1| .708 677 .762 .783 .702 .763 .722 .817 .779 .786|.817 .744 787 771 .775 .796 .826 .852 |.854 .859
& adpEe 1| .730 .696 .701 .776 .773 .794 .763 .835 .810 .777|.836 .802 .844 .832 .835 .838 .859 .892 |.886 .889
= meanFEe 1| 488 461 .632 .580 .748 .620 .664 .677 .583 .648|.719 .788  .802 .767 .810 .813 .856 .885 |.871 .883
mazEe T|.763 871 811 .824 .780 .829 .797 .856 .819 .832|.857 .815 .857 .839 .827 .847 .863 .893 |.896 .901

M || .218 225 253 .190 .172 .195 .214 155 ~.197 .174|.145 .133 .127 .132 .119 .111 .088 .083 |.079 .072

Sa T[.566 .562 .602 .615 .603 .675 .621 .704 .673 .675.747 .714 776 .813 .841 .839 .807 .857 |.878 .882

adpFs 1| .580 .628 .614 .749 .522 656 .613 .679 .674 .693|.724 .694 710 .748 .791 .767 .726 .821 |.829 .849

= meankp 1| .367 .347 502 453 515 469 .489 572 470 .564|.624 .672 .689 .721 .777 .773 .747 .828 |.829 .843
2. mazFs 1| .568 592 680 .740 .535 .682 .619 .711 .703 .710|.735 .687 .729 .781 .807 .810 .766 .844 |.853 .859
% adpEe T|.730 .737 683 .795 .705 .765 .729 .786  .772 .778|.812 .803 .838 .860 .886 .879 .832 .892 |.903 .912
& meanEe 1| .498 477 560 .529 .676 .566 .574 .646 .576 .631[.690 .762 .796 .796 .856 .861 .839 .897 |.894 .904
mazEe T|.717 .698 .769 .782 .700 .785 .736 .786 .779 .800|.828 .807 .865 .882 .894 .897 .852 .906 |.922 .919

M ]|.195 196 .038 .180 .214 .203 .278 .169  .192 .165|.142 .118 .099 .082 .062 .063 .082 .058 |.050 .044

So T|.511 .557 .616 .588 .595 .732 .727 .683 .717 .628(.653 .729 .716 .833 .842 .835 .850 .806 |.875 .879

adpFp T|.592 .624 .644 .699 .495 .727 .733 .645 .694 .662|.673 .705 .684 .795 .825 .809 .819 .819 |.862 .872

= meanFg 1| .287 .341 496 .411 482 542 571 .499 568 .515(.464 .702 .608 .771 .814 .803 .821 .811 |.855 .868
= mazFg 1| .574 .620 .669 .687 .505 .763 .751 .618 .698 .661|.657 .712 .694 .818 .838 .830 .851 .821 |.877 .883
% adpEe T|.719 771 742 774 722 827 .841 .786 .805 .756|.794 .815 .824 .886 .899 .893 .899 .863 |.913 .916
meanEg 1| 437 455 .564 .511 .683 .614 .651 .598  .645 .592|.565 .793 .705 .845 .878 .870 .893 .844 |.898 906
mazEe T|.716 .737 770 .768 .721 .838 .853 .743 .798 .771|.759 .819 .829 .897 .901 .895 .903 .875 |.921 .922

M ]| .184 192 298 .173 224 172 200 .186 .167 .164|.185 .118 .139 .086 .071 .075 .064 .085 |.060 .055
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Fig. 5: Quantitative visual results of our method and 18 SOTA methods. ‘RGB’,
‘Depth’, ‘GT’ denote the input RGB image, depth map and ground-truth, respectively.
‘S1’ and ‘S2’ represent the intial and final saliency output of the proposed method.
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Fig. 6: Quantitative visual results of our method and 18 SOTA methods. ‘RGB’,
‘Depth’, ‘GT’ denote the input RGB image, depth map and ground-truth, respectively.
‘S1’ and ‘S2’ represent the intial and final saliency output of the proposed method.
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Fig. 7: Quantitative visual results of our method and 18 SOTA methods. ‘RGB’,
‘Depth’, ‘GT’ denote the input RGB image, depth map and ground-truth, respectively.

‘S1’ and ‘S2’ represent the intial and final saliency output of the proposed method.
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Fig. 8: Quantitative visual results of our method and 18 SOTA methods. ‘RGB’,
‘Depth’, ‘GT’ denote the input RGB image, depth map and ground-truth, respectively.
‘S1’ and ‘S2’ represent the intial and final saliency output of the proposed method.
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Fig.9: Quantitative visual results of our method and 18 SOTA methods. ‘RGB’,
‘Depth’, ‘GT’ denote the input RGB image, depth map and ground-truth, respectively.
‘S1’ and ‘S2’ represent the intial and final saliency output of the proposed method.
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