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Abstract. In this paper, we propose a computationally tractable and
theoretically supported non-linear low-dimensional generative model to
represent real-world data in the presence of noise and sparse outliers. The
non-linear low-dimensional manifold discovery of data is done through de-
scribing a joint distribution over observations, and their low-dimensional
representations (i.e. manifold coordinates). Our model, called genera-
tive low-dimensional background model (G-LBM) admits variational
operations on the distribution of the manifold coordinates and simulta-
neously generates a low-rank structure of the latent manifold given the
data. Therefore, our probabilistic model contains the intuition of the
non-probabilistic low-dimensional manifold learning. G-LBM selects the
intrinsic dimensionality of the underling manifold of the observations, and
its probabilistic nature models the noise in the observation data. G-LBM
has direct application in the background scenes model estimation from
video sequences and we have evaluated its performance on SBMnet-2016
and BMC2012 datasets, where it achieved a performance higher or com-
parable to other state-of-the-art methods while being agnostic to different
scenes. Besides, in challenges such as camera jitter and background mo-
tion, G-LBM is able to robustly estimate the background by effectively
modeling the uncertainties in video observations in these scenarios1.

Keywords: Background Estimation, Foreground Segmentation, Non-
linear Manifold Learning, Deep Neural Network, Variational Auto-encoding

1 Introduction

Many high-dimensional real world datasets consist of data points coming from a
lower-dimensional manifold corrupted by noise and possibly outliers. In particular,
background in videos recorded by a static camera might be generated from a small
number of latent processes that all non-linearly affect the recorded video scenes.
Linear multivariate analysis such as robust principal component analysis (RPCA)
and its variants have long been used to estimate such underlying processes
in the presence of noise and/or outliers in the measurements with large data
1 The code and models are available at: https://github.com/brezaei/G-LBM.
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matrices [6, 41, 17]. However, these linear processes may fail to find the low-
dimensional structure of the data when the mapping of the data into the latent
space is non-linear. For instance background scenes in real-world videos lie on
one or more non-linear manifolds, an investigation to this fact is presented in
[16]. Therefore, a robust representation of the data should find the underlying
non-linear structure of the real-world data as well as its uncertainties. To this
end, we propose a generic probabilistic non-linear model of the background
inclusive to different scenes in order to effectively capture the low-dimensional
generative process of the background sequences. Our model is inspired by the
classical background estimation methods based on the low-dimensional subspace
representation enhanced with the Bayesian auto-encoding neural networks in
finding the non-linear latent processes of the high-dimensional data. Despite the
fact that finding the low-dimensional structure of data has different applications
in real world [29, 48, 14], the main focus of this paper is around the concept of
background scene estimation/generation in video sequences.

1.1 Video Background Model Estimation Toward Foreground
Segmentation

Foreground segmentation is the primary task in a wide range of computer vision
applications such as moving object detection [34], video surveillance [5], behavior
analysis and video inspection [35], and visual object tracking [33]. The objective
in foreground segmentation is separating the moving objects from the background
which is mainly achieved in three steps of background estimation, background
subtraction, and background maintenance.

The first step called background model estimation refers to the extracting a
model which describes a scene without foreground objects in a video. In general,
a background model is often initialized using the first frame or a set of training
frames that either contain or do not contain foreground objects. This background
model can be the temporal average or median of the consecutive video frames.
However, such models poorly perform in challenging types of environments such
as changing lighting conditions, jitters, and occlusions due to the presence of
foreground objects. In these scenarios aforementioned simple background models
require bootstrapping, and a sophisticated model is then needed to construct the
first background image. The algorithms with highest overall performance applied
to the SBMnet-2016 dataset, which is the largest public dataset on background
modeling with different real world challenges are Motion-assisted Spatio-temporal
Clustering of Low-rank (MSCL) [16], Superpixel Motion Detector (SPMD) [46],
and LaBGen-OF [21], which are based on RPCA, density based clustering of the
motionless superpixels, and the robust estimation of the median, respectively.
Deep neural networks (DNNs) are suitable for this type of tasks and several DNN
methods have recently been used in this field. In Section 1.2, we give an overview
of the DNN-based background model estimation algorithms.

Following the background model estimation, background subtraction in the
second step consists of comparing the modeled background image with the
current video frames to segment pixels as background or foreground. This is
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a binary classification task, which can be achieved successfully using a DNN.
Different methods for the background subtraction have been developed, and we
refer the reader to look at [4, 3] for comprehensive details on these methods.
While we urge the background subtraction process to be unsupervised given
the background model, the well performing methods are mostly supervised. The
three top algorithms on the CDnet-2014 [42] which is the large-scale real-world
dataset for background subtraction are supervised DNN-based methods, namely
different versions of FgSegNet [22] , BSPVGAN [49], cascaded CNN [43], followed
by three unsupervised approaches, WisennetMD [18], PAWCS [37], IUTIS [1].

1.2 Related Work on Background Model Estimation

DNNs have been widely used in modeling the background from video sequences
due to their flexibility and power in estimating complex models. Aside from
prevalent use of convolutional neural networks (CNNs) in this field, successful
methods are mainly designed based on the deep auto-encoder networks (DAE),
and generative adversarial networks (GAN).

1. Model architectures based on convolutional neural networks (CNNs): FC-
FlowNet model proposed in [13] is a CNN-based architecture inspired from
the FlowNet proposed by Dosovitskiy et al. in [10]. FlowNet is a two-stage
architecture developed for the prediction of the optical flow motion vectors:
A contractive stage, composed of a succession of convolutional layers, and a
refinement stage, composed of deconvolutional layers. FC-FlowNet modifies
this architecture by creating a fully-concatenated version which combines at
each convolutional layer multiple feature maps representing different high
level abstractions from previous stages. Even though FC-FlowNet is able to
model background in mild challenges of real-world videos, it fails to address
challenges such as clutters, background motions, and illumination changes.

2. Model architectures based on deep auto-encoding networks (DAEs): One of
the earliest works in background modeling using DAEs was presented in [45].
Their model is a cascade of two auto-encoder networks. The first network
approximates the background images from the input video. Background
model is then learned through the second auto-encoder network. Qu et
al. [31] employed context-encoder to model the motion-based background
from a dynamic foreground. Their method aims to restore the overall scene
of a video by removing the moving foreground objects and learning the
feature of its context. Both aforementioned works have limited number of
experiments to evaluate their model performance. More recently two other
unsupervised models for background modeling inspired by the successful
novel auto-encoding architecture of U-net [36] have been proposed in [39,
25]. BM-Unet and its augmented version presented by Tao et al. [39] is a
background modelling method based on the U-net architecture. They augment
their baseline model with the aim of robustness to rapid illumination changes
and camera jitter. However, they did not evaluate their proposed model on
the complete dataset of SBMnet-2016. DeepPBM in [11] is a generative scene-
specific background model based on the variational auto-encoders (VAEs)
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evaluated on the BMC2012 dataset compared with RPCA. Mondejar et al.
in [25] proposed an architecture for simultaneous background modeling and
subtraction consists of two cascaded networks which are trained together.
Both sub-networks have the same architecture as U-net architecture. The
first network, namely, background model network takes the video frames as
input and results inM background model channel as output. The background
subtraction sub-network, instead, takes the M background model channels
plus the target frame channels from the same scene as input. The whole
network is trained in a supervised manner given the ground truth. Their
model is scene-specific and cannot be used for unseen videos.

3. Model architectures based on generative adversarial network (GAN): Con-
sidering the promising paradigm of GANs for unsupervised learning, they
have been used in recent research of background modeling. Sultana et al. in
[38] designed an unsupervised deep context prediction (DCP) for background
initialization using hybrid GAN. DCP is a scene-specific background model
which consists of four steps: (1) Object masking by creating the motion masks.
(2) Evaluating the missing regions resulted from masking the motions using
the context prediction hybrid GAN. (3) improving the fine texture details
by scene-specific fine tuning of VGG-16 network. (4) Obtaining the final
background model by applying modified Poisson blending technique. Their
model is containing two different networks which are trained separately.

1.3 Our Contributions

Background models are utilized to segment the foreground in videos, generally
regarded as object of interest towards further video processing. Therefore, pro-
viding a robust background model in various computer vision applications is
an essential preliminary task. However, modeling the background in complex
real-world scenarios is still challenging due to presence of dynamic backgrounds,
jitter induced by unstable camera, occlusion, illumination changes. None of
the approaches proposed so far could address all the challenges in their model.
Moreover, current background models are mostly scene-specific. Therefore, DNN
models need to be retrained adjusting their weights for each particular scene
and non-DNN models require parameter tuning for optimal result on different
video sequences, which makes them unable to extend to unseen scenes. According
to the aforementioned challenges, we propose our generative low-dimensional
background model (G-LBM) estimation approach that is applicable to different
video sequences. Our main contributions in this paper are listed as follows:

– The G-LBM, our proposed background model estimation approach is the
first generative probabilistic model which learns the underlying nonlinear
manifold of the background in video sequences.

– The probabilistic nature of our model yields the uncertainties that correlate
well with empirical errors in real world videos, yet maintains the predictive
power of the deterministic counter part. This is verified with extensive
experiments on videos with camera jitters, and background motions.
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– The G-LBM is scene non-specific and can be extended to the new videos
with different scenes.

– We evaluated the proposed G-LBM on large scale background model datasets
SBMnet as well as BMC. Experiments show promising results for modeling
the background under various challenges.

Our contributions are built upon the assumption that there is a low-dimensional
non-linear latent space process that generates background in different videos. In
addition, background from the videos with the same scene can be non-linearly
mapped into a lower dimensional subspace. In different words the underlying
non-linear manifold of the background in different videos is locally linear.

2 Generative Low-dimensional Background Model

We designed an end-to-end architecture that performs a scene non-specific back-
ground model estimation by finding the low-dimensional latent process which
generates the background scenes in video sequences. An overview of our generative
model is presented in Fig. 1. As described in Section 2.1, the latent process z is
estimated through a non-linear mapping from the corrupted/noisy observations
v = {v1, ...,vn} parameterized by φ.
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Fig. 1: Graphical representation of
the generative process in G-LBM.
Given the video dataset {v1, . . . ,vn},
we construct a neighbourhood graph
G in which video frames from the
same scene create a clique in the
graph, as V (i) = [vi1, . . . ,v

i
ki]. The

distribution over latent process z is
controlled by the graph G as well as
the parameters of the non-linear map-
ping φ. The latent process z along
with the motion mask M determine
the likelihood of the background bv

in video frames v ∈ {v1, . . . ,vn}.

Notation: In the following, a diagonal matrix with entries taken from vector
x is shown as diag(x). Vector of n ones is shown as 1n and n × n identity
matrix is In. The Nuclear norm of a matrix B is ||B||? and its l1-norm is ||B||1.
The Kronecker product of matrices A and B is A⊗B. Khatri–Rao product is
defined as A ∗B = (Aij ⊗Bij)ij , in which the ij-th block is the mipi × njqj
sized Kronecker product of the corresponding blocks of A and B, assuming the
number of row and column partitions of both matrices is equal.
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2.1 Nonlinear Latent Variable Modeling of Background in Videos

Problem formulation: Suppose that we have n data points {v1,v2, ...,vn} ⊂
Rm, and a graph G with n nodes corresponding to each data point with the edge
set EG = {(i, j)|vi and vj are neighbours}. In context of modeling the background
vi and vj are neighbours if they are video frames from the same scene. We assume
that there is a low-dimensional (latent) representation of the high-dimensional
data {v1,v2, ...,vn} with coordinates {z1, z2, ..., zn} ⊂ Rd, where d � m. It is
helpful to concatenate data points from the same clique in the graph to form
V (i) and all the cliques to form the V = concat(V (1), ..., V (N)).
Assumptions: Our essential assumptions are as follows: (1) Latent space is
locally linear in a sense that neighbour data points in the graph G lie in a lower
dimensional subspace. In other words, mapped neighbour data points in latent
space {(zi, zj)|(i, j) ∈ EG} belong to a subspace with dimension lower than the
manifold dimension. (2) Measurement dataset is corrupted by sparse outliers
(foreground in the videos). Under these assumptions, we aim to find the non-linear
mapping from observed input data into a low-dimensional latent manifold and
the distribution over the latent process z, p(z|G,v), which best describes the
data such that samples of the estimated latent distribution can generate the data
through a non-linear mapping. In the following, we describe the main components
of our Generative Low-dimensional Background Model (G-LBM).

Adjacency and Laplacian matrices : The edge set of G for n data points specifies
a n× n symmetric adjacency matrix AG . aij defined as i, jth element of AG , is 1
if vi and vj are neighbours and 0 if not or i = j (diagonal elements). Accordingly,
the Laplacian matrix is defined as: LG = diag(AG1n)−AG .

Prior distribution over z: We assume that the prior on the latent variables
zi, i ∈ {1, ..., n} is a unit variant Gaussian distribution N (0, Id). This prior as a
multivariate normal distribution on concatenated z can be written as:

p(z|AG) = N (0, Σ), where Σ−1 = 2LG ⊗ Id. (1)

Posterior distribution over z: Under the locally linear dependency assumption
on the latent manifold, the posterior is defined as a multivariate Gaussian
distribution given by Eq. (2). Manifold coordinates construct the expected
value Λ and covariance Π of the latent process variables corresponding to the
neighbouring high dimensional points in graph G.

p(z|AG ,v) = N (Λ,Π), where (2)

Π−1 = 2LG ∗ [diag(fσφ (v1)), . . . , diag(fσφ (vn))]T [diag(fσφ (v1)), . . . , diag(fσφ (vn))]

Λ = [fµφ (v1)T , . . . , fµφ (vn)T ]T ∈ Rnd,

where fσφ (vi) and fµφ (vi), for i = {1, . . . , n} are corresponding points on the
latent manifold mapped from high-dimensional point vi by nonlinear function
fφ(.). These points are treated as the mean and variance of the latent process
respectively. Our aim is to infer the latent variables z as well as the non-linear
mapping parameters φ in G-LBM. We infer the parameters by minimizing the
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reconstruction error when generating the original data points through mapping
the corresponding samples of the latent space into the original high-dimensional
space. Further details on finding the parameters of the non-linear mapping in
G-LBM from video sequences are provided in Section 2.2.

2.2 Background Model Estimation in G-LBM using VAE
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Fig. 2: Schematic illustration of the proposed G-LBM training procedure for
background model estimation. Given a batch of input video clips V (i) consist of
consecutive frames from the same scene, input videos V (i) are mapped through
the encoder fφ(.) to a low-dimensional manifold representing the mean and
covariance (µ,Σ) of the latent process z. The latent process z generates the
estimated backgrounds for each video clip through decoder gθ(.). Imposing the
locally linear subspace is done by minimizing the rank of the manifold coordinates
correspond to the video frames of the same clip (fφ(V (i)) := (µ,Σ)(i)). Learning
the parameters of the non-linear mappings φ, θ is done by incorporating the
reconstruction error between input videos V (i) and estimated background B(i)

v

where motion mask value is zero to the final loss L(φ, θ;M,AG).

Consider that backgrounds in video frames v belong to {v1, . . . ,vn}, each
of size m = w × h pixels, are generated from n underlying probabilistic latent
process vectorized in z ∈ Rd for d � m. Video frame vi is interpreted as
the corrupted background in higher dimension by sparse perturbations/outliers
called foreground objects, and vector zi is interpreted as the low-dimensional
representation of the background in video frame vi. The neighbourhood graph G
represents the video frames recorded from the same scene as nodes of a clique
in the graph. A variational auto-encoding considers the joint probability of
the background in input video frames v and its representation z to define the
underlying generative model as pθ(v, z|AG) = pθ(v|z)p(z|AG), where p(z|AG) is
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the Gaussian prior for latent variables z defined in Eq. (1), and pθ(v|z) is the
generative process of the model illustrated in Fig. 1.

In variational auto-encoding (VAE), the generative process is implemented
by the decoder part gθ(.) that is parameterized by a DNN with parameters
θ as demonstrated in Fig. 2. In the encoder part of the VAE, the posterior
distribution is approximated with a variational posterior pφ(z|v, AG) defined in
Eq. (2) with parameters φ corresponding to non-linear mapping fφ(.) which is
also parameterized by a DNN. We assume that backgrounds in input video frames
specified as bv belong to {b1

v, . . . ,b
n
v} are generated by n underlying process

specified as z belong to {z1, . . . , zn} in Fig. 1. It is also helpful to concatenate
backgrounds from the same video clique in the graph to form B

(i)
v and all the

background cliques to form the Bv = concat(B
(1)
v , ..., B

(N)
v ).

The efforts in inferring the latent variables z as well as the parameters φ in
G-LBM results in maximization of the lower bound L of the marginal likelihood of
the background in video observations. [20, 2]. Therefore, the total VAE objective
for the entire video frames becomes:

log p(v|AG , φ) ≥ (3)

Eqφ(z|v,AG)

[
log pθ(v|z)

]
−KL

(
qφ(z|v, AG)||p(z|AG)

)
:= L(p(z|AG), φ, θ).

The first term in Eq. (3) can be interpreted as the negative reconstruction
error, which encourages the decoder to learn to reconstruct the original input.
The second term is the Kullback-Leibler (KL) divergence between prior defined
in Eq. (1) and variational posterior of latent process variables defined in Eq. (2),
which acts a regularizer to penalize the model complexity. The expectation is
taken with respect to the encoder’s distribution over the representations given
the neighborhood graph adjacency and input video frames. The KL term can be
calculated analytically in the case of Gaussian distributions, as indicated by [20].

In proposed G-LBM model, the VAE objective is further constrained to linear
dependency of the latent variables corresponding to the input video frames of the
same scene (neighbouring data points in graph G). This constraint is imposed by
minimizing the rank of the latent manifold coordinates mapped from the video
frames in the same clique in the graph G.

rank(fφ(V (i))) < δ ∀i ∈ {1, ..., N}, (4)

where fφ(V (i)) is the estimated mean and variance of the latent process z relative
to the concatenated input video frames V (i) coming from the same scene (clique
in the G). N is the total number of cliques. As schematic illustration presented
in Fig. 2 s. For our purpose of background modeling, given the knowledge that
moving objects are sparse ouliers to the backgrounds, we extract a motion mask
from the video frames. This motion mask is incorporated into the reconstruction
loss of the VAE objective in Eq. (3) to provide a motion aware reconstruction loss
in G-LBM. Given the motion mask M the VAE objective is updated as follows.

L(p(z|AG), φ, θ;M) = (5)

Eqφ(z|v,AG)

[
log pθ(v|z,M)

]
−KL

(
qφ(z|v, AG)||p(z|AG)

)
.
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VAE tries to minimize the reconstruction error between input video frames and
estimated backgrounds where there is no foreground object (outlier) given by the
motion mask. This minimization is done under an extra constraint to the VAE
objective which imposes the sparsity of the outliers/perturbations defined as:

‖M (i)(V (i) −B(i)
v ) ‖0< ε ∀i ∈ {1, ..., N}, (6)

where ‖ . ‖0 is the l0-norm of the difference between concatenated input observa-
tions V (i) from each scene and their reconstructed background B(i)

v = gφ(Z(i))
where motion mask M is present. Putting objective function and constrains
together the final optimization problem to train the G-LBM model becomes:

min L(p(z|AG), φ, θ;M) (7)

st: M (i)(V (i) −B(i)
v ) ‖0< ε and rank(fφ(V (i))) < δ ∀i ∈ {1, ..., N}.

In order to construct the final loss function to be utilized in learning the pa-
rameters of the encoder and decoder in G-LBM model, we used Nuclear norm
‖ . ‖? given by the sum of singular values and l1-norm ‖ . ‖1 as the tightest
convex relaxations of the rank(.) and l0-norm respectively. Substituting the
reconstruction loss and analytical expression of the KL term in Eq. (7) the final
loss of G-LBM to be minimized is:

L(φ, θ;M,AG) = (8)
N∑
i=1

BCE(M̄ (i)V (i), B(i))− 1

2

(
tr(Σ−1Π − I) + ΛTΣ−1Λ+ log

|Σ|
|Π|

)
+

β

N∑
i=1

‖M (i)(V (i) −B(i)) ‖1 +α

N∑
i=1

tr(
√
fφ(V (i))T fφ(V (i))).

The motion mask is constructed by computing the motion fields using the
coarse2fine optical flow [30] between each pair of consecutive frames in the given
sequence of frames V (i) from the same scene. Using the motion information we
compute a motion mask M (i). Let vi and vi−1 be the two consecutive frames in
V (i) and hxi,k and hyi,k be the horizontal and vertical component of motion vector
mi at position k computed between frames vi and vi−1 respectively. mi ∈ {0, 1}
is the corresponding vectored motion mask computed as:

mi,k =

{
1, if

√
(hxi,k)2 + (hyi,k)2 < τ

0, otherwise,
(9)

where threshold of motion magnitude τ is selected adaptively as a factor of the
average of all pixels in motion field such that all pixels in V (i) exhibiting motion
larger than τ definitely belong to the foreground not the noise in the background
in videos. By concatenating all the motion vectors mi computed from input V (i)

we construct the M (i). Concatenation of all M (i) is specified as M.
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Fig. 3: Network architecture of the G-LBM. Input to the network is a batch of
video clips. Each video clip is a sequence of consecutive frames with the same
background scene. In order to handle the 4D input videos with 2D convolutions,
we squeeze the first two axes of input regarding batch and video frames into one
axis. We unsqueeze the first dimension where it is necessary.

2.3 G-LBM Model Architecture and Training Setup

The encoder and decoder parts of the VAE are both implemented using CNN
architectures specified in Fig. 3. The encoder takes the video frames as input and
outputs the mean and variance of the distribution over underlying low-dimensional
latent process. The decoder takes samples drawn from latent distributions as
input and outputs the recovered version of the background in original input. We
trained G-LBM using the VAE architecture in Fig. 3 by minimizing the loss
function defined in Eq. (8). We used Adam optimization to learn the parameters
of the encoder and decoder, i.e., θ and φ, respectively. We employed learning
rate scheduling and gradient clipping in the optimization setup. Training was
performed on batches of size 3 video clips with 40 consecutive frames i.e 120
video frames in every input batch for 500 epochs.

3 Experimental Results

In this section, the performance of the proposed G-LBM is evaluated on two
publicly available datasets BMC2012 and SBMnet-2016 [40, 19]. Both quantitative
and qualitative performances compared against state-of-the-art methods are
provided in Section 3.1 and Section 3.2. Results show comparable or better
performance against other state-of-the-art methods in background modeling.

3.1 BMC2012 Dataset

We evaluated the performance of our proposed method on the BMC2012 bench-
mark dataset [40]. We used 9 real-world surveillance videos in this dataset, along
with encrypted ground truth (GT) masks of the foreground for evaluations. This
dataset focuses on outdoor situations with various weather and illumination con-
ditions making it suitable for performance evaluation of background subtraction
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Table 1: Comparison of average F1-score on each video of BMC2012 dataset.
Long videos are highlighted in gray.
Video 3TD DP-GMM LSD TVRPCA SRPCA RMAMR LR-FSO GFL MSCL G-LBM
001 0.79 0.72 0.79 0.76 0.79 0.78 0.71 0.78 0.80 0.73
002 0.76 0.69 0.80 0.67 0.74 0.71 0.66 0.74 0.78 0.85
003 0.70 0.75 0.94 0.68 0.83 0.78 0.70 0.61 0.96 0.93
004 0.83 0.80 0.88 0.82 0.81 0.79 0.72 0.88 0.86 0.91
005 0.79 0.71 0.73 0.77 0.80 0.76 0.66 0.80 0.79 0.71
006 0.82 0.68 0.80 0.69 0.69 0.65 0.78 0.74 0.74 0.85
007 0.73 0.65 0.81 0.71 0.70 0.64 0.54 0.69 0.76 0.70
008 0.81 0.78 0.84 0.79 0.84 0.80 0.80 0.81 0.89 0.76
009 0.85 0.79 0.92 0.88 0.86 0.82 0.82 0.83 0.86 0.69

Average 0.78 0.73 0.83 0.75 0.78 0.74 0.71 0.76 0.82 0.79

(BS) methods in challenging conditions. Since this dataset is designed for the BS
task in order to be able to do comparison on this dataset, we further performed
BS by utilizing the output of the trained G-LBM model.

To extract the masks of the moving objects in videos, we first trained our
model G-LBM using all of the video frames of short videos (with less than 2000
frames) and first 10000 frames of the long videos as explained in Section 2.3. After
the model was trained, we fed the same frames to the network to estimate the
background for each individual frame. Finally, we used the estimated background
of each frame to find the mask of the moving objects by thresholding the difference
between the original input frame and the estimated background. Table 1 shows
the quantitative performance of G-LBM compared to other BS methods including
3TD[27], DP-GMM[12], LSD[23], TVRPCA[7], SRPCA[15], RMAMR[28], LR-
FSO[47], GFL[44], MSCL[16]. Fig. 4 shows the estimated backgrounds and
extracted masks by G-LBM model on sample video frames in the BMC2012
dataset. Considering that G-LBM is a scene non-specific model of the background
and the task of BS is performed by simply thresholding the difference between the
estimated background and the original input frame, it is successful in detecting
moving objects and generates acceptable masks of the foreground.

3.2 SBMnet-2016 Dataset

SBMnet dataset [19] provides a diverse set of 79 videos spanning 8 different
categories selected to cover a wide range of detection challenges. These cate-
gories consist of basic, intermittent motion, clutter, jitter, illumination changes,
background motion, very long with more than 3500 frames, and very short with
less than 20 frames. The videos are representative of typical indoor and outdoor
visual data captured in surveillance, smart environment. Spatial resolutions of
the videos vary from 240× 240 to 800× 600 and their length varies from 6 to
9370 frames. Following metrics are utilized to measure the performance.

– Average gray-level error (AGE), average of the gray-level absolute difference
between grand truth and the estimated background image.
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Video_001 Video_002 Video_003 Video_004 Video_005 Video_006 Video_007 Video_008 Video_009

Fig. 4: Visual results of the G-LBM over video sequences of BMC2012. First
row is the input video frame, second row is the computed background model
by G-LBM, third row is the extracted foreground mask by thresholding the
difference between input video frame and the G-LBM background model. Last
row is the GT foreground mask.

– Percentage of error pixels (pEPs), percentage of number of pixels in estimated
background whose value differs from the corresponding pixel in grand truth
by more than a threshold with respect to the total number of pixels.

– Percentage of clustered error pixels (pCEPS), percentage of error pixels whose
4-connected neighbours are also error pixels to the total number of pixels.

– Multi-scale structural similarity index (MSSSIM), estimation of the perceived
visual distortion performing at multiple scales.

– Peak signal-to-noise-ratio(PSNR), measuring the image quality defined as
10 log10 ((L−1)

2
/MSE) where L is the maximum grey level value 255 andMSE

is the mean squared error between GT and estimated background.
– Color image quality measure (CQM), measuring perceptual image quality

defined based on the PSNR values in the single YUV bands through PSNRY ×
Rw + 0.5Cw(PSNRU + PSNRV ) where PSNR values are in db, Rw and Cw
are two coefficients set to 0.9449 and 0.0551 respectively.

The objective of every background model is an accurate estimate of the back-
ground which is equivalent to minimizing AGE, pEPs, pCEP with high perceptual
quality equivalent to maximizing the PSNR, MSSSIM, and CQM.

Performance evaluation and comparison For comparison, we analyzed the
results obtained by the best performing methods reported on the SBMnet-2016
dataset 2 as well as DNN based models compared with our G-LBM model in
both quantitative and qualitative manner. Table 2 compares overall performance
of our proposed G-LBM model against state-of-the-art background modeling
methods including FC-FlowNet [13], BEWiS [8], SC-SOBS-C4 [24], BE-AAPSA
[32], MSCL [16], SPMD [46], LaBGen-OF[21], FSBE[9], NExBI[26] with respect

2 http://scenebackgroundmodeling.net/



G-LBM 13

Table 2: Comparison of overall model performance evaluated on SBMnet-2016 dataset
in terms of metrics averaged over all categories.

Method Average ranking AGE pEPs pCEPS MSSSIM PSNR CQM
non-DNN methods

MSCL 1.67 5.9547 0.0524 0.0171 0.9410 30.8952 31.7049
SPMD 1.83 6.0985 0.0487 0.0154 0.9412 29.8439 30.6499

LaBGen-OF 3.00 6.1897 0.0566 0.0232 0.9412 29.8957 30.7006
FSBE 4.33 6.6204 0.0605 0.0217 0.9373 29.3378 30.1777
NExBI 9.33 6.7778 0.0671 0.0227 0.9196 27.9944 28.8810

DNN-based methods
G-LBM 9.67 6.8779 0.0759 0.0321 0.9181 28.9336 29.7641
BEWiS 6.50 6.7094 0.0592 0.0266 0.9282 28.7728 29.6342

SC-SOBS-C4 12.17 7.5183 0.0711 0.0242 0.9160 27.6533 28.5601
FC-FLOWNet 19.83 9.1131 0.1128 0.0599 0.9162 26.9559 27.8767
BE-AAPSA 16.50 7.9086 0.0873 0.0447 0.9127 27.0714 27.9811

Table 3: Comparison of G-LBM performance against other approaches evaluated on
SBMnet-2016 dataset with respect to averaged AGE over videos in each category.

Method Basic
Intermittent

motion Clutter Jitter
Illumination

changes
Background

motion
Very
long

Very
short

non-DNN methods
MSCL 3.4019 3.9743 5.2695 9.7403 4.4319 11.2194 3.8214 5.7790
SPMD 3.8141 4.1840 4.5998 9.8095 4.4750 9.9115 6.0926 5.9017

LaBGen-OF 3.8421 4.6433 4.1821 9.2410 8.2200 10.0698 4.2856 5.0338
FSBE 3.8960 5.3438 4.7660 10.3878 5.5089 10.5862 6.9832 5.4912
NExBI 4.7466 4.6374 5.3091 11.1301 4.8310 11.5851 6.2698 5.7134

DNN-based methods
G-LBM 4.5013 7.0859 13.0786 9.1154 3.2735 9.1644 2.5819 6.2223
BEWiS 4.0673 4.7798 10.6714 9.4156 5.9048 9.6776 3.9652 5.1937

SC-SOBS-C4 4.3598 6.2583 15.9385 10.0232 10.3591 10.7280 6.0638 5.2953
FC-FLOWNet 5.5856 6.7811 12.5556 10.2805 13.3662 10.0539 7.7727 6.5094
BE-AAPSA 5.6842 6.6997 12.3049 10.1994 7.0447 9.3755 3.8745 8.0857

Fig. 5: Visual results of the G-LBM compared against other high performing
methods on SBMnet-2016 dataset. First and second rows are sample video frames
from illumination changes background and motion categories, respectively.

to aforementioned metrics. Among deep learning approaches in modeling the
background practically, other than G-LBM only FC-FlowNet was fully evaluated
on SBMnet-2016 dataset. However, the rank of FC-FlowNet is only 20 (see Table 2)
compared with G-LBM and is also outperformed by conventional neural networks
approaches like BEWiS, SC-SOBS-C4, and BE-AAPSA. As quantified in Table 3,
G-LBM can effectively capture the stochasticity of the background dynamics in
its probabilistic model, which outperforms other methods of background modeling
in relative challenges of illumination changes, background motion, and jitter.
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Fig. 6: Visual results on categories of SBMnet-2016 that G-LBM successfully
models the background with comparable or higher quantitative performance
(see Table 3). First row is the input frame, second row is the G-LBM estimated
background, and third row is the GT.

Fig. 7: Visualization of G-LBM fail-
ure to estimate an accurate model of
the background. First row is the input
frame, second row is the G-LBM esti-
mated background, and third row is
the GT. Since G-LBM is a scene non-
specific method it is outperformed by
other models that have more specific
designs for these challenges.
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Board

IntermittentMotion/
busStation
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boulevardJam
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AVSS2007

The qualitative comparison of the G-LBM performance with the other methods
is shown in Fig. 5 for two samples of jitter and background motion categories.
However, in clutter and intermittent motion categories that background is heavily
filled with clutter or foreground objects are steady for a long time, G-LBM
fails in estimating an accurate model compared to other methods that are
scene-specific and have special designs for these challenges. Fig. 6 visualizes the
qualitative results of G-LBM for different challenges in SBMnet-2016 in which it
has comparable or superior performance. Cases that G-LBM fails in providing a
robust model for the background are also shown in Fig. 7, which happen mainly
in videos with intermittent motion and heavy clutter.

4 Conclusion

Here, we presented our scene non-specific generative low-dimensional background
model (G-LBM) using the framework of VAE for modeling the background in
videos recorded by stationary cameras. We evaluated the performance of our model
in task of background estimation, and showed how well it adapts to the changes of
the background on two datasets of BMC2012 and SBMnet-2016. According to the
quantitative and qualitative results, G-LBM outperformed other state-of-the-art
models specially in categories that stochasticity of the background is the major
challenge such as jitter, background motion, and illumination changes.
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