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Abstract. We introduce H3DNet, which takes a colorless 3D point
cloud as input and outputs a collection of oriented object bounding boxes
(or BB) and their semantic labels. The critical idea of H3DNet is to pre-
dict a hybrid set of geometric primitives, i.e., BB centers, BB face centers,
and BB edge centers. We show how to convert the predicted geometric
primitives into object proposals by defining a distance function between
an object and the geometric primitives. This distance function enables
continuous optimization of object proposals, and its local minimums pro-
vide high-fidelity object proposals. H3DNet then utilizes a matching and
refinement module to classify object proposals into detected objects and
fine-tune the geometric parameters of the detected objects. The hybrid
set of geometric primitives not only provides more accurate signals for
object detection than using a single type of geometric primitives, but
it also provides an overcomplete set of constraints on the resulting 3D
layout. Therefore, H3DNet can tolerate outliers in predicted geometric
primitives. Our model achieves state-of-the-art 3D detection results on
two large datasets with real 3D scans, ScanNet and SUN RGB-D. Our
code is open-sourced at here.

Keywords: 3D Deep Learning, Geometric Deep Learning, 3D Point
Clouds, 3D Bounding Boxes, 3D Object Detection

1 Introduction

Object detection is a fundamental problem in visual recognition. In this work,
we aim to detect the 3D layout (i.e., oriented 3D bounding boxes (or BBs) and
associated semantic labels) from a colorless 3D point cloud. This problem is
fundamentally challenging because of the irregular input and a varying number
of objects across different scenes. Choosing suitable intermediate representations
to integrate low-level object cues into detected objects is key to the performance
of the resulting system. While early works [39, 40] classify sliding windows for
object detection, recent works [33, 4, 17, 30, 55, 29, 52, 36, 52, 28, 46] have shown
the great promise of designing end-to-end neural networks to generate, classify,
and refine object proposals.

This paper introduces H3DNet, an end-to-end neural network that utilizes a
novel intermediate representation for 3D object detection. Specifically, H3DNet
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Fig. 1: Our approach leverages a hybrid and overcomplete set of geometric primitives
to detect and refine 3D object bounding boxes (BBs). Note that red BBs are initial
object proposals, green BBs are refined object proposals, and blue surfaces and lines
are hybrid geometric primitives.

first predicts a hybrid and overcomplete set of geometric primitives (i.e., BB cen-
ters, BB face centers, and BB edge centers) and then detects objects to fit these
primitives and their associated features. This regression methodology, which is
motivated from the recent success of keypoint-based pose regression for 6D ob-
ject pose estimation [20, 26, 12, 22, 27, 37], displays two appealing advantages for
3D object detection. First, each type of geometric primitives focuses on different
regions of the input point cloud (e.g., points of an entire object for predicting
the BB center and points of a planar boundary surface for predicting the corre-
sponding BB face center). Combing diverse primitive types can add the strengths
of their generalization behaviors. On new instances, they offer more useful con-
straints and features than merely using one type of primitives. Second, having
an overcomplete set of primitive constraints can tolerate outliers in predicted
primitives (e.g., using robust functions) and reduce the influence of individual
prediction errors. The design of H3DNet fully practices these two advantages.

Specifically, H3DNet consists of three modules. The first module computes
dense pointwise descriptors and uses them to predict geometric primitives and
their latent features. The second module converts these geometric primitives
into object proposals. A key innovation of H3DNet is to define a parametric
distance function that evaluates the distance between an object BB and the
predicted primitives. This distance function can easily incorporate diverse and
overcomplete geometric primitives. Its local minimums naturally correspond to
object proposals. This method allows us to optimize object BBs continuously
and generate high-quality object proposals from imprecise initial proposals.

The last module of H3DNet classifies each object proposal as a detected
object or not, and also predicts for each detected object an offset vector of its
geometric parameters and a semantic label to fine-tune the detection result. The
performance of this module depends on the input. As each object proposal is
associated with diverse geometric primitives, H3DNet aggregates latent features
associated with these primitives, which may contain complementary semantic
and geometric information, as the input to this module. We also introduce a
network design that can handle a varying number of geometric primitives.

We have evaluated H3DNet on two popular benchmark datasets ScanNet
and SUN RGB-D. On ScanNet, H3DNet achieved 67.2% in mAP (0.25), which
corresponded to a 8.5% relative improvement from state-of-the-art methods



H3DNet 3

that merely take the 3D point positions as input. On SUN RGB-D, H3DNet
achieved 60.1% in mAP (0.25), which corresponded to a 2.4% relative improve-
ment from the same set of state-of-the-art methods. Moreover, on difficult cat-
egories of both datasets (i.e., those with low mAP scores), the performance
gains of H3DNet are significant (e.g., from 38.1/47.3/57.1 to 51.9/61.0/75.3/ on
window/door/shower-curtain, respectively). We have also performed an ablation
study on H3DNet. Experimental results justify the importance of regressing a hy-
brid and overcomplete set of geometric primitives for generating object proposals
and aggregating features associated with matching primitives for classifying and
refining detected objects. In summary, the contributions of our work are:

– Formulation of object detection as regressing and aggregating an overcom-
plete set of geometric primitives

– Predicting multiple types of geometric primitives that are suitable for dif-
ferent object types and scenes

– State-of-the-art results on SUN RGB-D and ScanNet with only point clouds

2 Related Works

3D object detection. From the methodology perspective, there are strong
connections between 3D object detection approaches and their 2D counterparts.
Most existing works follow the approach of classifying candidate objects that are
generated using a sliding window [39, 40] or more advanced techniques [30, 55, 29,
52, 36, 52, 28, 46]. Objectness classification involves template-based approaches
or deep neural networks. The key differences between 2D approaches and 3D
approaches lie in feature representations. For example, [24] leverages a pair-
wise semantic context potential to guide the proposals’ objectness score. [33]
uses clouds of oriented gradients (COG) for object detection. [10] utilizes the
power of 3D convolution neural networks to identify locations and keypoints of
3D objects. Due to the computational cost in the 3D domain, many methods
utilize 2D-3D projection techniques to integrate 2D object detection and 3D data
processing. For example, MV3D [4] and VoxelNet [55] represent the 3D input
data in a bird’s-eye view before proceeding to the rest of the pipeline. Similarly,
[14, 17, 30] first process 2D inputs to identify candidate 3D object proposals.

Point clouds have emerged as a powerful representation for 3D deep learn-
ing, particularly for extracting salient geometric features and spatial locations
(c.f. [31, 32]). Prior usages of point-based neural networks include classifica-
tion [31, 32, 21, 45, 16, 49, 47, 48, 9, 11], segmentation [32, 41, 2, 21, 45, 43, 16,
49, 47, 48, 9, 11, 7, 46], normal estimation [2], and 3D reconstruction [42, 6, 50].

There are also growing interests in object detection from point clouds [29,
52, 36, 52, 28, 46]. H3DNet is most relevant to [29], which leverages deep neural
networks to predict object bounding boxes. The key innovation of H3DNet is that
it utilizes an overcomplete set of geometric primitives and a distance function
to integrate them for object detection. This strategy can tolerate inaccurate
primitive predictions (e.g., due to partial inputs).
Multi-task 3D understanding. Jointly predicting different types of geometric
primitives is related to multi-task learning [3, 13, 35, 34, 53, 25, 23, 19, 28, 56, 54,
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8], where incorporating multiple relevant tasks together boosts the performance
of feature learning. In a recent work HybridPose [37], Song et al. show that
predicting keypoints, edges between keypoints, and symmetric correspondences
jointly lift the prediction accuracies of each type of features. In this paper, we
show that predicting BB centers, BB face centers, and BB edge centers together
help to improve the generalization behavior of primitive predictions.
Overcomplete constraints regression. The main idea of H3DNet is to incor-
porate an overcomplete set of constraints. This approach achieves considerable
performance gains from [29], which uses a single type of geometric primitives.
At a conceptual level, similar strategies have been used in tasks of object track-
ing [44], zero-shot fine-grained classification [1], 6D object pose estimation [37]
and relative pose estimation between scans [51], among others. Compared to
these works, the novelties of H3DNet lie in designing hybrid constraints that
are suitable for object detection, continuous optimization of object proposals,
aggregating hybrid features for classifying and fine-tuning object proposals, and
end-to-end training of the entire network.

3 Approach

This section describes the technical details of H3DNet. Section 3.1 presents an
approach overview. Section 3.2 to Section 3.5 elaborate on the network design
and the training procedure of H3DNet.

3.1 Approach Overview

As illustrated in Figure 2, the input of H3DNet is a dense set of 3D points (i.e., a
point cloud) S ∈ R3×n (n = 40000 in this paper). Such an input typically comes
from depth sensors or the result of multi-view stereo matching. The output is
given by a collection of (oriented) bounding boxes (or BB) OS ∈ O, where O
denotes the space of all possible objects. Each object o ∈ O is given by its
class label lo ∈ C, where C is pre-defined, its center co = (cxo , c

y
o , c

z
o)
T ∈ R3 in a

world coordinate system, its scales so = (sxo , s
y
o , s

z
o)
T ∈ R3, and its orientation

no = (nxo ,n
y
o)T ∈ R2 in the xy-plane of the same world coordinate system (note

that the upright direction of an object is always along the z axis).
H3DNet consists of three modules, starting from geometric primitive predic-

tion, to proposal generation, to object refinement. The theme is to predict and
integrate an overcomplete set of geometric primitives, i.e., BB centers, BB face
centers, and BB edge centers. The entire network is trained end-to-end.
Geometric primitive module. The first module of H3DNet takes a point
cloud S as input and outputs a set of geometric primitives PS that predicts
locations of BB centers, BB face centers, and BB edge centers of the underlying
objects. The network design extends that of [29]. Specifically, it combines a sub-
module for extracting dense point-wise descriptors and sub-modules that take
point-wise descriptors as input and output offset vectors between input points
and the corresponding centers. The resulting primitives are obtained through
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Fig. 2: H3DNet consists of three modules. The first module computes a dense descriptor
and predicts three geometric primitives, namely, BB centers, BB face centers, and BB
edge centers. The second module converts geometric primitives into object proposals.
The third module classifies object proposals and refines the detected objects.

clustering. In addition to locations, each predicted geometric primitive also pos-
sesses a latent feature that is passed through subsequent modules of H3DNet.

In contrast to [29], H3DNet exhibits two advantages. First, since only a subset
of predicted geometric primitives is sufficient for object detection, the detected
objects are insensitive to erroneous predictions. Second, different types of geo-
metric primitives show complementary strength. For example, BB centers are
accurate for complete and solid objects, while BB face centers are suitable for
partial objects that possess rich planar structures.
Proposal generation module. The second module takes predicted geometric
primitives as input and outputs a set of object proposals. A critical innovation
of H3DNet is to formulate object proposals as local minimums of a distance
function. This methodology is quite flexible in several ways. First, it is easy to
incorporate overcomplete geometric primitives, each of which corresponds to an
objective term of the distance function. Second, it can handle outlier predictions
and mispredictions using robust norms. Finally, it becomes possible to optimize
object proposals continuously, and this property relaxes the burden of generating
high-quality initial proposals.
Classification and refinement module. The last module of H3DNet classifies
each object proposal into a detected object or not. This module also computes
offset vectors to refine the BB center, BB size, and BB orientation of each de-
tected object, and a semantic label. The key idea of this module is to aggregate
features of the geometric primitives that are close to the corresponding primitives
of each object proposal. Such aggregated features carry rich semantic informa-
tion that is unavailable in the feature associated with each geometric primitive.

3.2 Primitive Module

The first module of H3DNet predicts a set of geometric primitives from the
input point cloud. Each geometric primitive provides some constraints on the
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detected objects. In contrast to most prior works that compute a minimum set
of primitives, i.e., that is sufficient to determine the object bounding boxes,
H3DNet leverages an overcomplete set of geometric primitives, i.e., BB centers,
BB face centers, and BB edge centers. In other words, these geometric primitives
can provide up-to 19 positional constraints for one BB. As we will see later, they
offer great flexibilities in generating, classifying, and refining object proposals.

Similar to [29], the design of this module combines a descriptor sub-module
and a prediction sub-module. The descriptor sub-module computes dense point-
wise descriptors. Its output is fed into the prediction sub-module, which consists
of three prediction branches. Each branch predicts one type of geometric primi-
tives. Below we provide the technical details of the network design.

Descriptor sub-module. The output of the descriptor sub-module provides
semantic information to group points for predicting geometric primitives (e.g.,
points of the same object for BB centers and points of the same planar bound-
ary faces for BB face centers). Instead of using a single descriptor computation
tower [29], H3DNet integrates four separate descriptor computation towers. The
resulting descriptors are concatenated together for primitive prediction and sub-
sequent modules of H3DNet. Our experiments indicate that this network design
can learn distinctive features for predicting each type of primitives. However, it
does not lead to a significant increase in network complexity.

BB center prediction. The same as [29], H3DNet leverages a network with
three fully connected layers to predict the offset vector between each point and its
corresponding object center. The resulting BB centers are obtained through clus-
tering (c.f. [29]). Note that in additional to offset vectors, H3DNet also computes
an associated feature descriptor for each BB center. These feature descriptors
serve as input feature representations for subsequent modules of H3DNet.

Predictions of BB centers are accurate on complete and rectangular shaped
objects. However, there are shifting errors for partial and/or occluded objects,
and thin objects, such as pictures or curtains, due to imbalanced weighting for
offset prediction. This motivates us to consider centers of BB faces and BB edges.

BB face center prediction. Planar surfaces are ubiquitous in man-made
scenes and objects. Similar to BB center, H3DNet uses 3 fully connected layers
to perform point-wise predictions. The predicted attributes include a flag that
indicates whether a point is close to a BB face or not and if so, an offset vector
between that point and its corresponding BB face center. For training, we gen-
erate the ground-truth labels by computing the closest BB face for each point.
We say a point lies close to a BB face (i.e., a positive instance) if that distance
is smaller than 0.2m. Similar to BB centers, each BB face center prediction also
possesses a latent feature descriptor that is fed into the subsequent modules.

Since face center predictions are only affected by points that are close to
that face, we found that they are particularly useful for objects with rich planar
patches (e.g., refrigerator and shower-curtain) and incomplete objects.

BB edge center prediction. Boundary line features form another type of
geometric cues in all 3D scenes and objects. Similar to BB faces, H3DNet employs
3 fully connected layers to predict for each point a flag that indicates whether it
is close to a BB edge or not and if so, an offset vector between that point and
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the corresponding BB edge center. The same as BB face centers, we generate
ground-truth labels by computing the closest BB edge for each point. We say a
point lies close to a BB edge if the closest distance is smaller than 0.2m. Again,
each BB edge center prediction possesses a latent feature of the same dimension.
Compared to BB centers and BB face centers, BB edge centers are useful for
objects where point densities are irregular (e.g., with large holes) but BB edges
appear to be complete (e.g., window and computer desk).

As analyzed in details in the supplemental material, error distributions of
different primitives are largely uncorrelated with each other. Such uncorrelated
prediction errors provide a foundation for performance boosting when integrating
them together for detecting objects.

3.3 Proposal Module

After predicting geometric primitives, H3DNet proceeds to compute object pro-
posals. Since the predicted geometric primitives are overcomplete, H3DNet con-
verts them into a distance function and generates object proposals as local mini-
mums of this distance function. This approach, which is the crucial contribution
of H3DNet, exhibits several appealing properties. First, it automatically incor-
porates multiple geometric primitives to determine the parameters of each object
proposal. Second, the distance function can optimize object proposals continu-
ously. The resulting local minimums are insensitive to initial proposals, allowing
us to use simple initial proposal generators. Finally, each local minimum is at-
tached to different types of geometric primitives, which carry potentially com-
plementary semantic information. As discussed in Section 3.4, the last module
of H3DNet builds upon this property to classify and refine object proposals.
Proposal distance function. The proposal distance function FS(o) measures
a cumulative proximity score between the predicted geometric primitives PS and
the corresponding object primitives of an object proposal o. Recall that lo ∈ C,
co ∈ R3, so ∈ R3, and no ∈ R2 denote the label, center, scales, and orientation
of o. With o = (cTo , s

T
o ,n

T
o )T we collect all the geometric parameters of o. Note

that each object proposal o has 19 object primitives (i.e., one BB center, six BB
face centers, and twelve BB edge centers). Let pi(o), 1 ≤ i ≤ 19 be the location
of the i-th primitive of o. Denote ti ∈ T := {center, face, edge} as the type of the
i-th primitive. Let Pt,S ⊆ PS collect all predicted primitives with type t ∈ T .
We define

FS(o) :=
∑
t∈T

βt
∑

c∈Pt,S

min
(

min
1≤i≤19,ti=t

‖ci − pi(o)‖2 − δ, 0
)
. (1)

In other words, we employ the truncated L2-norm to match predicted primitives
and closest object primitives. βt describes the trade-off parameter for type t.
Both βt and the truncation threshold δ are determined via cross-validation.
Initial proposals. H3DNet detects object proposals by exploring the local min-
imums of the distance function from a set of initial proposals. From the perspec-
tive of optimization, we obtain the same local minimum from any initial solution
that is sufficiently close to that local minimum. This means the initial proposals
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Fig. 3: Illustration of the matching, feature aggregation and refinement process.

do not need to be exact. In our experiments, we found that a simple object pro-
posal generation approach is sufficient. Specifically, H3DNet utilizes the method
of [29], which initializes an object proposal from each detected BB center.
Proposal refinement. By minimizing FS , we refine each initial proposal. Note
that different initial proposals may share the same local minimum. The final
object proposals only collect distinctive local minimums.

3.4 Classification and Refinement Module

The last module of H3DNet takes the output of the proposal module as input
and outputs a collection of detected objects. This module combines a classifi-
cation sub-module and a refinement sub-module. The classification sub-module
determines whether each object proposal is an object or not. The refinement
sub-module predicts for each detected object the offsets in BB center, BB size,
and BB orientation and a semantic label.

The main idea is to aggregate features associated the primitives (i.e., object
centers, edge centers, and face centers) of each object proposal. Such features
capture potentially complementary information, yet only at this stage (i.e., after
we have detected groups of matching primitives) it becomes possible to fuse them
together to determine and fine-tune the detected objects.

As illustrated in Figure 3, we implement this sub-module by combing four
fully connected layers. The input layer concatenates input features of 19 object
primitives of an object proposal (i.e., one BB center, six BB face centers, and
twelve BB edge centers). Each input feature integrates features associated with
primitives that are in the neighborhood of the corresponding object primitive. To
address the issue that there is a varying number of neighborhood primitives (e.g.,
none or multiple), we utilize a variant of the max-pooling layer in PointNet [31,
32] to compute the input feature. Specifically, the input to each max-pooling layer
consists of the feature associated with the input object proposal, which addresses
the issue of no matching primitives, and 32 feature points that are randomly
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sampled in the neighborhood of each object primitive. In our implementation,
we determine the neighboring primitives via range query, and the radius is 0.05m.

The output of this module combines the label that indicates objectiveness,
offsets in BB center, BB size, and BB orientation, and a semantic label.

3.5 Network Training

Training H3DNet employs a loss function with five objective terms:

min
θg,θp,θc,θo

λglg(θg) + λplp(θg, θp) + λf lf (θg, θp, θo)

+ λclc(θg, θp, θc) + λolo(θg, θp, θo) (2)

where lg trains the geometric primitive module θg, lp trains the proposal module
θp, lf trains the potential function and refinement sub-network θo, lc trains
the classification sub-network θc, and lo trains the refinement sub-network. The
trade-off parameters λg, λp, λf , λc, and λo are determined through 10-fold cross-
validation. Intuitively, lc, lo and lf provide end-to-end training of H3DNet, while
lg and lp offer intermediate supervisions.
Formulation. Formulations of lg, lp, lc, and lo follow common strategies in the
literature. Specifically, both lg and lp utilize L2 regression losses and a cross-
entropy loss for geometric primitive location and existence flag prediction, and
initial proposal generation; lc applies a cross-entropy loss to train the object clas-
sification sub-network; lo employs L2 regression losses for predicting the shape
offset, and a cross-entropy loss for predicting the semantic label. Since these four
loss terms are quite standard, we leave the details to the supplemental material.

lf seeks to match the local minimums of the potential function and the
underlying ground-truth objects. Specifically, consider a parametric potential
function fΘ(x) parameterized by Θ. Consider a local minimum x?Θ which is a
function of Θ. Let xgt be the target location of x?Θ. We define the following
alignment potential to pull x?Θ to close to xgt :

lm(x?Θ,x
gt) := ‖x?Θ − xgt‖2. (3)

The following proposition describes how to compute the derivatives of lm with
respect to Θ. The proof is deferred to the supp. material.

Proposition 1. The derivatives of lm with respect to Θ is given by

∂lm
∂Θ

:= 2(x?Θ − xgt)T · ∂x
?
Θ

∂Θ
,

∂x?Θ
∂Θ

:= −
(∂2fΘ(x?)

∂2x

)−1
· ∂

2fΘ(x?)

∂x∂Θ
. (4)

We proceed to use lm to define lf . For each scene S, we denote the set of
ground-truth objects and the set of local minimums of potential function FS as
Ogt and O?, respectively. Note that O? depends on the network parameters and
hyper-parameters. Let CS ⊂ Ogt ×O? collect the nearest object in O? for each
object in Ogt . Consider a training set of scenes Strain, we define

lf :=
∑

S∈Strain

∑
(o?,ogt )∈CS

lm(o?,ogt). (5)
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Table 1: 3D object detection results on ScanNet V2 val dataset. We show per-
category results of average precision (AP) with 3D IoU threshold 0.25 as pro-
posed by [38], and mean of AP across all semantic classes with 3D IoU threshold
0.25.

RGB cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn mAP
3DSIS-5[10] 3 19.8 69.7 66.2 71.8 36.1 30.6 10.9 27.3 0.0 10.0 46.9 14.1 53.8 36.0 87.6 43.0 84.3 16.2 40.2
3DSIS[10] 7 12.8 63.1 66.0 46.3 26.9 8.0 2.8 2.3 0.0 6.9 33.3 2.5 10.4 12.2 74.5 22.9 58.7 7.1 25.4
Votenet[29] 7 36.3 87.9 88.7 89.6 58.8 47.3 38.1 44.6 7.8 56.1 71.7 47.2 45.4 57.1 94.9 54.7 92.1 37.2 58.7
Ours 7 49.4 88.6 91.8 90.2 64.9 61.0 51.9 54.9 18.6 62.0 75.9 57.3 57.2 75.3 97.9 67.4 92.5 53.6 67.2
w\o refine 7 37.2 89.3 88.4 88.5 64.4 53.0 44.2 42.2 11.1 51.2 59.8 47.0 54.3 74.3 93.1 57.0 85.6 43.5 60.2

Computing the derivatives of lf with respect to the network parameters is a
straightforward application of Prop.1.
Training. We train H3DNet end-to-end and from scratch with the Adam opti-
mizer [15]. Please defer to the supplemental material for hyper-parameters used
in training, such as learning rate etc.

4 Experimental Results

In this section, we first describe the experiment setup in Section 4.2. Then, we
compare our method with current state-of-the-art 3D object detection methods
quantitatively, and analyze our results in Section 4.2, where we show the impor-
tance of using geometric primitives and discuss our advantages. Finally, we show
ablation results in Section 4.3 and qualitative comparison in Figures (6) and (5).
More results and discussions can be found in the supplemental material.

4.1 Experimental Setup

Datasets. We employ two popular datasets ScanNet V2[5] and SUN RGB-D
V1[38]. ScanNet is a dataset of richly-annotated 3D reconstructions of indoor
scenes. It contains 1513 indoor scenes annotated with per-point instance and
semantic labels for 40 semantic classes. SUN RGB-D is a single-view RGB-
D dataset for 3D scene understanding, which contains 10335 indoor RGB and
depth images with per-point semantic labels and object bounding boxes. For
both datasets, we use the same training/validation split and BB semantic classes
(18 classes for ScanNet and 10 classes for SUN RGB-D) as in VoteNet[29] and
sub-sample 40000 points from every scene.
Evaluation protocol. We use Average Precision(AP) and the mean of AP
across all semantic classes (mAP)[38] under different IoU values (the minimum
IoU to consider a positive match). Average precision computes the average pre-
cision value for recall value over 0 to 1. IoU is given by the ratio of the area of
intersection and area of union of the predicted bounding box and ground truth
bounding box. Specifically, we use AP/mAP@0.25 and AP/mAP@0.5.
Baseline Methods We compare H3DNet with STAR approaches: VoteNet [29]
is a geometric-only detector that combines deep point set networks and a voting
procedure. GSPN[52] uses a generative model for instance segmentation. Both
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Table 2: Left: 3D object detection results on ScanNetV2 val set. Right: results
on SUN RGB-D V1 val set. We show mean of average precision (mAP) across
all semantic classes with 3D IoU threshold 0.25 and 0.5.

Input mAP@0.25 mAP@0.5
DSS[40] Geo + RGB 15.2 6.8
F-PointNet[30] Geo + RGB 19.8 10.8
GSPN[52] Geo + RGB 30.6 17.7
3D-SIS [10] Geo + 5 views 40.2 22.5
VoteNet [29] Geo only 58.7 33.5
Ours Geo only 67.2 48.1
w\o refine Geo only 60.2 37.3

Input mAP@0.25 mAP@0.5
DSS[40] Geo + RGB 42.1 -
COG[33] Geo + RGB 47.6 -
2D-driven[18] Geo + RGB 45.1 -
F-PointNet[30] Geo + RGB 54.0 -
VoteNet [29] Geo only 57.7 32.9
Ours Geo only 60.1 39.0
w\o refine Geo only 58.5 34.2

3D-SIS [10] and DSS [40] extract features from 2D images and 3D shapes to
generate object proposals. F-PointNet [30] and 2D-Driven [18] first propose 2D
detection regions and project them to 3D frustum for 3D detection. Cloud of
gradient(COG) [33] integrates sliding windows with a 3D HoG-like feature.

4.2 Analysis of Results

As shown in Table 2, our approach leads to an average mAP score of 67.2%, with
3D IoU threshold 0.25 (mAP@0.25), on ScanNet V2, which is 8.5% better than
the top-performing baseline approach [29]. In addition, our approach is 14.6%
better than the baseline approach [29] with 3D IoU threshold 0.5 (mAP@0.5).
For SUN RGB-D, our approach gains 2.4% and 6.1% in terms of mAP, with 3D
IoU threshold 0.25 and 0.5 respectively. On both datasets, the performance gains
of our approach under mAP@0.5 are larger than those under mAP@0.25, mean-
ing our approach offers more accurate predictions than baseline approaches. Such
improvements are attributed to using an overcomplete set of geometric primi-
tives and their associated features for generating and refining object proposals.
We can also understand the relative less salient improvements on SUN RGB-D
than ScanNet in a similar way, i.e., labels of the former are less accurate than
the latter, and the strength of H3DNet is not fully utilized on SUN RGB-D.
Except for the classification and refinement module, our approach shares similar
computation pipeline and complexity with VoteNet. The computation on multi-
ple descriptor towers and proposal modules can be paralleled, which should not
increase computation overhead. In our implementation, our approach requires
0.058 seconds for the last module per scan. Conceptually, our approach requires
50% more time compared to [29] but operates with a higher detection accuracy.

W/o Refinement W/o RefinementWith Refinement With Refinement GTGT

Fig. 4: Effect of geometric primitive matching and refinement.
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Improvement on thin objects. One limitation of the current top-performing
baseline [29] is predicting thin objects in 3D scenes, such as doors, windows and
pictures. In contrast, with face and edge primitives, H3DNet is able to extract
better features for those thin objects. For example, the frames of window or
picture provide dense edge feature, and physical texture of curtain or shower-
curtain provide dense face/surface feature. As shown in Table 1, H3DNet leads
to significant performance gains on thin objects, such as door (13.7%), window
(13.8%), picture (10.8%), curtain (10.1%) and shower-curtain (18.2%).
Improvement on objects with dense geometric primitives. Across the
individual object classes in ScanNet in Table 1, other than those thin objects,
our approach also leads to significant performance gain on cabinet (13.1%), table
(6.1%), bookshelf (10.3%), refrigerator (11.8%), sink (12.7%) and other-furniture
(16.4%). One explanation is that the geometric shapes of these object classes
possess rich planar structures and/or distinct edge structures, which contribute
greatly on geometric primitive detection and object refinement.
Effect of primitive matching and refinement. Using a distance function
to refine object proposals and aggregating features of matching primitives are
crucial for H3DNet. On ScanNet, merely classifying the initial proposals results
in a 14.6% drop on mAP 0.5. Figure 4 shows qualitative object detection results,
which again justify the importance of optimizing and refining object proposals.

4.3 Ablation Study

Effects of using different geometric primitives. H3DNet can utilize dif-
ferent groups of geometric primitives for generating, classifying, and refining

VoteNet

Ours

GT

Cabinet

Bed

Chair

Sofa

Table

Door

Window

Bookshelf

Picture

Counter

Refrig.

Bathtub

Toilet

Sink

Shower Cur.

Other

Desk

Curtain

Fig. 5: Qualitative baseline comparisons on ScanNet V2.
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Chair

Sofa

Table

Door

Window

Bookshelf

Toilet

Desk

Bathtub

Dresser

Nght. Std.

Fig. 6: Qualitative baseline comparisons on SUN RGB-D.

object proposals. Such choices have profound influences on the detected objects.
As illustrated in Figure 7, when only using BB edge primitives, we can see that
objects with prominent edge features, i.e., window, possess accurate predictions.
In contrast, objects with dense face/surface features, such as shower curtain,
exhibit relative low prediction accuracy. However, these objects can be easily
detected by activating BB face primitives. H3DNet, which combines BB centers,
BB edge centers, and BB face centers, adds the strength of their generalization
behaviors together. The resulting performance gains are salient when compared
to using a single set of geometric primitives.

cab. table door wind. cntr bkshlf fridg showr0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
AP

@
0.

25

Surf. Only
Edge Only
Votenet
Ours

Fig. 7: Quantitative comparisons be-
tween VoteNet, our approach, ours
with only face primitive and ours with
only edge primitive, across sampled
categories for ScanNet.

Table 3: Quantitative results without
refining predicted center, size, seman-
tic or object existence score for Scan-
Net, and without refining predicted
angle for SUN RGB-D and differences
compared with refining all.

mAP@0.25 mAP@0.5
w\o center 66.9 -0.3 46.3 -1.8
w\o size 65.4 -1.8 44.2 -3.9
w\o semantic 66.2 -1.0 47.3 -0.8
w\o existence 65.2 -1.8 45.1 -3.0

w\o angle 58.6 -1.5 36.6 -2.4
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Fig. 8: Quantitative comparisons be-
tween different truncation threshold δ
for ScanNet.

Table 4: Quantitative comparisons be-
tween different number of descriptor
computation towers, among our ap-
proach and VoteNet, for ScanNet and
SUN RGB-D.

# of Towers mAP@0.25 mAP@0.5

Ours

1 64.4 43.4
2 65.4 46.2
3 66.0 47.7
4 67.2 48.3

Vote
4 (Scan) 60.11 37.12
4 (SUN) 57.5 32.1

Effects of proposal refinement. During object proposal refinement, object
center, size, heading angle, semantic and existence are all optimized. As shown
in Table 3, without fine-tuning any of the geometric parameters of the detected
objects, the performance drops, which shows the importance of this sub-module.
Effect of different truncation threshold As shown in Figure 8, with different
truncation values of δ, results with mAP@0.25 and mAP@0.5 remain stable. It
shows that our model is robust to different truncation threshold δ.
Effect of multiple descriptor computation towers. One hyper-parameter
of H3DNet is the number of descriptor computation towers. Table 4 shows that
adding more descriptor computation towers leads to better results, yet the perfor-
mance gain of adding more descriptor computation towers quickly drops. More-
over, the performance gain of H3DNet from VoteNet comes from the hybrid set
of geometric primitives and object proposal matching and refinement. For exam-
ple, replacing the descriptor computation tower of VoteNet by the four descriptor
computation towers of H3DNet only results in modest and no performance gains
on ScanNet and SUN RGB-D, respectively (See Table 4).

5 Conclusions and Future Work

In this paper, we have introduced a novel 3D object detection approach that takes
a 3D scene as input and outputs a collection of labeled and oriented bounding
boxes. The key idea of our approach is to predict a hybrid and overcomplete
set of geometric primitives and then fit the detected objects to these primitives
and their associated features. Experimental results demonstrate the advantages
of this approach on ScanNet and SUN RGB-D. In the future, we would like
to apply this approach to other 3D scene understanding tasks such as instance
segmentation and CAD model reconstruction. Another future direction is to
integrate more geometric primitives, like BB corners, for 3D object detection.
Acknowledgement. We would like to acknowledge the support from NSF
DMS-1700234, a Gift from Snap Research, and a hardware donation from NVIDIA.
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