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S.1 Comparisons on SUN360 [15] Dataset

Similar to the experiment in Sec. 4.1 in the paper, we also compare our method
with the baseline methods using SUN360 [15] dataset. We selected indoor and
outdoor scenes in the SUN360 dataset that satisfied the Manhattan/Atlanta
assumptions, and generated the training and test images in the same way as with
Google Street View dataset, described in Sec. 4 in the paper. 30, 837 and 878
images are generated for the training and test sets, respectively. Details of the
evaluation metrics and baseline methods are provided in Sec. 4.1 in the paper.

The quantitative results with SUN360 dataset [15] are reported in Table S1.
The trends of the results are similar to those of the Google Street View experiment
in Table 2 in the paper. Our method provides the best performance for most of
the evaluation metrics, and the second-best for the remaining evaluation metrics,
such as the median roll error and mean FoV error. Our method has a very
marginal difference with the best AUC. The qualitative results are presented
in Fig. S1.

Table S1. Quantitative evaluations with SUN360 dataset. Bold represents the best
result, while an underscore represents the second-best result. Note that for DeepHori-
zon [13]*, we use the GT FoV to calculate the camera up vector (angle, pitch, and roll
errors) from the predicted horizon line. In addition, for UprightNet [14]**, we use a
pretrained model on ScanNet [4] due to the lack of required supervision in the SUN360
dataset.

Method
Angle (◦) ↓ Pitch (◦) ↓ Roll (◦) ↓ FoV (◦) ↓ AUC

(%) ↑Mean Med. Mean Med. Mean Med. Mean Med.

Upright [9] 3.43 1.43 3.03 1.13 6.85 0.47 8.62 3.21 79.16
A-Contrario [11] 5.77 1.53 4.91 1.19 6.93 0.66 - - 72.75
DeepHorizon [13]* 2.87 2.12 2.36 1.64 1.16 0.85 - - 80.65
Perceptual [8] 2.54 1.93 2.11 1.49 1.06 0.77 5.29 3.93 80.85
Perceptual [8] +L 2.86 2.17 2.45 1.76 1.06 0.75 6.29 4.37 78.38
UprightNet [14]** 34.72 34.67 35.31 33.72 4.92 2.88 - - -

Ours 2.33 1.27 1.97 0.96 0.97 0.51 5.66 3.16 80.07
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Ground Truth Upright [9] A-Contario [11] DeepHorizon [13]
Perceptual [8] Perceptual [8] +L Ours

Fig. S1. Examples of horizon line prediction on the SUN360 test set. Each example
also displays the Manhattan direction of the highest score candidate.

S.2 Additional Results on Google Street View [1] Dataset

Fig. S2 presents additional results on the Google Street View [1] dataset, as in
Fig. 5 in the paper, visualizing horizon line predictions and weakly supervised
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Manhattan directions. In each example, we illustrate the Manhattan directions
of the highest score candidate (Eq. (22) in the paper). In most cases, our method
provides better horizon prediction results than those of previous state-of-the-art
methods. Note that we only use the supervision of horizon lines and focal lengths
(3DoF), yet we can further estimate the camera rotation and focal lengths (4DoF)
based on the Manhattan world assumption.

S.3 Visualization of Our Network I/Os

Fig. S3 illustrates how geometric cues are processed and utilized in the proposed
method. Each row of Fig. S3(a)-(d) shows the input image, rasterized line segment
map L, grouped horizon line segments used for sampling candidates of Manhattan
directions (as in Fig. 3(d) in the paper), and the set of sampled candidates of
Manhattan directions, respectively.

Fig. S3(e) displays the prediction results of the horizons and their corre-
sponding ground truths, as well as the Manhattan direction of the highest score
candidate. Activation maps A with respect to the Manhattan directions are
presented in Fig. S3(f). Notice that activation maps A in Fig. S3(f) explain
much of their respective line segment maps L in Fig. S3(b), exemplifying how
our method incorporates with the Manhattan world assumption.

Fig. S3(g) superimposes the eight Manhattan directions of the top-8 high-
scoring candidates over the input images. As illustrated in Fig. S3(g), the zenith
directions are almost the same between candidates, as the man-made scenes
usually satisfies either the Manhattan or Atlanta world assumption [3, 10]. For
scenes satisfying the Manhattan world assumption (rows 1–4), the axes of eight
frames almost overlap. For the last two scenes (rows 5 and 6) that follow the
Atlanta world assumption, all the frames have zenith directions that are very
close to each other. By utilizing these frames we can robustly and accurately
estimate horizon lines and focal lengths of given scenes.

S.4 Comparison of Manhattan Direction Prediction on YUD [5]
and ECD [12]

We report the accuracy of Manhattan direction prediction using our method on
YUD [5] and ECD [12] datasets and compare the result with those of the other
methods. In the experiment, we took the network model trained on the Google
Street View dataset and tested it on YUD [5] and ECD [12] datasets. For the
evaluation, the Manhattan direction of the high score candidate is used.

YUD [5] dataset contains 102 images under the Manhattan assumption,
where each image is annotated with three VPs and a focal length. ECD [12]
dataset contains 103 images under the Atlanta assumption, where each image is
annotated with a zenith VP and more than two horizontal VPs on a horizon line.
For ECD [12] dataset, the direction which is the closest to the prediction is used
for comparisons.

Table S2 shows the quantitative comparisons, in terms of the relative rotation
angle, differences of FoV, and AUC. For FoV and AUC, we used the same setting
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Ground Truth Upright [9] A-Contario [11] DeepHorizon [13]
Perceptual [8] Perceptual [8] +L Ours

Fig. S2. Examples of horizon line prediction on the Google Street View test set (top
four rows) and on the HLW test set (bottom four rows). Each example also shows the
Manhattan direction of the highest score candidate.
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(a) (b) (c) (d) (e) (f) (g)

Fig. S3. Sampled images from the Google Street View test set (top three rows) and
the HLW test set (bottom three rows). For each row, we show: (a) input image; (b)
rasterized line segment map L; (c) two groups of horizontal line segments (cyan &
magenta) used for sampling candidates of Manhattan directions; (d) sampled candidates
of Manhattan directions; (e) ground truth and predicted horizon lines (yellow & red
dashed) as well as the estimated Manhattan directions of the highest score candidate;
(f) activation map A of the Manhattan directions shown in (e); and (g) Manhattan
directions of the top-8 high score candidates.

as depicted in Sec. 4.1 in the paper. As shown Table S2, our results are comparable
to the ones of non-neural-net methods [9, 11], which are highly optimized for
YUD [5] and ECD [12] datasets. We remark that our networks are trained on a
different dataset and also with weak and indirect supervision (horizon lines and
focal lengths).
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Table S2. Quantitative evaluations of Manhattan direction prediction with YUD [5]
and ECD [12] datasets.

Dataset Method
Rotation Angle (◦) ↓ FoV (◦) ↓ AUC

(%) ↑Mean Med. Mean Med.

YUD [5]
Upright [9] 0.46 0.27 3.41 1.18 87.26

A-Contrario [11] 1.03 0.78 3.42 1.17 95.35
Ours 0.52 0.33 2.73 1.47 83.21

ECD [12]
Upright [9] 2.91 1.02 12.44 6.31 76.71

A-Contrario [11] 3.11 1.44 16.73 10.22 91.10
Ours 3.14 1.34 13.61 7.73 77.61

S.5 Parameter Sensitivity Test

We tested parameter sensitivity by varying our parameters including: the angle
threshold for vertical lines (δz in Eq. (4)), the angle thresholds for deciding the
positive and negative samples of zenith candidates (δp and δn in Eq. (8)), the
score threshold for ZSNet (δc in Eq. (12)), the score threshold for FSNet (δs in
Eq. (19)), and the numbers of line segments and intersection points used in the
network (|Lz| and |Z|). Also, we tested sensitivity to line detection algorithm by
varying the LSD algorithm parameter, − log (NFA), where NFA is the number of
false alarms and also by replacing the line detection algorithm with MCMLSD [2].
We used the network model trained with the Google Street View [1] dataset with
default parameters and tested the model by varying the parameters, except for δp
and δn in Eq. (8) and δs in Eq. (19); these parameters change either the ground
truth labels or the loss function. For those parameters, we finetuned our network
from the pretrained model. All results are reported in Table S3. The highlighted
rows show the results with default parameters. The results demonstrate that our
method is robust to the change of the parameters.

In our implementation, 1,024 for both lines and points was the maximum
number to train the network with 11 GB GPU memory. However, more numbers
of lines and points also significantly increase training time and GPU memory
usage. For the sake of simplicity, all results reported in this paper were obtained
with |Lz| = |Z| = 256 both at training time and test time.

S.6 Visualization of FSNet Focus

In Fig. S4, we show more visualizations of the weights of the second last convolu-
tion layer in FSNet, as shown in Fig. 6 in the paper. The network mostly focuses
on the lines that pass the vanishing points.

S.7 Failure Cases

Fig. S5 shows failure cases of our framework. The failure cases occur when the
computation of the focal length is unstable, such that: i) the scene is far from
the Manhattan assumption, ii) only short or noisy line segments are detected
in the scene, iii) the scene is almost perpendicular to the center of projection.
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Table S3. Parameter sensitivity test results. The highlighted rows show the result with
the default parameters. Bold is the best result, and underscore is the second-best result
in each experiment.

Angle (◦) ↓ Pitch (◦) ↓ Roll (◦) ↓ FoV (◦) ↓ AUC
(%) ↑Mean Med. Mean Med. Mean Med. Mean Med.

δz (Eq. (4))
58.5◦ 2.04 1.67 1.84 1.44 0.64 0.46 5.67 3.52 83.01
67.5◦ 2.12 1.61 1.92 1.38 0.75 0.47 6.01 3.72 83.12
76.5◦ 2.83 1.97 2.30 1.67 1.62 0.57 6.47 3.97 79.70

δp, δn (Eq. (8))
1◦, 2◦ 3.45 1.98 2.73 1.87 1.53 0.62 7.43 4.02 75.22
2◦, 5◦ 2.12 1.61 1.92 1.38 0.75 0.47 6.01 3.72 83.12
5◦, 10◦ 2.54 1.97 2.10 1.71 0.75 0.57 6.64 4.21 79.01

δc (Eq. (12))
0.4 2.32 1.84 2.28 1.44 0.84 0.52 6.82 4.37 80.23
0.5 2.12 1.61 1.92 1.38 0.75 0.47 6.01 3.72 83.12
0.6 2.17 1.71 1.96 1.48 0.65 0.46 5.76 3.42 82.94

δs (Eq. (19))
0.4 3.02 1.80 2.71 1.61 1.04 0.47 6.70 4.05 80.82
0.5 2.12 1.61 1.92 1.38 0.75 0.47 6.01 3.72 83.12
0.6 2.19 1.64 1.93 1.43 0.74 0.47 5.88 3.43 83.10

top-k

k = 1 2.23 1.72 1.97 1.49 0.75 0.55 6.71 3.84 82.12
k = 4 2.10 1.70 1.89 1.48 0.65 0.49 6.01 3.66 83.05
k = 8 2.12 1.61 1.92 1.38 0.75 0.47 6.01 3.72 83.12
k = 16 2.24 1.71 2.04 1.52 0.65 0.46 5.61 3.66 82.70

|Lz|, |Z| 256, 256 2.12 1.61 1.92 1.38 0.75 0.47 6.01 3.72 83.12
1024, 1024 2.05 1.65 1.86 1.46 0.63 0.45 5.66 3.45 83.80

− log (NFA)
in LSD [7],

MCMLSD [2]

0 2.12 1.61 2.09 1.38 0.80 0.47 6.15 3.72 83.12
0.01× 1.750 2.12 1.74 1.91 1.54 0.65 0.47 6.02 3.77 82.38
0.01× 1.755 2.11 1.72 1.91 1.51 0.65 0.48 6.07 3.90 83.36
0.01× 1.7510 2.19 1.75 1.95 1.55 0.71 0.49 6.25 3.65 82.97
0.01× 1.7515 2.17 1.70 1.95 1.46 0.67 0.46 5.53 3.16 83.34
MCMLSD [2] 2.31 1.65 2.02 1.46 0.81 0.50 5.85 3.01 83.05

Please notice that the estimated zenith directions are still reasonable in Fig.
S5, thanks to the semantic information learned by ResNet, the backbone of our
FSNet. Therefore, even in the cases of Fig. S5, our framework is still applicable
to image rotation corrections as shown in Fig. 1(a).

S.8 Experiment on KITTI [6] Dataset

We conducted an additional experiment with KITTI [6] dataset. The KITTI
dataset contains wide-images captured by driving around urban cities and rural
areas. We sample 8,675 images of urban scenes from the KITTI dataset and feed
them to finetune our network from the pretrained model with the Google Street
View dataset. We test our finetuned model to 481 images of urban and rural
scenes from the KITTI dataset.

Fig. S6 shows some examples of horizon predictions with the KITTI test set.
Unfortunately, the GT horizons of the dataset are geometrically inaccurate due
to the large influence of the vehicle’s tilting angle during cornering. Nevertheless,
we obtained interesting results where the estimated horizons of our framework
do not deviate significantly from the GT horizons in urban areas. We believe
the results come from the KITTI dataset, since there are little changes in the
horizontal line and focal length. Another reason seems to be that the ResNet,
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Fig. S4. More visualizations of FSNet focus: Left is input; right is feature highlight.

Table S4. Quantitative evaluations with KITTI dataset.

Method
Angle (◦) ↓ Pitch (◦) ↓ Roll (◦) ↓ FoV (◦) ↓ AUC

(%) ↑Mean Med. Mean Med. Mean Med. Mean Med.

Ours (k = 8) 3.38 3.06 2.50 2.12 1.87 1.88 17.68 16.49 78.34

the backbone of our FSNet, learned the scene context from the KITTI dataset.
Table S4 reports the quantitative evaluations with KITTI dataset.
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Ground Truth Ours

Fig. S5. Failure cases.

Ground Truth Ours

Fig. S6. Examples of horizon line prediction on the KITTI test set.
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