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Note: We use blue color numbers to refer to figures, tables, section numbers
and citations in the main paper (e.g ., [21]), and use green color numbers to
refer to new hyper-linked references here (e.g ., [2]).

1 Qualitative Comparison of the Searched Cell
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Fig. 1. Comparing BNAS cell (right)
to XNOR-Net cell (left). c (k) denotes
the output of the kth cell. The dotted lines
represents the connections from the second
previous cell (c (k-2)). The red lines corre-
spond to skip connections

We qualitatively compare our searched
cell with the XNOR-Net cell based on
the ResNet18 architecture in Fig. 1.
As shown in the figure, our searched
cell has a contrasting structure to
the handcrafted ResNet18 architec-
ture. Both cells contain only two 3×3
binary convolution layer types, but
the extra Zeroise layer types selected
by our search algorithm help in reduc-
ing the quantization error. The topol-
ogy in which the Zeroise layer types
and convolution layer types are con-
nected also contributes to improving
the classification performance of our
searched cell. In the following sub-
sections, we show that our searched
topology yields better binary net-
works that outperform the architec-
tures used in state-of-the-art binary
networks.

Below, we present more qualitative comparisons of both the normal cell and
the reduction cell of our searched cell with the binarized DARTS cell [5].

Normal Cell. In Figure 2, we compare the normal cell of BNAS with the normal
cell of DARTS [5]. Our cell has inter-cell skip connections which result in more
stable gradients leading to better training, whereas the binarized DARTS cell
does not train at all (achieving only 10.01% test accuracy on CIFAR10 in Figure 2
of the main paper). We hypothesize that the lack of inter-cell skip connections
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(a) BNAS Normal Cell (b) Binarized DARTS Normal Cell

Fig. 2. Comparing the normal cell of BNAS (a) and the normal cell of bi-
narized DARTS (b). c (k) indicates the output of the kth cell. The dotted lines
represent the connections from the second previous cell (c (k-2)). Red lines in (a) indi-
cate the inter-cell skip connections. Note that the searched cell of binarized DARTS in
(b) has only intra-cell skip connections (denoted by pink boxes ) which have unstable

gradients as compared to inter-cell skip connections in (a) (See discussions in Section
4.2 of the main paper)

in their cell template may also contribute to the failure of its architecture in the
binary domain other than the excessive number of separable convolutions in the
DARTS searched cell.

Reduction Cell. We also qualitatively compare the BNAS reduction cell to the
binarized DARTS reduction cell in Figure 3. Note that the BNAS reduction cell
has a lot of Zeroise layers which help reduce quantization error.

2 Additional Experimental Details.

Below we explain how we split our dataset for search and training and various
configurations details on searching and training our architectures.

Dataset splitting. For searching binary networks, we use the CIFAR10 dataset.
For training the final architectures from scratch, we use both CIFAR10 and Im-
ageNet. During the search, we hold out half of the training data of CIFAR10 as
the validation set to evaluate the quality of search. For final evaluation of the
searched architecture, we train it from the scratch using the full training set and
report Top-1 (and Top-5 for ImageNet) accuracy.

Details on Searching Architectures. We train a small network with 8 cells
and 16 initial number of channels using SGD with the diversity regularizer (Sec-
tion 4.3 of the main paper) for 50 epochs with batch size of 64. We use momentum
0.9 with initial learning rate of 0.025 using cosine annealing [7] and a weight de-
cay of 3×10−4. We use the same architecture hyper-parameters as [5] except for
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(a) BNAS Reduction Cell (b) Binarized DARTS Reduction Cell

Fig. 3. Comparing the reduction cell of BNAS (a) and the reduction cell
of binarized DARTS (b). c (k) indicates the output of the kth cell. The dotted
lines represent the connections from the second previous cell (c (k-2)). Red lines in-
dicate the inter-cell skip connections. The intra-cell skip connections are denoted by
the pink boxes . Interestingly, the BNAS reduction cell only uses the output from the

second previous cell (c (k-2)) as inputs to the max pool layers, utilizing the inter-cell
skip connections more

the additional diversity regularizer where we use λ = 1.0 and τ = 7.7. Our cell
search takes approximately 10 hours on a single NVIDIA GeForce RTX 2080Ti
GPU.

Details on Training the Searched Architectures. For CIFAR10, we train
the final networks for 600 epochs with batch size 256. We use SGD with mo-
mentum 0.9 and weight decay of 3 × 10−6. We use the one cycle learning rate
scheduler [10] with the learning rate ranging from 5 × 10-2 to 4 × 10-4. For
ImageNet, we train the models for 250 epochs with batch size 512. We use SGD
with momentum 0.9, with an initial learning rate of 0.1 and a weight decay of
3×10−5. We use the cosine restart scheduler [7] with the minimum learning rate
of 0 and the length of one cycle being 50 epochs.

Final Architecture Configurations. We vary the size of our BNAS to com-
pare with the other binary networks with different FLOPs by stacking the
searched cells and changing the output channels of the first convolutional layer
and name them as BNAS-{Mini, A, B, C, D, E, F, G, H} as shown in Table 1.

3 Additional Analyses on the Ablated Models

3.1 ‘No Skip’ Setting

Besides the final classification accuracy presented in Table 7 of the main paper,
here we additionally present the train and test accuracy curves for the No Skip
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Table 1. Configuration details of BNAS variants. # Cells: the number of stacked
cells. # Chn.: the number of output channels of the first convolution layer of the model.
γ is the transferrability hyper-parameter in Eq.(5) of the main paper

BNAS- Mini A B C D E F G H

# Cells 10 20 12 16 12 12 15 11 16
# Chn. 24 36 64 108 64 68 68 74 128

γ 1 1 1 1 3 3 3 3 3

Dataset CIFAR10 ImageNet
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Fig. 4. Learning curve for the ‘No Skip’ ablation. The train (a) and test (b)
accuracy of all three models collapse when trained for 600 epochs. Additionally, the
test accuracy curves fluctuates heavily when compared to the train accuracy curve

ablation models of Table 7 of the main paper in Figure 4 for more detailed
analysis. All three variants collapse to a very low training and test accuracy
after a reasonable number of epochs (600).

In Figure 5, which shows the gradients of the ablated models at epoch 100
similar to Figure 4 of the main paper, we again observe that the ablated BNAS-
{A,B,C} without the inter-cell skip connections have unstable (spiky) gradients.
We additionally provide temporally animated plots of the gradients to demon-
strate how they change at every 10 epochs starting from 100 epoch to 600 epoch
in the accompanied animated gif file – ‘comb grads.gif’. Table 2 shows the details
of the plots in the ‘comb grads.gif’ file.

Table 2. Plot details in ‘comb grads.gif’ file. We provide an animated plot for
‘BNAS-A w/ SC’ for comparison to those of the other ablated models without the
skip connection (BNAS-A w/o SC, BNAS-B w/o SC, BNAS-C w/o SC). Other models
(BNAS-B and C) with skip connections show similar trend with BNAS-A, and thus
omitted for clear presentation

Plot Title BNAS-A w/ SC BNAS-A w/o SC BNAS-B w/o SC BNAS-C w/o SC

Model BNAS-A BNAS-A BNAS-B BNAS-C
Skip Connections 3 7 7 7
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Note that the ablated models (‘BNAS-A w/o SC’, ‘BNAS-B w/o SC’ and
‘BNAS-C w/o SC’) have unstable (spiky) gradients in the early epochs while the
full model (‘BNAS-A w/ SC’) shows relatively stable (less spiky) gradients in all
epochs. All models eventually show small gradients, indicating the models have
stopped learning. However, while the training curve of the full model (Figure 4)
implies that it has converged to a reasonable local optima, the training curves of
the ablated models (Figure 4) imply that they converged to a poor local optima
instead.

3.2 ‘No Zeroise’ Setting

In addition to reducing the quantization error, the Zeroise layers has additional
benefits of more memory savings, reduced FLOPs and more inference speed-up
as it does not require any computation and has no learnable parameters.

We summarize the memory savings, FLOPs and inference speed-up of our
BNAS-A model in Table 3 by comparing our BNAS-A model with and without
Zeroise layers. With the Zeroise layers, not only does the accuracy increase, but
we also observe significantly more memory savings and inference speed-up.

4 Additional Discussion on Memory Saving and Inference
Speed-up of Our Method

Following that other binary networks compare memory savings and inference
speed-up with respect to their floating point counterpart [6], we compute the
memory savings and inference speed-up by comparing it to the floating point
version of our searched binary networks and summarize the results in Table 4
for the models for experiments with ImageNet dataset.

Note that all our models achieve higher or comparable memory savings and
inference speed-up for the respective FLOPs budgets compared to Bi-Real mod-
els [6].
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Fig. 5. Unstable gradients in the ‘No Skip’ ablation (Similar to ‘w/o SC’
in Figure 4-(b) of the main paper) of BNAS-{A,B,C} models. We show the
sum of gradient magnitudes for convolution layers in all three models for the No Skip
setting. All three models show spiky gradients without the proposed skip-connections
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Table 3. Comparing our searched binary networks (BNAS-A) with and
without the Zeroise layer on CIFAR10. Test. Acc. (%) indicates the test ac-
curacy on CIFAR10. The two models compared have the exact same configuration
except the usage of Zeroise layers in the search space. Note that the memory savings
and inference speed-up were calculated with respect to the floating point version of
BNAS-A without Zeroise since Zeroise layers are not used in floating point domain
(see Section 4 in this supplement for related discussion)

BNAS-A w/o Zeroise w/ Zeroise

# Cells/# Chn. 20 / 36 20 / 36
Memory Savings 31.79× 91.06×
FLOPS (×108) 0.36 0.14

Inference Speed-up 58.01× 149.14×

Test. Acc. (%) 89.47 92.70

Table 4. Memory savings and inference speed-up compared to floating point
counter part of our searched binary network (models for ImageNet exper-
iments). Note that the memory savings and inference speed-up differ for different
networks, as described in [9]. The FLOPs, memory savings and inference speed-up for
Bi-Real Net is from Table 3 in [6]. All our models achieve higher or comparable memory
savings and inference speed-up compared to Bi-Real Net [6]

Model BNAS-D BNAS-E BNAS-F BNAS-G BNAS-H Bi-Real (Bi-Real Net18) Bi-Real (Bi-Real Net34)

FLOPs (×108) ∼ 1.48 ∼ 1.63 ∼ 1.78 ∼ 1.93 ∼ 6.56 ∼ 1.63 ∼ 1.93
Memory Savings 13.91× 14.51× 30.37× 14.85× 21.75× 11.14× 15.97×

Inference Speed-up 20.85× 21.15× 24.29× 19.34× 24.81× 11.06× 18.99×

5 Remarks on BATS [1]

BATS [1] is a concurrent work which will be presented in the same conference.
It also aims to search binary networks. Note that there are numerous differences
in how BATS searches their architectures compared to ours. However, training
the searched architecture has little differences, similar to how the training of
P-DARTS [3] is exactly same as that of DARTS [5]. Referring to the preprint
version of BATS [1], we try to compare ours to it by training the reported
searched BATS architecture. Unfortunately, we were not able to reproduce the
reported accuracy, even when we followed all the configuration details presented
in the preprint version. Interestingly, we were able to reproduce their reported
accuracy almost exactly (less than 0.1 difference in top-1 accuracy on ImageNet)
by not binarizing certain layers that downsample channels or spatial resolution
at the expense of using roughly 4 times more FLOPs than what was reported
in BATS [1]. We reached out to the authors regarding this issue but have yet to
clarify it at the time of the camera ready version deadline. When the authors
release the code, we expect the issue to be resolved soon.



Learning Architectures for Binary Networks 7

6 Additional Remarks on Quantized (‘Non 1-bit’) or not
fully binary CNNs

In the introduction of the main paper, we mention that binary networks or 1-
bit CNNs are distinguished from quantized networks (using more than 1 bit)
and not fully binary networks (networks only with binary weights but floating
point activations) due to the extreme memory savings and inference speed-up
they bring. Quantized or not fully binarized networks that incorporate search
are a type of efficient networks that are not comparable to 1-bit CNNs because
they cannot utilize XNOR and bit counting operations in the inference which
significantly brings down their memory savings and inference speed up gains.

It is, however, interesting to note that there are a line of work for efficient
networks with more resource consumption, especially the recent ones. Notably,
[4, 8, 11, 12] search for multi-bit quantization policies only and solely [4] search
for network architectures as well. [2] also search for network architectures for
binary weight (not fully binarized) CNNs. Their networks are not fully binarized
(networks only with binary weights) which makes them incomparable to other
binary networks. Moreover, [8, 11, 12] all search for quantization policies, not
network architectures, further differentiating it from our method.
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