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Abstract. We present a novel resizing module for neural networks:
shape adaptor, a drop-in enhancement built on top of traditional resiz-
ing layers, such as pooling, bilinear sampling, and strided convolution.
Whilst traditional resizing layers have fixed and deterministic reshaping
factors, our module allows for a learnable reshaping factor. Our imple-
mentation enables shape adaptors to be trained end-to-end without any
additional supervision, through which network architectures can be opti-
mised for each individual task, in a fully automated way. We performed
experiments across seven image classification datasets, and results show
that by simply using a set of our shape adaptors instead of the original
resizing layers, performance increases consistently over human-designed
networks, across all datasets. Additionally, we show the effectiveness
of shape adaptors on two other applications: network compression and
transfer learning.

Keywords: automated machine learning, resizing layer, neural archi-
tecture search

1 Introduction

Deep neural networks have become popular for many machine learning appli-
cations, since they provide simple strategies for end-to-end learning of complex
representations. However, success can be highly sensitive to network architec-
tures, which places a great demand on manual engineering of architectures and
hyper-parameter tuning.

A typical human-designed convolutional neural architecture is composed of two
types of computational modules: i) a normal layer, such as a stride-1 convolution
or an identity mapping, which maintains the spatial dimension of incoming fea-
ture maps; ii) a resizing layer, such as max/average pooling, bilinear sampling,
or stride-2 convolution, which reshapes the incoming feature map into a differ-
ent spatial dimension. We hereby define the shape of a neural network as the
composition of the feature dimensions in all network layers, and the architecture
as the overall structure formed by stacking multiple normal and resizing layers.
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Fig. 1: Left: Visualisation of a shape adaptor module build on top of two resizing
layers. Right: Different network shapes in the same network architecture ResNet-
50 can result a significantly different performance.

To move beyond the limitations of human-designed network architectures, there
has been a growing interest in developing Automated Machine Learning (Au-
toML) algorithms [9] for automatic architecture design, known as Neural Ar-
chitecture Search (NAS) [26,2,17,16]. However, whilst this has shown promising
results in discovering powerful network architectures, these methods still rely
heavily on human-designed network shapes, and focus primarily on learning con-
nectivities between layers. Typically, reshaping factors of 0.5 (down-sampling)
and 2 (up-sampling) are chosen, and the total number of reshaping layers is de-
fined manually, but we argue that network shape is an important inductive bias
which should be directly optimised.

For example, Figure 1 Right shows three networks with the exact same design of
network structure, but different shapes. For the two human-designed networks
[8], we see that a ResNet-50 model designed specifically for CIFAR-100 dataset
(Human Designed B) leads to a 15% performance increase over a ResNet-50
model designed for ImageNet dataset (Human Designed A). The performance
can be further improved with the network shape designed by the shape adap-
tors we will later introduce. Therefore, by learning network shapes rather than
manually designing them, a more optimal network architecture can be found.

To this end, we propose Shape Adaptor, a novel resizing module which can be
dropped into any standard neural network to learn task-specific network shape.
A shape adaptor module (see Figure 1 Left) takes in an input feature, and
reshapes it into two intermediate features. Each reshaping operation is done
using a standard resizing layer Fi(x, ri), i = 1, 2, where each resizing layer has
a different, pre-defined reshaping factor ri to reshape feature map x. Finally,
the two intermediate features are softly combined with a scalar weighting 1− α
and α respectively (for α ∈ (0, 1)), after reshaping them into the same spatial
dimension via a learned reshaping factor in the search space s(α) ∈ (r1, r2),
assuming r1 < r2. The module’s output represents a mixed combination over
these two intermediate features, and the scalar α can be learned solely based
on the task-specific training loss with stochastic gradient descent, without any
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additional supervision. Thus, by simply optimising these scaling weights for every
shape adaptor, the entire neural architecture is differential and we are able to
learn network shape in an automated, end-to-end manner.

2 Related Work & Background

Neural Architecture Search Neural architecture search (NAS) presents
an interesting research direction in AutoML, in automatically discovering an
optimal neural structure for a particular dataset, alleviating the hand design
of neural architectures which traditionally involves tedious trial-and-error. NAS
approaches can be highly computationally demanding, requiring hundreds of
thousands of GPU days of search time, due to intensive techniques such as
reinforcement learning [37] and evolutionary search [27]. Several approaches have
been proposed to speed up the search, based on parameter sharing [26], hyper-
networks [1], and gradient-based optimisation [17]. But despite their promising
performance, these approaches come with controversial debate questioning the
lack of reproducibility, and sensitivity to initialisations [15,33].

Architecture Pruning & Compression Network pruning is another direc-
tion towards achieving optimal network architectures. But instead of searching
from scratch as in NAS, network pruning is applied to existing human-designed
networks and removes redundant neurons and connectivities. Such methods can
be based on L0 regularisation [19], batch-norm scaling parameters [18], and
weight quantization [7]. As with our shape adaptors, network pruning does not
require the extensive search cost of NAS, and can be performed alongside regu-
lar training. Our shape adaptors can also be formulated as a pruning algorithm,
by optimising the network shape within a bounded search space. We provide a
detailed explanation of this in Section 5.1.

Design of Resizing Modules A resizing module is one of the essential
components in deep convolutional network design, and has seen continual mod-
ifications to improve performance and efficiency. The most widely used resizing
modules are max pooling, average pooling, bilinear sampling, and strided convo-
lutions, which are deterministic, efficient, and simple. But despite their benefits
in increasing computational efficiency and providing regularisation, there are
two issues with current designs: i) lack of spatial invariance, and ii) fixed scale.
Prior works focus on improving spatial robustness with a learnable combination
between max and average pooling [32,14], and with anti-aliased low-pass filters
[35]. Other works impose regularisation and adjustable inference by stochasti-
cally inserting pooling layers [34,13], and sampling different network shapes [36].
In contrast, shape adaptors solve both problems simultaneously, with a learnable
mixture of features in different scales, and with which reshaping factors can be
optimised automatically based on the training objective.
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3 Shape Adaptors

In this section, we introduce the details of the proposed Shape Adaptor module.
We discuss the definition of these modules, and the optimisation strategy used
to train them.

3.1 Formulation of Shape Adaptors

A visual illustration of a shape adaptor module is presented in Figure 1 Left. It is
a two-branch architecture composed of two different resizing layers Fi(x, ri)i=1,2,
assuming r1 < r2, taking the same feature map x as the input. A resizing layer
Fi can be any classical sampling layer, such as max pooling, average pooling,
bilinear sampling, or strided convolution, with a fixed reshaping factor ri. Each
resizing layer reshapes the input feature map by this factor, which represents
the ratio of spatial dimension between the output and input feature maps, and
outputs an intermediate feature. An adaptive resizing layer G with a learnable
reshaping factor is then used to reshape these intermediate features into the
same spatial dimension, and combine them with a weighted average to compute
the module’s output.

Each module has a learnable parameter α ∈ (0, 1), parameterised by a sig-
moid function, which is the only extra learnable parameter introduced by shape
adaptors. The role of α is to optimally combine two intermediate features after
reshaping them by an adaptive resizing layer G. To enable a non-differential
reshaping factor in G to be learned, we use a monotone function s, which mono-
tonically maps from α into the search space s(α) ∈ R = (r1, r2), representing
the scaling ratio of the module’s reshaping operation. With this formulation, a
learnble reshaping factor s(α) allows a shape adaptor to reshape at any scale
between r1 and r2, rather than being restricted to a discrete set of scales as with
typical manually-designed network architectures.

Using this formulation, a shape adaptor module can be expressed as a function:

ShapeAdaptor(x, α, r1,2) = (1−α)·G
(
F1(x, r1),

s(α)

r1

)
+α·G

(
F2(x, r2),

s(α)

r2

)
, (1)

with reshaping factor s(α), a monotonic mapping which satisfies:

lim
α→0

s(α) = r1, and lim
α→1

s(α) = r2. (2)

We choose our adaptive resizing layer G to be a bilinear interpolation function,
which allows feature maps to be resized into any shape. We design module’s
learnable reshaping factor s(α) = (r2 − r1)α + r1, a convex combination over
these pre-defined reshaping factors, assuming having no prior knowledge on the
network shape.

Each shape adaptor is arranged as a soft and learnable operator to search the
optimal reshaping factor s(α∗) = r∗ ∈ R over a combination of intermediate
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Fig. 2: Visualisation of a down-sampling shape adaptor built on a single convo-
lutional cell and a residual cell with a reshaping factor in the range R = (r, 1).

reshaped features Fi(x, ri). Thus, it can also be easily coupled with a continuous
approximate of categorical distribution, such as Gumbel SoftMax [10,20], to
control the softness. This technique is commonly used in gradient-based NAS
methods [17], where a categorical distribution is learned over different operations.

The overall shape adaptor module ensures that its reshaping factor s(α) can be
updated through the updated scaling weights. Thus, we enable differentiability
of s(α) in a shape adaptor module as an approximation from the mapping of
the derivative of its learnable scaling weight: ∇s(α) ≈ s(∇α). This formulation
enables shape adaptors to be easily trained with standard back-propagation and
end-to-end optimisation.

In our implementation, we use one resizing layer to maintain the incoming fea-
ture dimension (an identity layer), and the other resizing layer to change the
dimension. If F2 is the layer which maintains the dimension with r2 = 1, then a
shape adaptor module acts as a learnable down-sampling layer when 0 < r1 < 1,
and a learnable up-sampling layer when r1 > 1.

In Figure 2, we illustrate our learnable down-sampling shape adaptor in two
commonly used computational modules: a single convolutional cell in VGG-like
neural networks [30], and a residual cell in ResNet-like neural networks [8]. To
seamlessly insert shape adaptors into human-designed networks, we build shape
adaptors on top of the same sampling functions used in the original network
design. For example, in a single convolutional cell, we apply max pooling as the
down-sampling layer, and the identity layer is simply an identity mapping. And
in a residual cell, we use the ‘shortcut’ [1 × 1] convolutional layer as the down-
sampling layer, and the weight layer stacked with multiple convolutional layers
as the identity layer. In the ResNet design, we double the scaling weights in the
residual cell, in order to match the same feature scale as in the original design.
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3.2 The Optimisation Recipe

Number of Shape Adaptors Theoretically, shape adaptors should be in-
serted into every network layer, to enable maximal search space and flexibility.
In practice, we found that beyond a certain number of shape adaptors, perfor-
mance actually began to degrade. We therefore designed a heuristic to choose an
appropriate number of shape adaptor modules N , based on the assumption that
each module contributes a roughly equal amount towards the network’s overall
resizing effect. Let us consider that each module resizes its input feature map
in the range (rmin, rmax). The overall number of modules required should be
sufficient to reshape the network’s input dimension of Din to a manually defined
output dimension Dlast, by applying a sequence of reshaping operations, where
each is ∼ rmin. As such, the optimal number of modules can be expressed as a
logarithmic function of the overall ratio between the network’s input and output,
based on the scale of the reshaping operation in each module:

N =
⌊
log1/rmin(Din/Dlast)

⌋
(3)

Initialisations in Shape Adaptors As with network weights, a good ini-
tialisation for shape adaptors, i.e. the initial values for α, is important. Again,
assuming we have every shape adaptor designed in the same search space R =
(rmin, rmax) with the reshaping factor s(α) = (rmax − rmin)α + rmin, we pro-
pose a formula to automatically compute the initialisations such that the output
feature dimension of the initialised shape would map to the user-defined dimen-
sion Dout. Assuming we want to initialise the raw scaling parameters ᾱ before
sigmoid function α = σ(ᾱ), we need to solve the following equation:

Din · s(σ(ᾱ))N = Dout. (4)

Suppose we use N as defined in Eq. 3, then Eq. 4 is only solvable when Dlast ≤
Dout. Otherwise, we then initialise the smallest possible shape when encountering
the case for Dlast > Dout. This eventually derives the following:

ᾱ =

ln

(
−

N
√
Dout/Din−rmin

N
√
Dout/Din−rmax

+ ε

)
if Dlast ≤ Dout

ln(ε) otherwise
, ε = 10−4. (5)

where ε is a small value to avoid encountering ±∞ values.

Shape Adaptors with Memory Constraint During experiments, we ob-
served that shape adaptors tend to converge to a larger shape than the human
designed network, which may then require very large memory. For practical appli-
cations, it is desirable to have a constrained search space for learning the optimal
network shape given a user-defined memory limit. For any layer designed with
down-sampling shape adaptors, the spatial dimension of which is guaranteed to
be smaller than the one from the previous layers. We thus again use the final
feature dimension to approximate the memory usage for the network shape.
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Suppose we wish to constrain the network shape with the final feature dimension
to be no greater than Dlimit. We then limit the scaling factors in shape adaptors
by use of a penalty value ρ, which is applied whenever the network’s final feature
dimension after the current update Dcout is greater than the defined limit, i.e.
when Dcout > Dlimit. When this occurs, the penalty term ρ is applied on every
shape adaptor module, and we compute ρ dynamically for every iteration so that
we make sure Dcout ≤ Dlimit in the entire training stage. The penalised scaling
parameter αρ is then defined as follows,

αρ = α · ρ+
rmin

rmax − rmin
(ρ− 1). (6)

Then the penalised module’s reshaping factor s(αρ) becomes,

s(αρ) = (rmax − rmin)αρ + rmin = s(α)ρ. (7)

Using Eq. 4, we can compute ρ as,

ρ =
N

√
Dlimit
Dcout

. (8)

Iterative Optimisation Strategy To optimise a neural network equipped
with shape adaptor modules, there are two sets of parameters to learn: the
weight parameters w = {wi}, and the shape parameters α = {αi}. Unlike
NAS algorithms which require optimisation of network weights and structure
parameters on separate datasets, shape adaptors are optimised on the same
dataset and require no re-training.

Since the parameter space for the network shape is significantly smaller than
the network weight, we update the shape parameters less frequently than the
weight parameters, at a rate of once every αs steps. The entire optimisation for
a network equipped with shape adaptors is illustrated in Algorithm 1.

4 Experiments

In this section, we present experimental results to evaluate shape adaptors on
image classification tasks.

4.1 Experimental Setup

Datasets We evaluated on seven different image classification datasets, with
varying sizes and complexities, to fully assess the robustness and generalisation
of shape adaptors. These seven datasets are divided into three categories: i) small
(resolution) datasets: CIFAR-10/100 [12], SVHN [5]; ii) fine-grained classification
datasets: FGVC-Aircraft (Aircraft) [21], CUBS-200-2011 (Birds) [31], Stanford
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Algorithm 1: Optimisation for Shape Adaptor Networks

1 Define: shape adaptors: αs, rmin, rmax, D
last, Dout, Dlimit

2 Define: network architecture fα,w defined with shape and network
parameters

3 Initialise: shape parameters: α = {αi} with Eq. 3, and Eq. 5
4 Initialise: weight parameters: w = {wi}
5 Initialise: learning rate: λ1, λ2

6 while not converged do
7 for each training iteration i do
8 (x(i), y(i)) ∈ (x, y) . fetch one batch of training data
9 if requires memory constraint then

10 Compute: ρ using Eq. 8
11 else
12 Define: ρ = 1
13 end
14 if in αs step then
15 Update: α← λ1∇αL(fαρ,w(x(i)), y(i)) . update shape parameters
16 end
17 Update: w ← λ2∇wL(fαρ,w(x(i)), y(i)) . update weight parameters

18 end

19 end

Cars (Cars) [11]; and iii) ImageNet [3]. Small datasets are in resolution [32×32],
and fine-grained classification and ImageNet datasets are in resolution [224×224].

Baselines We ran experiments with three widely-used networks: VGG-16
[30], ResNet-50 [8], and MobileNetv2 [29]. The baseline Human represents the
original human-designed networks, which require manually adjusting the number
of resizing layers according to the resolution of each dataset. For smaller [32×32]
datasets, human-designed VGG-16, ResNet-50 and MobileNetv2 networks were
equipped with 4, 3, 3 resizing layers respectively, and for [224 × 224] datasets,
all human designed networks have 5 resizing layers.

Implementation of Shape Adaptors For all experiments in this section,
since we assume no prior knowledge of the optimal network architecture, we
inserted shape adaptors uniformly into the network layers (except for the last
layer). We initialised shape adaptors with Dlast = 2, Dout = 8, which we found
to work well across all datasets and network choices. All shape adaptors use the
search space R = (0.5, 1) with the design in Fig. 2. (Other choices of the search
space are discussed in the supplementary material.) We applied the memory
constraint on shape adaptors so that the network shape can grow no larger than
the running GPU memory. We optimised shape adaptors every αs = 20 steps
for non-ImageNet datasets, and every αs = 1500 steps for ImageNet. The full
hyper-parameter choices are provided in the supplementary material.
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4.2 Results on Image Classification Datasets

First, we compared networks built with shape adaptors to the original human-
designed networks, to test whether shape adaptors can improve performances
solely by finding a better network shape, without using any additional param-
eter space. To ensure fairness, all network weights in the human-designed and
shape adaptor networks were optimised using the same hyper-parameters, op-
timiser, and scheduler. Table 1 shows the test accuracies of shape adaptor and
human-designed networks, with each accuracy averaged over three individual
runs. We see that in nearly all cases, shape adaptor designed networks outper-
formed human-designed networks by a significant margin, despite both methods
using exactly the same parameter space. We also see that performance of shape
adaptor designed networks are stable, with a relatively low variance across dif-
ferent runs. This is similar to the human-designed networks, showing stability
and robustness of our method without needing the domain knowledge that is
required for human-designed networks.

Dataset
VGG-16 ResNet-50 MobileNetv2

Human Shape Adaptor Human Shape Adaptor Human Shape Adaptor

CIFAR-10 94.11±0.17 95.35±0.06 95.50±0.09 95.48±0.17 93.71±0.25 93.86±0.23

CIFAR-100 75.39±0.11 79.16±0.23 78.53±0.11 80.29±0.10 73.80±0.17 75.74±0.31

SVHN 96.26±0.03 96.89±0.07 96.74±0.20 96.84±0.13 96.50±0.08 96.86±0.14

Aircraft 85.28±0.09 86.95±0.29 81.57±0.51 85.60±0.32 77.64±0.23 83.00±0.30

Birds 73.37±0.35 74.86±0.50 68.62±0.10 71.02±0.48 60.37±1.12 68.53±0.21

Cars 89.30±0.21 90.13±0.11 87.23±0.48 89.67±0.20 80.86±0.13 84.62±0.38

ImageNet 73.92±0.12 73.53±0.09 77.18±0.04 78.74±0.12 71.72±0.02 73.32±0.07

Table 1: Top-1 test accuracies on different datasets for networks equipped with
human-designed resizing layers and with shape adaptors. We present the results
with the range of three independent runs. Best results are in bold.

4.3 Ablative Analysis & Visualisations

In this section, we perform an ablative analysis on CIFAR-100 and Aircraft to
understand the behaviour of shape adaptors with respect to the number and
initialisation of shape adaptors. We observed that conclusions are consistent
across different networks, thus we performed experiments in two networks only:
VGG-16 and MobileNetv2. All results are averaged over two independent runs.

Number of Shape Adaptors We first evaluate the performance by varying
different number of shape adaptors used in the network, whilst fixing all other
hyper-parameters used in Section 4.2. In Table 2, we show that the performance
of shape adaptor networks is consistent across the number of shape adaptors
used. Notably, performance is always better than networks with human-designed
resizing layers, regardless of the number of shape adaptors used. This again shows



10 S. Liu et al.

the ability of shape adaptors to automatically learn optimal shapes without
requiring domain knowledge. The optimal number of shape adaptor modules
given by our heuristic in Eq. 3 is highlighted in teal, and we can therefore see
that this is a good approximation to the optimal number of modules.

CIFAR-100 Human
SA (with number of)

3 4 5 6 8

VGG-16 75.39 79.03 79.16 78.56 78.43 78.16
MobileNetv2 73.80 75.39 75.74 75.22 74.92 74.86

Aircraft Human
SA (with number of)

5 6 7 8 10

VGG-16 85.28 84.80 86.95 86.44 86.72 85.76
MobileNetv2 77.64 81.12 83.00 83.02 82.43 80.36

Table 2: Test accuracies of VGG-16 on CIFAR-100 and MobileNetv2 on Aircraft,
when different numbers of shape adaptors are used. Best results are in bold. The
number produced in Eq. 3 is highlighted in teal.

In Figure 3, we present visualisations of network shapes in human-designed and
shape adaptor designed networks. We can see that the network shapes designed
by our shape adaptors are visually similar when different numbers of shape
adaptor modules are used. In Aircraft dataset, we see a narrower shape with
MobileNetv2 due to inserting an excessive number of 10 shape adaptors, which
eventually converged to a local minima and lead to a degraded performance.

VGG-16 on CIFAR-100 MobileNetv2 on Aircraft

4 4 6 8 5 6 8 10
Human
Designed

Shape Adaptor Designed Human
Designed

Shape Adaptor Designed

Fig. 3: Visualisation of human-designed and shape adaptor designed network
shapes. The number on the second row represents the number of resizing layers
(or shape adaptors) applied in the network.

Initialisations in Shape Adaptors Here, we evaluate the robustness of shape
adaptors by varying initialisation of α. Initialisation with a “wide” shape (large
α) causes high memory consumption and a longer training time, whereas initial-
isation with a “narrow” shape (small α) results in weaker gradient signals and
a more likely convergence to a non-optimal local minima. In Table 3, we can
see that the performance is again consistently better than the human-designed
architecture, across all tested initialisations.

In Figure 4, we present the learning dynamics for each shape adaptor module
across the entire training stage. We can observe that shape adaptors are learning
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CIFAR-100 Human
SA (with s(α) initialised)

0.60 0.70 0.80 0.90

VGG-16 75.39 79.21 79.16 78.79 78.53
MobileNetv2 73.80 75.16 75.74 74.89 74.74

Aircraft Human
SA (with s(α) initialised)

0.52 0.58 0.62 0.68

VGG-16 85.28 83.90 86.95 86.36 86.54
MobileNetv2 77.64 79.64 83.00 82.51 81.56

Table 3: Test accuracies of VGG-16 on CIFAR-100 and MobileNetv2 on Aircraft
datasets in shape adaptors with different initialisations. Best results are in bold.
The initialisation produced in Eq. 5 is highlighted in teal.

in an almost identical pattern across different initialisations in the CIFAR-100
dataset, with nearly no variance. For the larger resolution Aircraft dataset, dif-
ferent initialised shape adaptors converged to a different local minimum. They
still follow a general trend, for which the reshaping factor of a shape adaptor
inserted in the deeper layers would converge into a smaller scale.

Initialising s(α) = 0.60 , 0.70 , 0.80 , 0.90 ∗ VGG-16 on CIFAR-100 ∗
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0 50 100 150 200
0.5

0.75
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Epochs
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1
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Initialising s(α) = 0.52 , 0.58 , 0.62 , 0.68 ∗ MobileNetv2 on Aircraft ∗
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0.5

0.75

1

Epochs

s(α)
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for deeper layers

Fig. 4: Visualisation of learning dynamics for every shape adaptor module across
the entire training stage.

4.4 A Detailed Study on Neural Shape Learning

In this section, we propose a study to analyse different shape learning strategies,
and the transferability of learned shapes. Likewise, all results are averaged over
two independent runs.

We evaluate different neural shape learning strategies by running shape adaptors
in three different versions. Standard: the standard implementation from previous
sections; Fix (Final): a network retrained with a fixed optimal shape obtained
from shape adaptors; and Fix (Large): a network retrained with a fixed largest
possible shape in the current running GPU memory. The Fix (Final) baseline is
designed to align with the training strategy from NAS algorithms [17,37,26]. The
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Fix (Large) baseline is to test whether naively increasing network computational
cost can give improved performance.

CIFAR-100 Human
Shape Adaptors

Standard
Fix

(Final)
Fix

(Large)

VGG-16
75.39 79.16 78.62 78.51
314M 5.21G 5.21G 9.46G

MobileNetv2
73.80 75.74 75.54 75.46
94.7M 923M 923M 1.35G

Aircraft Human
Shape Adaptors

Standard
Fix

(Final)
Fix

(Large)

VGG-16
85.28 86.95 86.27 84.49
15.4G 50.9G 50.9G 97.2G

MobileNetv2
77.64 83.00 82.26 81.18
326M 9.01G 9.01G 12.0G

Table 4: Test accuracies and MACs (the number of multiply-adds) on CIFAR-100
and Aircraft datasets trained with different shape learning strategies.

In Table 4, we can observe that our standard version achieves the best perfor-
mance among all shape learning strategies. In addition, we found that just having
a large network would not guarantee an improved performance (VGG-16 on Air-
craft). This validates that shape adaptors are truly learning the optimal shape,
rather than naively increasing computational cost. Finally, we can see that our
original shape learning strategy without re-training performs better than a NAS-
like two-stage training strategy, which we assume is mainly due to dynamically
updating of network shape helping to learn spatial-invariant features.

In order to further understand how network performance is correlated with dif-
ferent network shapes, we ran a large-scale experiment by training 200 VGG-16
networks with randomly generated shapes.

VGG-16 on CIFAR-100

Acc: 75.39 Acc: 79.16 Acc: 73.86 Acc: 79.12

[0.50, 0.50, 0.50,
0.50]

[0.98, 0.98, 0.88,
0.57]

[0.50, 0.60, 0.75,
0.96]

[0.86, 0.85, 0.84,
0.74]

Human Designed Shape Adaptors Worst Random
Search

Best Random
Search

300M 500M 1G 2G 5G 10G

74

75

76

77

78

79

80

MACs

Accuracy

Random Search (Best/Worst)

Random Search

Shape Adaptors

Human Designed

Fig. 5: Visualisation and test accuracies of VGG-16 on CIFAR-100 in 200 ran-
domly generated shapes. The second row represents the precise reshaping factor
in each resizing layer.

In Fig. 5, we visualise the randomly generated network shapes with the best
and the worst performance, and compare them to the network shapes in human
designed and shape adaptor networks.
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First, we can see that the best randomly searched shape obtains a very similar
performance as well as a similar structure of shape compared to the ones learned
from shape adaptors. Second, the reshaping factors in the worst searched shape
are arranged from small to large, which is the direct opposite trend to the reshap-
ing factors automatically learned by our shape adaptors. Third, human-designed
networks are typically under-sized, and just by increasing network memory cost
is not able to guarantee an improved performance. Finally, we can see a clear
correlation between memory cost and performance, where a higher memory cost
typically increases performance. However, this correlation ceases after 5G of
memory consumption, after which point we see no improved performance. Inter-
estingly, the memory cost of shape adaptors lies just on the edge of this point,
which again shows the shape adaptor’s ability to learn optimal design.

5 Other Applications

5.1 Automated Shape Compression

In previous sections, we have shown that shape adaptors are able to improve
performance by finding the optimal network shapes, but with a cost of a huge
memory requirement of the learned network. In AutoSC, we show that shape
adaptors can also achieve strong results, when automatically finding optimal
memory-bounded network shapes based on an initial human design. Instead of
the original implementation of shape adaptors where these are assumed to be the
only resizing layers in the network, with AutoSC we attach down-sampling shape
adaptors only on top of the non-resized layers of the human-designed architec-
ture, whilst keeping the original human-designed resizing layers unchanged. We
initialise shape adaptors so that the network shape is identical to the human-
designed architecture, and thus the down-sampling shape adaptors can only learn
to compress the network shape.

In Table 5, we present AutoSC built on MobileNetv2, an efficient network design
for mobile applications. We evaluate AutoSC on three datasets: CIFAR-100, Air-
craft and ImageNet. During training of MobileNetv2, we initialised a small width
multiplier on the network’s channel dimension to slightly increase the parameter
space (if applicable). By doing this, we ensure that this “wider” network after
compression would have a similar memory consumption as the human-designed
MobileNetv2, for a fair comparison. In all three datasets, we can observe that
shape adaptors are able to improve performance, despite having similar memory
consumption compared to human-designed networks.

5.2 Automated Transfer Learning

In this section, we present how shape adaptors can be used to perform transfer
learning in an architectural level. In AutoTL, we directly replace the original
human-designed resizing layers with shape adaptors, and initialise them with the
reshaping factors designed in the original human-defined architecture, to match
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200/300M MobileNetv2 Params MACs Acc.

Human 0.75× 2.6M 233M 69.8
AutoSC 0.85× 2.9M 262M 70.7

Human 1.0× 3.5M 330M 71.8
AutoSC 1.1× 4.0M 324M 72.3

(a) Results on ImageNet

Plain MobileNetv2 Params MACs Acc.

Human 1.0× 2.3M 94.7M 73.80
AutoSC 1.0× 2.3M 91.5M 74.81

Human 1.0× 2.3M 330M 77.64
AutoSC 1.0× 2.3M 326M 78.95

(b) Results on CIFAR-100 (up) and
Aircraft (down)

Table 5: Test accuracies for AutoSC and human-designed MobileNetv2 on
CIFAR-100, Aircraft, and ImageNet. × represents the applied width multiplier.

the spatial dimension of each pre-trained network layer. During fine-tuning, the
network is then fine-tuning with network weights along with network shapes,
thus improving upon the standard fine-tuning in a more flexible manner.

Birds
[31]

Cars
[11]

Flowers
[25]

WikiArt
[28]

Sketch
[4]

PackNet [23] 80.41 86.11 93.04 69.40 76.17
PiggyBack [22] 81.59 89.62 94.77 71.33 79.91
NetTailor [24] 82.52 90.56 95.79 72.98 80.48

fine-tune [6] 81.86 89.74 93.67 75.60 79.58
SpotTune [6] 84.03 92.40 96.34 75.77 80.20
AutoTL 84.29 93.66 96.22 77.47 80.74

Table 6: Test accuracies of transfer Learning
methods built on ResNet-50 on fine-grained
datasets. Best results are in bold.

The results for AutoTL and
other state-of-the-art transfer
learning methods are listed in
Table 6, for which we out-
perform 4 out of 5 datasets.
The most related methods
to our approach are stan-
dard fine-tuning and Spot-
Tune [6], which optimise the
entire network parameters
for each dataset. Other ap-
proaches like PackNet [23],
Piggyback [22], and NetTailor
[24] focus on efficient transfer learning by updating few task-specific weights. We
design AutoTL with standard fine-tuning, as the simplest setting to show the
effectiveness of shape adaptors. In practise, AutoTL can be further improved,
and integrated into other efficient transfer learning techniques.

6 Conclusions & Future Directions

In this paper, we presented shape adaptor, a learnable resizing module to enhance
existing neural networks with task-specific network shapes. With shape adap-
tors, the learned network shapes can further improve performances compared to
human-designed architectures, without requiring an increase in parameter space.
In future work, we will investigate improving shape adaptors in a multi-branch
design, where the formulation provided in this paper can be extended to inte-
grating more than two resizing layers in each shape adaptor module. In addition,
we will also study use of shape adaptors for more applications, such as neural
architecture search, and multi-task learning.
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