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In this supplementary material, we provide additional implementation details
and experimental results to complement the main paper.

1 Dataset

1.1 Summary of the datasets

Table 1: Video domain adaptation datasets summary.

‘ UCF ‘ HMDB ‘ Kinetics ‘ NEC-Drone
Length (sec.) | 133 | 133 | 1-10 | 1-22
Spatial resolution 320%240| varies x 240 | varies 1920x 1080
Frame rate 25 30 varies 30
# of classes ‘ 12 ‘ 12 ‘ 7 ‘ 7
# of training videos 1,438 840 9,955 560
# of validation videos| 571 360 742 206
# of test videos - - - 228
# of training frames | 276,148 84,883 2,415,462 75,901
# of validation frames| 107,223 34,023 181,878 29,224
# of test frames - - - 29,742
. UCF—HMDB: 14.7%p]|,,. .. )
Domain gap HMDB—UCF: 8.0%p Kinetics—Drone: 64.5%p

We present the summary of the datasets used in this work in Table 1. In
addition to the other information, we add a domain gap row between datasets by
measuring classification performance difference between the supervised source
only I3D (lower bound) and the supervised target I3D (upper bound) in the last
row of Table 1. Kinetics—Drone has a domain gap of 64.5% while UCF—HMDB
has 14.7%p and HMDB—UCF has 8.0%p. The domain gap difference suggests
that Kinetics—Drone is a more challenging setting than UCF—HMDB and
HMDB—UCEF.

* Part of this work was done when Jinwoo Choi was an intern at NEC Labs America.
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Fig. 1: Implementations of clip attention network &. Best viewed with
zoom and color.

2 Implementation Details

Attention module. There can be multiple valid choices for the architecture
of the attention module @(-), e.g., a standard feed-forward network which takes
concatenation of the clip features as input, or a recurrent network that consumes
the clip features one by one. We explore two specific choices: (1) MLP and (2)
gated recurrent unit (GRU) network, as shown in Figure 1. Let us assume the
number of clips per video N = 4 for brevity. The MLP-based attention module
takes four clips as input. Then we concatenate the four clips (temporally ordered
as shown in Figure 1 (a)) and pass it through 4 fully connected layers. The four
fully connected layers consist of 3 layers with 1024 hidden units each, and four
units in the final fully connected layer. The output of the MLP is the length-4
vector indicating that which clip is more important (discriminative) and which
clip is less important. The GRU-based attention module also takes four clips as
input. Then we pass each clip in temporal order to the GRU with 1024 hidden
units, as shown in Figure 1 (b). We pass the output feature of GRU to a fully
connected layer to get the length-4 vector indicating that which clip is more
important and which clip is less important.

Baselines. We implement competitive baseline video domain adaptation meth-
ods by extending the two state-of-the-art image-based domain adaptation methods
DANN [3], and ADDA [7] as shown in Figure 2. The major differences between
DANN and ADDA are two-fold: (1) The DANN method shares the feature back-
bone parameters between source and target encoders. The ADDA method, on
the other hand, does not share the network parameters. (2) The DANN method
uses a gradient reversal layer or inverted GAN loss for adversarial training of
domain classifiers. We extend DANN and ADDA by replacing the feature vector
input to the domain classifier from image feature to clip feature. We sample
a L = 16-frames long clip from each video and pass it through a clip feature
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Table 2: Results on UCF+«Olympics.

Method ‘ Encoder ‘ UCF—Olympics ‘ Olympics—UCF
TASN [2]  |ResNet-101-based TRN 98.1 91.9
TCoN [6] |ResNet-101-based TRN 96.8 96.7
SAVA (ours) 13D 98.1 96.7

encoder (e.g., I3D [1] in this work). We feed the clip features from source and
target videos to the domain classifier.

I3D-based TA®N. The original TA3N builds upon the TRN using the 2D
ResNet-101 [4] feature backbone. We replace the 2D ResNet-101 backbone with
the I3D backbone. Given a video, we densely slide a temporal window with a
temporal stride of 1 to sample 16 frames long clips. For a frame k in the video,
the temporal window consists of frames from k& — 7 to k + 8. We zero-pad the
beginning and the end of the input video. We then extract I3D features by feeding
the sliding windows to the I3D feature backbone. As a result, we obtain a 1,024
dimensional feature vector for every frame. We then follow the remaining steps
as in the original TA3N method.

3 Comparison on UCF<Olympics

We also provide a further comparison of SAVA with TCoN and TA®N on the
UCF+Olympics dataset [5] in Table 2. SAVA achieves competitive or better
performance over all the cases.
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Fig.2: Overview of the DANN and ADDA extended for video. Best
viewed with zoom and color.
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