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Abstract. In this supplementary document, we provide further details
regarding our proposed EVE dataset and architectures (EyeNet and Gaz-
eRefineNet). The EVE dataset is a dataset of videos, including 4 camera
views and a video of screen content, as well as corresponding eye gaze po-
sition and gaze direction ground-truth (where available). This document
provides additional details regarding the demographics captured and the
pre-processing routines adopted. Regarding methodology, we provide an
in-depth description of our “offset augmentation” procedure, and provide
implementation details which are crucial to reproducing our results. In
addition, we show additional experiments which demonstrate the effect
of screen content, and the robustness of GazeRefineNet to error charac-
teristics from different camera perspective.

The dataset and reference source code are available at:

https://ait.ethz.ch/projects/2020/EVE
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1 The EVE Dataset

Much care was taken in capturing, pre-processing, and analyzing of the EVE
dataset. We present a few additional details regarding these steps in this section.

1.1 Ethics Approval

The collection of this dataset and the procedure of the study was approved
by the Ethics Commission of ETH Zurich (application no. 2019-N-103). Before
the beginning of a capture session, we clearly presented the risks (bodily and
data-related) to our participants via information sheets and a comprehensive
consent form. Participants were recruited via a university job board1 and after
the hour-long session, were paid a fee of 25 Swiss Francs in cash.

1 https://marktplatz.uzhalumni.ch/

https://ait.ethz.ch/projects/2020/EVE
https://marktplatz.uzhalumni.ch/
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(a) MVC (b) Webcam (Left) (c) Webcam (Center) (d) Webcam (Right)

Fig. 1: Example frames from the EVE dataset, showing the 4 camera views
(Machine Vision Camera or MVC from below, and 3 webcams mounted atop the
monitor). Note that the outer webcams in particular capture relatively oblique
head orientations. The green screen behind the participants should allow for
future works to apply background augmentation for training neural networks.

1.2 Actual Capture

The quality of eye tracking data can vary greatly depending on specific illumi-
nation conditions, ethnicity, gender, and other factors, and as such we placed
much care in designing the data collection environment. For example, we used
two separate tables placed on top of a carpeted floor: one for holding the eye
tracker via a VESA-mount arm, and one for the participants to rest their arms
or elbows on (cf. Fig. 2 in the main paper). This was done to minimize the
transfer of vibrations due to the participants’ movements. We mainly adopted
indirect illumination sources for better diffusion of light, and blocked any bright
or direct sources of light with black tape or tissue paper. We provide additional
samples of collected camera frames in Fig. 1.
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Yet, not all nuisance factors can be anticipated and as such an experiment
coordinator was present at every data collection session to monitor a live-stream
of camera frames and eye movements. We collected a qualitative analysis of
gaze data quality in terms of accuracy, precision, and jitter, and provide these
alongside the dataset.

1.3 Dataset Pre-processing

To pre-process the collected data, we first performed camera intrinsics calibration
using the OpenCV framework. Extrinsic camera transformation determination
was done using a first-surface mirror (to avoid errors due to the refraction occur-
ring in standard mirrors) and code released in [7], with reference points defined
by a ChArUco board (flipped as appropriate). Video was collected for every par-
ticipant while moving the first-surface mirror around each camera such that the
reflected ChArUco board was present across the span of the full camera frame
with different inclinations.

In processing the video of participants, we first undistorted the frames’ pixels
and detected the face [9] and face-region landmarks [1]. We then performed a
3D morphable model (3DMM) fit to the detected 3D facial landmarks [2] with
the purpose of yielding better estimates of gaze ray origins in 3D space. For
every participant, we determined a person-specific inter-ocular distance value by
exploiting our knowledge of relative camera positions. This inter-ocular distance
(defined as the Euclidean distance in millimeters between the outer eye corner
landmarks) is then used as a target scale value for scaling every fitted 3DMM. In
this way we attempted to further stabilize the yielded eye patches, which were
later used as input to our gaze estimation model. The determination of person-
specific head-scale was done over 10 randomly sampled frames per participant.

Finally, we applied the “data normalization” procedure for yielding eye patches
for gaze estimation [6,10]. The final eye patches are 128×128 in size and created
with the assumption that the virtual camera is located 60cm away from the
defined gaze origin, with a focal length of 1800mm. The selected origin of gaze
is an average of the 3D eye corner landmarks of the eye in consideration, taken
from the fitted 3DMM found in the previous step.

1.4 Dataset Characteristics

The final dataset is collected from 54 participants (30 male, 23 female, 1 un-
known). The distribution in terms of answers to our demographics questionnaire
can be seen in Fig. 2. While there are a few biases in the training data due to
the available participant-pool in our local population, the careful selection of our
final test set participants (10 participants in total) should allow for conclusions
on generalization capabilities to be made. In particular, it can be seen in Fig. 2b
that we attempted to sample our 10 test set participants from a variety of ethnic-
ities. More fine-grained per-participant-level information will not be published
in order to preserve the participants’ privacy.
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Fig. 2: Distribution of biological sex, ethnicity, adopted visual-aid, dominant eye,
and age in the training, validation and test subsets of EVE, based on partici-
pants’ self-reports. “N/A” marks cases where participants either did not know
the answer or refused to provide one.

We find that the points-of-gaze (PoGs) in our dataset exhibit a screen-center-
bias as previously reported in saliency literature [3] (see Fig. 3). However, this
does not indicate that one can naively adjust all estimates of gaze direction to be
screen-centered. According experiments are shown in Sec. 4.3 of this document.
A notable fact is that the PoG distribution is similar between the training set
and the test set, with samples existing in the peripheral regions of the screen.

Measured pupil diameters (as reported by the Tobii Pro SDK and measured
by the Tobii Spectrum Eye Tracker) range between 2mm and 4mm (see Fig. 3).
While this distribution shifts slightly for the test set participants, we find that
the pupil sizes are relatively consistent across the defined subsets. Similarly,
distances to the participants as estimated by our pre-processing pipeline (see
Sec. 1.3) is consistent across the subsets, and in particular has a mode around
the manufacturer recommended distance of 65cm. This demonstrates the care we
took in positioning our participants, including a live monitoring of their posture
throughout the capture session to avoid large eye tracker errors.

2 Offset Augmentation in GazeRefineNet

We provide here a step-by-step explanation of our offset augmentation procedure.
This method is introduced to address the large differences in performance in
gaze estimation when evaluating a network trained on one set of people, on a
new set of people. The person-specific differences are often described as being a
consistent offset (also called “angle kappa”), which do not appear in computed
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Fig. 3: PoG (on-screen pixels), distance (in cm) and pupil size (in mm) distri-
butions for the defined subsets of the proposed EVE dataset. The number of
people involved are 54, 39, 5, 10 respectively for the full dataset, training sub-
set, validation subset, and test subsets. The 2D histograms are coloured with a
logarithmic scale, with values normalized by the size of the subset in concern.

training losses, but only in the validation or test losses. We thus implement our
augmentation to mimic the effect of this angle kappa.

First, given an estimate for gaze direction ĝ, let us assume that this is rep-
resented in spherical coordinates representing pitch and yaw angles such that θ
is pitch, and φ is yaw. Then the unit-vector notation of ĝ = (θ, φ) would be
calculated with,

v̂h =

− cos θ sinφ
− sin θ

− cos θ cosφ

 . (1)

As the vector was previously defined such that (θ, φ) = (0, 0) points towards
the camera, we must flip the vector via negation to bring it to the camera-relative
coordinate system in which the head model (3DMM) is defined.

Assuming that we know the rotation of the head with respect to the camera
(from which the input image was taken from), we then apply the inverse of this
known rotation Rh to calculate the gaze direction relative to the head coordinate
system:

v̂h = RT
h v̂c. (2)
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We now return this head-relative gaze direction value to spherical coordi-
nates, with:

ĝh =

(
θh
φh

)
=

(
arcsin−ŷh

arctan2 (−x̂h, −ẑh)

)
, (3)

where v̂h = (x̂h, ŷh, ẑh). The corresponding rotation matrix is then,

Rh =

 cosφh 0 sinφh
0 1 0

− sinφh 0 cosφh

1 0 0
0 cos θh − sin θh
0 sin θh cos θh

 . (4)

This is the rotation that we can apply on top of a constant sequence-specific
and synthetic “offset”. Per given training sequence of length T (to maintain
consistency with the main paper, Eq.2), we acquire a sequence-specific offset
κi = (θκ, φκ) ∼ N (0, 3◦) that is parameterized with pitch and yaw angle values
as done in defining ĝ. We determined the standard deviation of 3 degrees em-
pirically, and show this in degrees for convenience of understanding. In reality,
the sampled values are in radians.

We convert the kappa values to unit vector notation and rotate it by the
current gaze direction matrix,

v̂aug
h = Rhv̂κ. (5)

This augmented gaze direction is transformed back to the normalized camera
coordinates system such that the frontal gaze is defined with (θ, φ) = (0, 0).

3 Implementation Details

To facilitate faithful reproduction of our experiments, we provide additional im-
plementation details of our architecture and its training and hyper-parameters.

3.1 Validity of Ground-truth Labels

The ground-truth data provided by the EVE dataset often comes from the Tobii
Spectrum Pro eye tracker, and associated Tobii Pro SDK. As is often the case
with eye trackers, there are cases where tracking fails, such as during eye blinks
or when illumination conditions are too poor for features to be tracked. The “va-
lidity” of predicted ground-truth is provided by the SDK, and stored alongside
all other labels. We apply the validity boolean values to our loss calculation,
such that only valid ground-truth labels are used during training.

The collected screen frames and Tobii-origin data do not perfectly coincide
in terms of reported timestamps. We perform a manual alignment to ensure
consistency between images of the eye-region and the gaze data, and additionally
perform bilinear interpolation in PoG given that valid labels exist on both sides
(immediately before and immediately after) of the query timestamp. As the eye
tracking data is collected at 150Hz (as a reminder, the camera frames have been
collected at 30Hz or 60Hz), and by the Nyquist-Shannon sampling theorem, we
can assume that the eye tracking data has been reliably handled.
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3.2 EyeNet

In the main paper (cf. Sec. 4.1), we defined the loss terms for gaze direction as
Lgaze and for pupil size as Lpupil. We define the full loss as:

LEyeNet = γPoGLgaze + γpupilLpupil, (6)

and set γgaze = 1.0 and γpupil = 1.0 empirically. The EyeNet is trained using
the Adam optimizer [4] for 8 epochs using a batch size of 16, and l2 parameter
decay of 0.005. We apply exponential learning rate decay of factor 0.5 every 1
epoch, beginning from a learning rate of 0.016. The input eye image is resized
to be 128× 128 pixels large.

3.3 GazeRefineNet

The GazeRefineNet adopts the a mean-squared error loss term for the final PoG
(calculated via a soft-argmax layer, cf. Fig. 4b of main paper), and in addition
applies a per-pixel cross-entropy loss for guiding the learning of the heatmap.
When defining the cross-entropy based loss term as LXE, we can then define the
full loss as:

LRefineNet = γPoGLPoG + γXELXE. (7)

where we set γPoG = 0.001 and γXE = 1.0 empirically. The GazeRefineNet is
trained using the Adam optimizer [4] for 4 epochs using a batch size of 8, and
l2 parameter decay of 0.0. We apply exponential learning rate decay of factor
0.5 every 0.5 epochs, beginning from a learning rate of 0.008. The input screen
content frame is resized to be 128× 72 pixels large. Please note that during this
stage of training, the EyeNet weights are not updated.

4 Additional Results

Here, we provide additional details with respect to the results shown in Sec. 5
of the main paper, as well as new experiments which further assess our Gaz-
eRefineNet architecture. In particular, we experiment with pre-training the gaze
estimation network (EyeNet) on an existing in-the-wild dataset, and applying it
directly and without modification as part of the GazeRefineNet training. Next,
we attempt to understand the inter-play of the proposed offset augmentation
and screen content input. We then evaluate the robustness of the GazeRefineNet
training to the different error characteristics of the 4 camera views. Lastly, we
show the changes in GazeRefineNet performance with varying strength of offset
augmentation applied during training.

4.1 Evaluation Details

In all experiments, we evaluate on the test split of the EVE dataset consisting
of 10 participants. To reduce the data load of both training and evaluation,
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Table 1: Experiments where the EyeNetstatic is trained on the GazeCapture
dataset [5]. The initial error is high as is typical of eye-patch input gaze
estimation networks evaluated in the cross-dataset setting. We see that de-
spite the high initial error, a respectably low error is achieved when train-
ing a GazeRefineNetGRU atop the predictions from the GazeCapture-trained
EyeNetstatic. We thus show that our refinement approach can be used in combi-
nation with existing gaze estimators to bridge dataset domain gaps

Model Gaze Dir. (◦) PoG (cm) PoG (px)

Baseline (both eyes) 7.93 8.86 288.85

GazeRefineNetGRU 3.93 ↓ 50.57% 4.33 ↓ 51.12% 150.29 ↓ 47.97%

we subsample all data such that we take 10 samples per second. A sequence is
defined to span 3 seconds of time such that the shortly exposed image stimuli
sequences can be trained on as well (exposure time of 3 seconds to participants).
Effectively, this means that we sub-sample the number of frames by a factor of
1
6 and 1

3 respectively for the machine vision camera and webcams.
For both training and evaluation, we cut all available video data into 3-

second-long sequences without gaps or overlaps. This results in 65, 116 sequences
in the training sub-set, 7, 676 sequences in the validation sub-set, and 17, 660
sequences in the test sub-set. There are 2, 392 image-stimulus sequences, 10, 472
video-stimulus sequences, and 4, 796 wikipedia-stimulus sequences in the test
sub-set.

4.2 Training EyeNet on GazeCapture

In order to assess our contribution in the context of existing gaze estimation
methods and datasets, we identified that training the gaze estimation part of
our architecture (EyeNetstatic) and using it without modification to learn the
final refinement step, would be the most challenging benchmark. We evaluate
this setting by training our EyeNetstatic on the GazeCapture dataset [5] with
equivalent pre-processing steps to our data, then train a GazeRefineNetGRU while
keeping the EyeNetstatic fixed, to finally evaluate performance on the test set of
our EVE dataset. We select our own test set as no other publicly available video-
based gaze dataset exhibit natural eye movements. The baseline gaze direction
error of 7.93◦ shown in Tab. 1 is typical of network architectures that take
single-eye inputs (we perform single-eye gaze estimation to enable binocular
gaze estimation in the future - an interesting output for studies on vergence),
as shown in recent works [11,8]. We find that a highly significant improvement
can be made even with initial errors as large as 27% of the screen height (1080
pixels). This shows that dataset differences can easily be overcome with our
GazeRefineNet training, even in the absence of labeled data from test users, and
while retaining the errors present in the trained EyeNetstatic (its weights are not
changed during GazeRefineNetGRU training).
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Table 2: Ablation study to further understand the effect in the absence of any
screen content input. Each row adds a factor (such that the last row includes
all changes). The refinement network without screen content simply refines a
given heatmap, and thus could be considered a method of screen-center-bias
enforcement, a form of gaze position prior.

Model Gaze Dir. (◦) PoG (cm) PoG (px)

Baseline (both eyes) 3.48 3.85 132.56

+ Refinement Network* 3.41 ↓ 2.18% 3.77 ↓ 2.17% 130.78 ↓ 1.34%

+ Offset Augmentation 3.00 ↓ 13.84% 3.31 ↓ 13.90% 115.10 ↓ 13.17%

+ Screen Content 2.49 ↓ 28.43% 2.75 ↓ 28.49% 95.59 ↓ 27.89%

* with GRU and skip connections between encoder and decoder.

4.3 Offset augmentation without screen content

To better understand the effect of the screen content input, we performed an
ablative study of our contributions in the absence of screen content. What this
means is that no appearance-based context is given to the task of gaze esti-
mate refinement, except for the dimensions of the heatmap with which PoG is
represented. More specifically, the GazeRefineNet could be conjectured to be
performing a center-bias application. We find in Tab. 2 that this assumption
is only partly true, and that applying the GazeRefineNet alone without screen
input nor offset augmentation results in comparable results to the baseline. This
means that the center-bias present in the data is not useful in further improving
gaze estimates. We do find however, that the offset augmentation still works
relatively well in the absence of screen content. With screen content input we
can reach the final best reported performance.

4.4 Cross-Camera Evaluation

To assess the sensitivity of our GazeRefineNet approach, we evaluate perfor-
mance changes when training on predicted gazes from different camera views in
Table 3, where gaze estimates are still provided from a pre-trained EyeNetGRU

but the GazeRefineNetGRU is trained from gaze data only from the source camera
view, and tested on frames from the target camera view. We find that in gen-
eral, the best performances can be seen when evaluating on the machine vision
camera frames, as image quality and detail are expectedly higher. Nonetheless in
general, improvements can be seen across the board, showing that the GazeRe-
fineNet is not sensitive to changes in camera view (and the consequent change
in the errors of initial PoG predictions).

4.5 Effect of offset augmentation strength

The amount of offset to apply to initial gaze direction predictions is an important
hyperparameter. For example, a GazeRefineNetGRU trained with weak offset aug-
mentation may not handle high test-time offsets whereas a GazeRefineNetGRU
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Table 3: Final refined gaze direction errors (in degrees, lower is better) for cross-
camera evaluations. While testing on the high-quality machine vision camera
frames yield the best results, it can be seen that the refinement step is mostly
agnostic to where the gaze data comes from and can generalize to gaze data from
new views, despite differences in characteristics of the error

Source

Target
Webcam
(Left)

Webcam
(Center)

Webcam
(Right)

MVC

Webcam (Left) 3.03 ↓ 21.62% 2.55 ↓ 23.47% 3.12 ↓ 22.79% 2.24 ↓ 16.90%

Webcam (Center) 3.04 ↓ 21.53% 2.55 ↓ 23.53% 3.11 ↓ 22.96% 2.26 ↓ 16.31%

Webcam (Right) 3.07 ↓ 20.52% 2.58 ↓ 22.66% 3.14 ↓ 22.17% 2.29 ↓ 15.32%

MVC 3.03 ↓ 21.69% 2.54 ↓ 23.70% 3.09 ↓ 23.36% 2.23 ↓ 17.50%

Note: MVC stands for “Machine Vision Camera”.
Improvements are with respect to initial PoG estimates from EyeNetGRU.
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Fig. 4: Varying σκ results in differing performance improvements on the valida-
tion subset of the EVE dataset, compared to that on the test subset. Specifically,
the test subset is significantly more challenging and thus a stronger amount of
offset augmentation is required than in the case of the validation subset.

trained with strong offset augmentation may perform overly aggressive correc-
tions. We show this trade-off in Fig. 4 where we see that the relatively easier
validation requires lower amounts of offset augmentation at training time com-
pared to the test set.

A more comprehensive study of discrepancies between learned models’ pre-
dictions of gaze direction should be performed in the future, in relation to the
differences in demographics in various gaze datasets. Furthermore, these offsets
are most certainly not due to textbook anatomical differences only (between op-
tical and visual axes in each eyeball). For instance, the determination of 3D gaze
origin is always done in an approximate manner and may vary greatly depending
on (a) how the head pose was determined, and (b) how the head-pose-relative
gaze origin was determined. In pre-processing the EVE dataset, we apply a
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3DMM fitting approach with interocular-distance-based scale-normalization to
alleviate these issues.

5 Ethical Considerations

In this work we effectively demonstrate that it is possible to improve predictions
of PoG given the screen content, even without prompting the user (ground-truth
label acquisition or gaze estimator calibration). We are certain that the field will
progress quickly, and will soon be reporting methods and architectures which
yield higher accuracy and robustness for screen-based eye tracking based on our
initial insights and the EVE dataset.

We are aware of the ethical implications of further developments to our ap-
proach in the context of data privacy. Specifically, a malicious agent could at-
tempt to elicit information regarding a user’s habits or preferences without their
awareness.

To eliminate such efforts, we hope that operating system developers can build
secure sandbox environments where front-facing camera usage is increasingly
restricted. Furthermore, we recommend that the Computer Vision community
work on: (a) allowing for light-weight model architectures through knowledge
distillation or weight quantization to quickly enable edge-only prediction of eye
gaze such as to restrict the transfer of original front-facing camera frames, and
(b) development of eye movement descriptors which need not expose fine-grained
person-specific traits yet assist in intelligent interactive systems such as user-
state-aware interfaces (e.g. changing of layout or appearance based on perceived
stress or cognitive load).
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