Supplementary Material

Unsupervised Cross-Modal Alignment for
Multi-Person 3D Pose Estimation

The supplementary material is organized as follows:

— Section 1: Adversarial Auto-Encoder- Pose representations and training

— Section 2: Architecture and implementation details

— Section 3: Artificial poses- Sampling and analysis
— Section 4: Additional results on 3DPW dataset and 2D pose estimation
— Section 5: Limitations of the proposed framework

Table 1. Notation Table.

Symbol Description
a Dy 3D pose in global coordinate system
pﬁv Pr 3D pose in root-relative coordinate system
% Pe Canonical 3D pose representation
A~ DI 3D pose in local parent relative coordinate system
EF Frozen 2D pose estimation network
”g g Encodes HM-PAF to intermediate representation
E H Learns neural representation
é ' Adversarial Auto-Encoder
Disc Pose Discriminator used to train AAE
= FK Forward Kinematics
5 & Tr Rigid rotation operation on canonical pose
g % Ta Translz.mtion in global 3D space .
=a TL Canonical pose to local pose transformation
Tk Camera weak perspective projection
T Image space
~ % Intermediate representation space
g % P 3D space (of multi-person pose)
= % K 2D space (of multi-person pose)
"é ,g Msyn Synthetic HM-PAF representation for 2D pose
g = Tz, Ty Root (pelvis joint) location
o8 S, 8 Neural representation
~= \;% Ap, I%q Student and Teacher 2D pose predictions respectively
PP Multi-person 3D pose GT and prediction
v, A sample in V space
% DoF Degrees of Freedom
= Dsyn Synthetic Dataset
© 0,~ Angle parameters in spherical coordinate system
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A. 3D pose representation in different coordinate systems
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Fig. 1. A. 3D pose representation in 4 different coordinate systems- (a) Global, (b) Root-
relative, (¢) Canonical and (d) Local. On the right, DoFs are shown for certain joints.
Right-hip joint has only one DoF in local coordinate system. B. Training framework
for AAE. C. The AAE trained with single-person pose datasets decodes a plausible
pose when sampled in U[—1, 1]*2. blue box: plausible pose, red box: implausible pose

1 Adversarial Auto-Encoder (AAE)

We train an AAE to learn single-person pose embedding. The proposed framework
for training the AAE using encoder @, decoder ¥ and adversarial discriminator
Disc is shown in Fig. 1B. The main motivation behind learning the single-person
pose embedding is to disentangle enforcement of structural plausibility constraints
for 3D human pose in the subsequent final task of multi-person pose estimation.
This parameterization of 3D pose embedding not only guarantees generation of
anthropomorphically plausible pose, but also follows the structural constraints
[1] such as joint angle limits, limb interpretation restrictions, etc.

a) View-invariant Canonical 3D Pose Representation. Let p, be a 3D
pose in the global coordinate system, as shown in Fig. 1A(a). The root-relative
3D pose p, (origin of coordinate system is located at root joint) as shown in
Fig. 1A(b) is obtained after subtracting human pelvis location (a.k.a root) from
pg. Then, the rigid transformation on p,, disentangles the root-relative pose
into view invariant canonical pose p.. Let us consider a plane passing through
the neck, left-hip and right-hip joints. Let 7 be a normal to this plane. In the
canonical coordinate system, which is defined by axes X, Y. and Z,. in Fig. 1A(c),
the vector n is canonically aligned with +ve X axis. This alignment makes the
canonical pose p. view-invariant. Note that, the root-relative pose p, can be
recovered from p. by performing a simple rigid transformation described by the
corresponding rotation matrix. The rotation matrix itself can be described with
Euler angles used to rotate p, to form p..
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b) Local 3D pose representation. Inline with [10], the forward kinematic
formulation expresses each body joint with respect to its parent joint. In the local
coordinate system for each joint (see Fig. 1A(d)), the kinematic 3D structure
of the human skeleton can be studied by capturing the limitations of joint
movements relative to the corresponding parent joint. Further, every parent-child
limb is assigned a fixed bone length. For example, the bone-length of the limb
connecting the left-shoulder and left-elbow is fixed for all poses. A 3D pose
expressed using this kinematic formulation is termed as local pose p; and is
shown in Fig. 1A(d). As p; is obtained from p, it is both view-invariant and
bone-length scale invariant. The local pose coordinate system X;, ¥; and Z;
is defined as follows: Each joint (except neck, pelvis, left-hip and right-hip) is
expressed with respect to its parent joint, or in other words, the origin of the
coordinate system is fixed at the parent joint. The coordinate axes are obtained
by performing Gram-Schmidt orthogonalization of a vector joining parent-child
and a normal 7 to the plane spanning neck, left-hip and right-hip joints. The
transformation from canonical pose p. to local pose p; is given as T, : p. — pi.

c) Training A AE. The architecture of AAE (see Fig. 1B) is based on a kinematic
tree of limb-connections mentioned in [3]. The pose embedding ¢pese is 32
dimensional vector and obtained through tanh nonlinearity. We choose to train an
AAE with an aim to learn pose embedding in continuous manner. This generative
approach allows us to uniformly sample any random vector as ¢ ~ U[—1, 1]3? and
predicts an anthropomorphically plausible human pose when decoded through
¥. The plausible and implausible pose pattern obtained after sampling pose
embedding is shown in Fig. 1C. We employ discriminator Disc to distinguish
between real pose embedding ¢,..,; and pose embedding sampled through ¢;qpnq ~
U[—1,1]32. In order to enforce learning of an one-to-one mapping in a generative
adversarial setup, we add cyclic reconstruction loss on both canonical pose p,
and pose embedding ¢pose as follows:

Ecyc :| Dc _lb\c | + | (bpose - ¢pose ‘ (1)

Where, p. = FK oW o ® o Tr(p.), $pose = & o U(¢pose); FK: pp — p. and
Tr : pe — pi. We train encoder @ using L.y and decoder ¥ using Leye + Ladv
inline with [4].

2 Architecture

In this section, we describe network architectures of £, F, H,H’, .

Module £: We use a pre-trained model of Cao et al. [2] as a teacher model as
shown in Fig. 2. The teacher model uses VGG19 backbone, followed by separate
branches of fully convolutional layers for heatmap and PAF. The concat operation
concatenates the outputs of these branches into an output of shape 28 x 28 x 1024.

Module F: We use upto stage-2 of Cao et al. [2] as F. As seen in Fig. 2, there
are 8 convolutional layers in both HM and PAF branches. Each branch takes the
input from the corresponding output branch of £ in the distillation pathway and
output of G in the auto-encoding pathway (Fig. 4 of the main paper).
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Fig. 2. ‘C’ stands for Convolutional layer. ‘Ch. FC’ stands for Channel-wise Fully
Connected layer [7]. ‘DeC’ stands for Deconvolutional layer. Dashed connection indicates
skip-connection. Both £ and F are frozen while training G and H. S indicates stride.

Module G: It consists of five 7 x 7 convolutional layers as shown in Fig. 2. The
input mgyy, is of 28 x 28 x 43 dimension where 15 channels correspond to each of
the 15 joints and 28 channels correspond to PAF representation for all limbs.

Module H and H’: Both H and H' network modules share the same architecture.
These modules take an embedding v as an input and predict a tensor of shape
14 x 14 x 39. Further, these modules have a Channel-wise Fully Connected layer
(Ch-FC) (similar to [7]) where the layer connects all nodes of a given input
channel to all nodes of corresponding output channel. In our architecture, this
layer takes 7 x 7 x 128 as input tensor shape and outputs tensor of the same
shape. Since each of the 128 channels has a spatial dimension of 7x7, the Ch-FC
layer consists of 128 fully connected layers with 49 input nodes and 49 output
nodes in each layer. The final layer of H uses an activation of tanh which ensures
that the output space of H results in plausible 3D pose prediction (via ¥). All
other layers in the module H use Leaky ReLU activation.

2.1 Differentiable transformation operations in M

Module M consists of frozen 3D pose embedding decoder ¥ , forward kinematics
operation (FK), pose 3D rigid transformation 7 and 3D scene composition by
translating multiple root-relative 3D poses 7.

a) Forward kinematics (FK) p; — p.. Using forward kinematics, the local
pose predicted by ¥, is converted into view-invariant canonical 3D pose [1].

b) Rigid rotation transformation 7z : p. — p,. Module H predicts sine and
cosine angle components for 3 angle parameters (Euler angles, denoted as c)
required to perform rigid rotation. Using the Euler angles, the canonical pose p.
is transformed to the root-relative pose p, as described in Section 1.

c) Global scene composition 7¢ : p, — pg. Using the predicted 2D root-
keypoints r,r, and the depth d, the net translation of the pose is computed as
a function of (ry,r,,d). This translation is performed on 3D pose of each person
as inferred in the neural representation (i.e. where a root-joint can be inferred).
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2.2 Other implementation details

We develop a differentiable camera module with fixed configuration (focal lengths
and center of camera are fixed based on input image size) for projecting the 3D
scene. The unpaired 3D poses are normalized for keeping the bone length ratio
fixed. As discussed previously, this dataset is used for training the pose decoder
¥ and also used for creating multi-person 3D skeleton scenes Dy,

We first pretrain ‘H using Lg;sy for about 15k iterations before imposing
all losses. Our phase-1 of training requires 450k iterations to converge. After
training for 450k iterations, phase-2 of our training is started. As discussed in
main paper, in phase-2 of our training, we impose only L, and L,¢con, while
keeping G frozen.

3 Artificial-pose-sampling

Artificial poses are created by sampling from joint-angle ranges specified by a
biomechanic expert. These joint-angle limits are described in the local parent-
relative system on the canonical pose representation (see Fig. 1). Therefore, the
poses that are sampled from these angle limits provide us with diverse canonical
poses. As described in Section 1, these poses can be used to train the AAE and
to create the Dy, in a completely unsupervised setting where a 3D human pose
dataset is inaccessible. In this section, we describe the sampling procedure and
provide an analysis of the reliability of the Artificial-pose-sampling.

3.1 Sampling Procedure

We use the joint-angle limits defined per joint in the local coordinate system
and visualize the limits in Fig. 3A. As shown in Fig. 3A, every joint can be
completely described in a spherical coordinate system using two angle limits
(azimuth and elevation). We represent the angles as a range in azimuth [¢, 02]
where —180° < # < 180° and elevation [y1,y2] where 0° < < 180°. As described
in the Section 1, certain joints, such as the right hip joint has only 1DoF while
some joints such as the neck joint has 0DoF. Note that 3D keypoint locations of
the left hip and the left shoulder joints can be inferred in canonical pose directly
without sampling, because the pelvis joint and neck joint are the mid-points of
the hip joints and shoulder joints respectively.

There is one limitation in describing joint angle ranges in the spherical
coordinate system: angle limits for certain joints span beyond the 180° limit of 6.
For such joints we propose to use angle ranges that span on the opposite side
(beyond 180° into negative ) of the spherical coordinate system. For example,
the 6 range for the right shoulder joint is 120° and spans from 6; = 120°, but 65
goes beyond the 180°. Therefore, we set 05 to a value to a value that is equivalent
to 240° (which is equal to -120°).

We create artificial single-person pose dataset by sampling from these joint
angle limits for all joints applying bone lengths, followed by forward kinematics
operation to construct a canonical pose. For obtaining a variety of root-relative
poses, we apply random rotation transformation operations on canonical poses.
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A. Joint Angle Limits
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Fig. 3. Single-person artificial pose dataset is created by sampling uniformly from joint
wise angle limits defined at local parent-relative coordinate system [1]. A. Since angle
limits of left-body joints are symmetric to right-body joints, we present only right joints.
Neck joint and right-hip joint have 0,1 DoF respectively. B. The artificial pose dataset
subsumes all plausible poses and could contain a small fraction of implausible poses.

3.2 Analysis of artificial poses

Although sampled artificial poses may have certain degree of implausibility,
because each joint angle is sampled independently of pose [1], we find that the
artificial pose dataset subsumes all plausible poses [8,9] (see Fig. 3B). This ensures
that the AAE learns rich representations in embedding space ¢. Our experimental
analysis shown in Section 4.2 (in the main paper) confirms that having a certain
degree of implausibility does not adversely affect the performance. Hence, if we
are not provided an access to any unpaired 3D poses, our approach would still
perform reliably by Artificial-pose-sampling.

4 Additional results

a) Results on 3DPW dataset. The 3D-Poses-in-the-Wild (3DPW) [5] dataset
consists of challenging outdoor in-the-wild video sequences. Compared to the
MuPoTS-3D dataset, the 3DPW dataset contains larger volume of video sequences
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and outdoor scenes. In order to evaluate the generalizability of our model, we
evaluate on the test set containing 24 sequences and show the results under the
protocol All-Test-mode. Note that, as per the All-Test-mode protocol, we do not
use 3DPW train set and 3DPW validation set for training our model. We use
Mean Per-Joint Position Error (MPJPE) and Procrustes Mean Per-Joint Position
Error as error metric (PMPJPE). The MPJPE metric is obtained as the average
Euclidean distance of joints from corresponding ground-truth joint locations. In
PMPJPE, the predicted pose is Procrustes aligned with the ground-truth pose
before averaging the error over all joints. Therefore, PMPJPE does not consider
global orientation of the predicted pose.

Table 2. Evaluation on 3DPW test set under the protocol All-Test-mode. We report
MPJPE (lower is better) and PMPJPE (lower is better).

Method MPJPE PMPJPE
Ours-Fs 100.7 77.6

b) 2D keypoint prediction. In this section, we extend the results presented
in the Table 7 of the main paper. We present qualitative results in Fig. 4 to
compare the 2D keypoint estimation for teacher model and student model (Ours-
Fs) on MuPoTS-3D dataset [6]. The evaluation protocols used for 2D keypoint
estimation are Intersection over Union (IoU), 2D-Mean Per-Joint Position Error
(2D-MPJPE) and 2D-Percentage of correct keypoints (2D-PCK). IoU is the
ratio of area of overlap between the predicted bounding box and the ground-
truth bounding box to the area of union of the predicted bounding box and the
ground-truth bounding box. 2D-MPJPE is average Euclidean distance between
predicted 2D pose keypoints and ground-truth 2D pose keypoints. In 2D-PCK,
a predicted keypoint is considered correct if it is present within a range of 25
pixels of ground-truth keypoint. All evaluations are done on keypoints that are
shared by both teacher model and student model.

c) Additional qualitative results. We present additional qualitative results
for MuPoTS-3D dataset (Fig. 6), MS-COCO 2D keypoints dataset (Fig. 7),
and wild multi-person images from YouTube and other sources (Fig. 8). For
MuPoTS-3D dataset, we estimate poses of all persons in the image even if ground
truth annotation is absent. These results not only show that our model is able to
correctly predict depth and pose of persons, but also show generalizability of our
model on unseen images.

5 Limitations of the proposed framework

a) Estimation of pelvis (root) location. As discussed in Section 3.1.2 of the
main paper, the neural representation of multi-person 3D pose is interpretable
only in presence of a pelvis at the corresponding grid location. Therefore, in some
scenarios where more than one person shares the same grid location, our model
predicts only one pose for all persons in that grid. In rare cases, our model is
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Fig. 4. Comparison of teacher model and student model (Ours-Fs) results for the
task of 2D keypoint estimation on MuPoTS-3D dataset. Erroneous predictions of the
teacher model are highlighted using red ovals. Teacher model either fails to predict
keypoint locations or fails to assign keypoint to the correct person. As the student
model estimates 2D keypoints by projecting 3D pose, it does not involve any keypoint
grouping operation usually employed in bottom-up methods, such as the teacher model.
These results show that the our model is able to perform better than the teacher model.

unable to predict the root joint of some persons in a given image. This limitation
is shown in Fig. 5(a) and Fig. 5(b). The problem of having two pelvises in the
same grid cell can be eliminated either by estimating two poses per grid-cell in
the neural-representation or by increasing resolution of the output spatial map
discussed in the Section 3.1 of the main paper.

b) Rare and ambiguous poses. Fig. 5(c) shows erroneous prediction on rarely
occurring poses like acrobatic flips. The model fails to identify correct global
orientation of the pose due to left-right symmetry ambiguity in lifting 2D pose to
3D pose. This limitation is also attributed to visibility of body parts. As the face
of the person is not visible in the image of the Fig. 5(c), the model is not able to
estimate correct body orientation. Similar example of pose ambiguity is shown
in Fig. 5(d). The model predicts an ambiguous pose for the person tagged with
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Fig. 5. Limitations of the proposed framework. (a) Multiple pelvises in the same grid
cell, (b) Missed pelvis detection, (¢c) Ambiguous pose and (d) Prediction on small
body-frame sized person (d) Ambiguous pose for person tagged with dashed blue line

a blue dashed line. In this case, the person’s 3D pose cues in the image, such
as the feet and facial orientation, are not clearly visible because of the limited
spatial information owing to low-resolution of the image.

c) Perception of depth based on bone lengths. As the proposed model is
bone-length scale-invariant, it expects all 3D poses to be of the same size. Due
to this, a person with small body-frame is assumed to be located far away from
the camera. This drawback is illustrated in Fig. 5(d) wherein, a person tagged
with dashed red line is assumed to be of the same body-frame size as that of
remaining people in the image.
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Fig. 6. Qualitative results on MuPoTS-3D dataset. Note that even if ground truth
annotation is absent, we predict poses of all people in the image.
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Fig. 7. Qualitative results on MS-COCO
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Fig. 8. Qualitative results on in-the-wild images
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