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Abstract. Advances in low-light video RAW-to-RGB translation are
opening up the possibility of fast low-light imaging on commodity de-
vices (e.g . smartphone cameras) without the need for a tripod. However,
it is challenging to collect the required paired short-long exposure frames
to learn a supervised mapping. Current approaches require a specialised
rig or the use of static videos with no subject or object motion, resulting
in datasets that are limited in size, diversity, and motion. We address the
data collection bottleneck for low-light video RAW-to-RGB by propos-
ing a data synthesis mechanism, dubbed SIDGAN, that can generate
abundant dynamic video training pairs. SIDGAN maps videos found ‘in
the wild’ (e.g . internet videos) into a low-light (short, long exposure)
domain. By generating dynamic video data synthetically, we enable a
recently proposed state-of-the-art RAW-to-RGB model to attain higher
image quality (improved colour, reduced artifacts) and improved tem-
poral consistency, compared to the same model trained with only static
real video data.

1 Introduction

Low-light imaging (less than 5 lux) is a challenging scenario for camera image
signal processor (ISP) pipelines due to the low photon count, low signal-to-noise
ratio (SNR) and profound colour distortion [6]. The ISP is responsible for forming
a high-quality RGB image with minimal noise, pleasing colors, sharp detail, and
good contrast from the originally captured RAW data. Recently there has been
growing research interest in end-to-end deep neural network architectures for
modelling the entire ISP pipeline, both in well-lit [40] and low-light scenarios [6].

A major bottleneck in the learning of deep models for end-to-end RAW-to-
RGB mapping is the availability of data. Existing models require a large amount
of manually collected paired data (RAW sensor data and its corresponding RGB
image) for training. However, collecting suitable amounts of paired data is often
time consuming, error prone (e.g . misaligned pairs), and expensive. Chen et
al . [5] resort to using a tripod to collect static videos for training. In [20] a
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Fig. 1: Comparing the image quality with SID motion [20]. Training with syn-
thetic data provides a more capable colour reproduction

novel optical system is designed to obtain dark and bright paired frames of
the same scene simultaneously, but this rig is not publicly available, requires
expertise to operate and only works if the scene is adequately illuminated. These
challenges result in datasets that are limited in size, diversity in scene type,
content and motion. This in turn typically produces models offering only limited
colour reproduction and temporal consistency on real dynamic video (Figure 1
and Section 4). In this paper, we address the training data bottleneck for learning
the RAW-to-RGB mapping, with a specific focus on low-light dynamic synthetic
video data generation. Low-light video enhancement provides an ideal testbed for
studying the potential of synthetic data as it is highly challenging to manually
collect such data. In contrast to pre-existing work, we propose Seeing In the
Dark GAN (SIDGAN), a synthetic low-light video data generation pipeline
leveraging Generative Adversarial Networks (GANs) [14].

GANs have proved to be a powerful modelling paradigm for learning com-
plex high dimensional data manifolds for many types of real-world data such
as natural images. The data distribution is modelled by framing learning as a
competition between a generator network and a discriminator network. The gen-
erator attempts to produce samples from the desired data distribution that are as
realistic as possible such that the discriminator network is fooled into classifying
the synthetic samples as being real. The ensuing minimax game between the two
networks can lead to a generator network that produces realistic samples from
the data manifold. SIDGAN builds on the CycleGAN work of Zhu et al . [50]
who demonstrate how to learn an unpaired mapping between two disparate do-
mains (e.g . two sets of images with different styles). However, different to their
work, we extend the mapping to three domains using a pair of CycleGANs while
leveraging a weak supervisory signal in the form of an intermediate domain that
has a paired data relationship with one of the remaining two domains. We argue
that for an effective mapping between two domains that are very distant (e.g .
internet videos and short exposure frames from a completely different sensor),
that it is best to leverage an intermediate domain. Our approach is illustrated
in Figure 2.

Our main contributions are three-fold:
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– Semi-supervised dual CycleGAN with intermediate domain map-
ping: Mapping directly from internet videos (Figure 2, domain A) to short
exposure (domain C) is difficult due to the large domain gap and lack of
paired training examples. Instead, we bridge the gap using an intermediate
long exposure domain (domain B) for which we have paired data (between
domains B and C). This decomposes a difficult problem into two simpler
problems, the latter with supervision.

– Data abundance for RAW-to-RGB video: The Dual CycleGAN allows
synthesis of abundant video data in order to train high capacity models with,
typically unavailable, dynamic and domain specific paired training data.

– A practical strategy to combine synthetic and real data: We pro-
pose an effective three-step training and fine-tuning scheme to address the
remaining domain gap between synthetically generated and real video data.
Combining our dynamic synthetic data with static real data yields a forward
RAW-to-RGB video model with superior temporal consistency and colour
reproduction compared to the same model trained with only real data.

2 Related Work

Low-light image and video quality enhancement topics are closely related to our
contributions. In addition to these areas, we briefly review intermediate domain
mappings, synthetic image generation and learning with unpaired data.
Low-light image enhancement. A large body of work exists on low-light im-
age enhancement, spanning histogram equalization (HE) techniques [17, 3, 34]
and approaches grounded in Retinex theory [25, 21, 22, 49]. Classical enhance-
ment methods often make use of statistical techniques that typically rely on
strong modeling assumptions, which may not hold true in real world scenes or
scenarios. Deep learning techniques have also been readily applied to low-light
image enhancement in recent years. The work of LLNet [28] employed an autoen-
coder towards low-light image denoising. Further convolutional works have used
multiscale feature maps [45] and brightness transmission image priors [44] to
enhance image contrast with strong qualitative results c.f . classical approaches.
Low-light video enhancement. The video enhancement problem is more re-
cent and has received comparatively less attention. Analogous to static images,
statistical Retinex theory has also been applied to video [27, 47]. Framing the
problem in a joint-task setting was investigated by [23]; coupling low-light en-
hancement with denoising. Network based learning is also considered for video;
Lv et al . [30] propose a multi-branch low-light enhancement network, applicable
to both image and video domains. As earlier highlighted, learning-based map-
ping of (low-light) RAW-to-RGB work is highly relevant for our direction; Chen
et al . [6, 5] learn this transformation considering both images and, latterly, video.

Capture of real video data in this problem setting is prohibitively expensive.
However, as noted, systems have been proposed that can capture both bright and
dark videos of identical scene content, providing training pairs for low-light video
models. Jiang et al . [20] collected data and employed a standard CNN to learn
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enhancement mappings for the transformation from low-light raw camera sensor
data to bright RGB videos. Collected data was relatively small by deep learning
standards (179 video pairs), illustrating the arduous burden of real-world video
collection in scenarios that involve complex capture setups and custom hardware
(here beam splitters and relay lenses). Uncommon specialist hardware, operator
expertise requirements and support for (only) adequately illuminated scenes can
be considered the main disadvantages of video enhancement work that depends
exclusively on real-world data.
Intermediate domain mappings. The concept of harnessing intermediate
domain bridges can be considered powerful and related strategies have been em-
ployed in a number of scenarios [13, 43, 26, 15, 8]. In addition to visual domains,
evidence in support of the broader applicability of this family of strategies is
also found in machine translation tasks [10], where intermediate domains en-
abled extension of bilingual systems to become multilingual. Relevant synthetic
data work [7], that we draw from, leverages chains of image mappings (“indirect-
paths”) to gain a supervisory signal towards improving super-resolution. Com-
bining intermediate domain mappings with synthetic data offers a promising
direction for problem domains where acquisition of paired imagery, and there-
fore direct supervisory signal, is challenging.
Synthetic data augmentation. The use of synthetic data for model train-
ing and testing can be considered popular and datasets have been created for
a multitude of image processing and computer vision problems [9, 32, 37, 11].
Early work performed successful scene text recognition with simplistic data gen-
eration [19] and, more recently, the benefits of combining synthetic data with
Generative Adversarial Networks (GANs) [14] have been actively explored.

The work of [51] explores GAN data augmentation, generating artificial im-
ages using conditional Generative Adversarial Networks (cGANs). By condition-
ing on segmentation masks, realistic images were generated for their task (leaf
segmentation), and related performance improved by ∼16% c.f . without syn-
thetic augmentation. In [12] a semi-supervised adversarial framework is used to
generate photorealistic facial images. By introducing pairwise adversarial super-
vision, two-way domain adaptation is constrained using only small paired real
(and synthetic) images along with a large volume of unpaired data. Performance
improves, due to the synthetic imagery, and consistently betters that of a face
recognition network trained with Oxford VGG Face data. In [46] both paired
and unpaired training data is utilised simultaneously in conjunction with gener-
ative models. Two generators and four discriminators are employed in a hybrid
setting and qualitatively strong results, on multiple image-to-image translation
tasks, are reported. Mixed and fully unsupervised approaches [29] begin to show
great promise in faithfully generalising to real-world image distributions that are
naturally sample-scarce or where data is otherwise hard to collect. These results
motivate the use of inexpensive synthetic data for training GAN based tools.
The need to collect large amounts of hand-annotated real-world data is avoided
yet performance can surpass that of training with real-data exclusively.
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In contrast to these successes, recent work [36] reports interesting findings
when employing generative models (e.g . BigGAN), for data augmentation. Im-
age classification error performance (Top-1 and Top-5) improves only marginally
when additional synthetic data is added to an ImageNet training set. As GAN
tools begin to be employed to aid downstream tasks, metrics that appropriately
measure downstream task performance must be utilised c.f . solely evaluating
synthetic sample image quality. Towards this our current work considers quan-
titative downstream performance evaluation, providing evidence towards the ef-
ficacy of our proposed data generation strategy (Section 4).

3 Learning the Low-Light Video RAW-to-RGB Mapping

Our objective is to learn short-to-long exposure mappings that provide accurate
colour reproduction and temporal consistency. Given the lack of available real
short, long exposure video pairs we propose a two-step approach that leverages
data synthesis. The first step (Section 3.1), involves training a dual CycleGAN
model for the purposes of data synthesis. The dual CycleGAN maps video frames
to a domain characterised by short exposure images. A domain bridge (e.g . long
exposure images) is used to regularise the mapping with available paired super-
vision. The trained CycleGAN permits videos ‘from the wild’ to be projected
into the long and then short exposure domains, thereby generating the necessary
paired supervision. Our second step, detailed in Section 3.2, utilises this synthetic
data to train a forward model capable of mapping low-light video RAW to long
exposure RGB. Finally, Section 3.3 provides details on synthetic data generation
network architectures.

3.1 Synthetic Data Generation Using an Intermediate Domain

SIDGAN is modelled as a set of two CycleGANs in a dual configuration that
learns the domain distributions for three domains; A, B and C. The model
architecture is shown in Figure 2 and our domain B-C CycleGAN is shown in
more detail in Figure 4. Domain A is characterised by a set of video frames
defined by probability distribution pA. The set of N videos from this domain
{Vi}Ni=1 ∼ pA are available for training. Similarly, we also consider M long

exposure still images {Li}Mi=1 ∼ pB (domain B) and T short exposure still images

{Si}Ti=1 ∼ pC (domain C). The remainder of this section details how the sample
sets are leveraged in order to learn a mapping from domain A to domain C via
bridge domain B.

The A-B CycleGAN learns, in a conditional GAN fashion, an unpaired map-
ping between domains A and B, transforming a set of RGB videos to a domain
characterised by a set of RGB images (i.e. long exposure images) using genera-
tors GAB and GBA. This unsupervised CycleGAN does not require explicit sam-
ple pairings. Discriminator DA attempts to distinguish generated video frames
V̂=GBA(L), L ∼ pB from real video frames drawn from the input distribution
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1) Video synthesis pipeline

2) Learning a RAW-to-RGB forward model
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Fig. 2: Step 1: We use SIDGAN generators (GAB , GBC) to map Vimeo videos
(domain A) into the long (domain B), then short (domain C) exposure domains,
giving our synthetic training dataset. Step 2: The forward model can be very
different from the generators of SIDGAN e.g . leveraging a mechanism for ex-
ploiting the temporal domain in the synthetic video data

V ∼ pA in Domain A (Equation 1). Discriminator DB tries to differentiate syn-
thetic long exposure still images L̂ = GAB(V ), V ∼ pA from real long exposure
images L ∼ pB , drawn from Domain B (Equation 2).

LGAN (GBA, DA) = EL∼pB
[log(1− log(DA(GBA(L))))] + EV∼pA

[log(DA(V ))] (1)

LGAN (GAB , DB) = EV∼pA
[log(1− log(DB(GAB(V ))))]+EL∼pB

[log(DB(L))] (2)

We regularise the mappings between domains such that GAB , GBA are ap-
proximate inverses of one another by employing a cycle consistency loss [50]
(Equation 3):

Lcyc(GAB , GBA) = EL∼pB
‖[GAB(GBA(L))− L]‖1+ (3)

+ EV∼pA
‖[GBA(GAB(V ))− V ]‖1.
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Domain A Domain B Domain C

Fig. 3: Generating synthetic long and short exposure frame pairs in two steps:
Step 1: Project videos from domain A to our sensor-specific long exposure
domain B using generator GAB . Step 2: Project the translated image from step
1 to the sensor-specific short exposure domain C using generator GBC

Following [42, 50], we find it also important to add an identity loss Lidentity

in order to prevent colour inversion:

Lidentity(GAB , GBA) = EV∼pA
‖[GBA(V )−V ]‖1 +EL∼pB

‖[GAB(L)−L]‖1. (4)

Our final loss combines the introduced individual loss terms as a weighted
combination, with individual components weighted by hyperparameters λ1,λ2
(Equation 5):

L(GAB , GBA, DA, DB) = LGAN (GBA, DA) + LGAN (GAB , DB) (5)

+ λ1Lcyc(GAB , GBA) + λ2Lidentity(GAB , GBA).

In contrast to the domain A-B mapping, the B-C CycleGAN is paired (su-
pervised) and employs generators GBC and GCB . This component of our dual
CycleGAN model is responsible for mapping long exposure RGB images to short
exposure counterparts. This domain mapping is paired as, in contrast to dynamic
video, it is easier to collect short-long exposure pairs for still images by using a
tripod and varying camera exposure time. SIDGAN leverages this supervision,
using intermediate domain B, with the aim of enhancing the quality of the target
task; mapping dynamic videos (domain A) to short exposure (domain C). The
B-C CycleGAN component employs a loss (Equation 6), analogous to that of the
domain A-B mapping, and additionally incorporates a Lsup term (Equation 7),
harnessing the supervisory signal that is available.

L(GBC , GCB , DB , DC) = LGAN (GCB , DB) + LGAN (GBC , DC) (6)

+ λ1Lcyc(GBC , GCB) + λ2Lsup(GBC , GCB)

Given a set of M short-long exposure pairs {(Si, Li)}Mi=1, the supervised term
Lsup(GBC , GCB) is defined as:
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Fig. 4: Visualisation of our Domain B-C CycleGAN, a sub-component of the
complete dual CycleGAN architecture found in Figure 2

Lsup(GBC , GCB) = EL∼pB
‖[GBC(L)− S]‖1 + ES∼pC

‖[GCB(S)− L]‖1. (7)

Our experimental evaluation (Section 4), demonstrates that a significant
boost in translation quality is achieved when leveraging intermediate domain
B to aid the weakly supervised CycleGAN mapping.

3.2 Training Low-Light RAW-to-RGB Forward Models

Our forward model training, fine-tuning schemes leverage a mixture of real and
synthetic video data to learn a short-to-long exposure video mapping. We aim to
extract an understanding of the correct colour and luminance distribution from
real data (static video) while learning temporal consistency from the synthetic
data (dynamic video). Our approach is shown in Figure 2. In the first step,
synthetic data is generated by taking internet videos and passing them through
generators GAB and GBC ; using the process described previously (Section 3.1).
In the second, step this synthetic video data is mixed with real data to train the
forward model, adhering to the following three training and fine tuning steps:

1. Training: Train a forward model solely on real static video data
2. Fine Tuning a : Fine tune solely on synthetic dynamic video data
3. Fine Tuning b: Fine tune on real static video data
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Our following experimental work (Section 4), employs a RAW-to-RGB for-
ward model that follows the architecture of the SID motion model [5], repro-
duced in Figure 2. However, we note that our previously introduced synthetic
data generation process is agnostic to specific model architectures. The model
samples two frames from a static video and has three L1 loss terms acting on
the VGG features [41] of the two predicted frames (La) and the two predicted
frames and the groundtruth long exposure frame (Lb, Lc). As the training data
is a static video there is no object and subject motion between frames, with
noise being the only differentiator. We comment that while using our generator
GCB to model the short-to-long exposure mapping would also be possible, we
instead leverage a temporal consistency term in the forward model to exploit the
temporal dimension of the synthetic video generated using the dual CycleGAN
(Section 3.1).

3.3 GAN Architectures for data generation

Generators GAB , GBA, GBC , GCB are modelled on the popular U-Net archi-
tecture [38]. In comparison to alternatives e.g . ResNet, we corroborate previ-
ous work [6] and find that the encoder-decoder architecture of the U-Net to be
amenable to high-quality image translation. Nevertheless, we modify the com-
ponents of the U-Net to further increase the quality of the produced images.
Our final generators are comprised of 5 convolutional blocks with a stride of 1
followed by 2×2 max pooling layers. Upsampling is performed using a nearest
neighbour bilinear interpolation followed by a 1×1 convolution, which we found
important to reduce the prevalence of checkerboard (upsampling) artifacts.

The discriminators DA, DB , DC are all PatchGAN discriminators [18] which
attempt to penalize structure at the scale of patches by classifying them as real
or fake. The discriminators ingest 192×192 patches which correspond to a recep-
tive field that covers 75% of the input image. Finally, we note that CycleGANs
in our dual CycleGAN setup are optimised independently. Joint training is theo-
retically possible but poses a more difficult optimisation problem and exhausted
our available GPU memory in practice.

4 Experimental Results

4.1 Datasets and implementation details

We employed the Vimeo-90K dataset [48] to translate real-world videos into
our low-light sensor specific domain. The dataset has 91, 701 septuplet samples,
each containing 7 video frames of resolution 448×255. For the sensor-specific
long and short exposure domains (i.e. domains B and C), we use the Dark
Raw Video (DRV) dataset [5], which contains 224 low-light raw video data and
corresponding long-exposure images. Our intermediate domain B is represented
by the long exposure DRV RGB images while for domain C we use the provided
preprocessed DRV short exposure RAW video frames.
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Fig. 5: Evolution of the KID distance during the unpaired training of
CycleGANAB . The KID distance correlates well with visual quality and is used
for model selection

Data is pre-processed using the pipeline of Chen et al . [5] which involves
RAW-to-RGB conversion by averaging green pixels in each two-by-two block,
black level subtraction, 2×2 binning, and global digital gain. Furthermore, noise
is reduced using VBM4D [31] and pixel values are linearly scaled using exposure
value (EV) difference. We resize the DRV long and short exposure RGB images
such that resolution matches that of Vimeo-90K and normalize images in [−1, 1].
Experimentally we find that training on large patches is crucial in order to cap-
ture the global statistics and learn the correct white balance. For this reason,
both CycleGANAB and CycleGANBC are trained using 256×256 crops corre-
sponding to 50% of the resized DRV frames. We randomly select 400 Vimeo-90K
videos and train our Dual CycleGAN, retaining the original train/val/test par-
titions of the DRV dataset. Finally, our forward RAW-to-RGB model is trained
using the train partition of the DRV dataset and 9, 366 synthetic videos.

Models are implemented using Tensorflow and Keras [1, 2] and trained us-
ing an NVidia Tesla V100 GPU with 32GB memory. Our CycleGAN models
are trained initially for 50 epochs with a learning rate 10−4 which then linearly
decays for a further 20 epochs. Hyperparameters λ1, λ2 are found by empirical
search and set to values 6.0, 6.0 in Equation 5, and values 10.0, 10.0 in Equa-
tion 6, respectively. The batch size is set to 1 and our forward model is trained
using the training scheme described in Section 3.2 for a total of 1000 epochs.
We employ a learning rate of 10−4 for the initial 500 epochs and reduce this to
10−5 for the latter half of training.

4.2 Synthetic data quality evaluation

We distinguish between the unpaired task that pertains to CycleGANAB and
the paired RGB-to-RAW mapping of CycleGANBC . Since CycleGANAB is re-
sponsible for mapping videos from any source to our sensor-specific domain, no
ground truth information is available for this task. In order to numerically evalu-
ate generators GAB and GBA we adopt the following metrics: Fréchet Inception
Distance (FID) [16] and Kernel Inception distance (KID) [4]. For CycleGANBC ,
we use the available ground truth; long and short exposure pairs of the test par-
tition (DRV dataset) and evaluate performance using standard metrics; Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM).
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Ground Truth Unsup. (PSNR 24.0) Semi-sup. (PSNR 27.2)

Fig. 6: Comparing CycleGAN with the proposed semi-supervised CycleGAN.
Our semi-supervised variant shows better translation performance by exploiting
the ground truth information in the optimization objective

We observe experimentally that the KID correlates better than FID with the
visual quality of the generated samples (see Fig. 5) and we base final selection
of models GBA and GAB solely on KID score. Our generator GBC , responsible
for mapping long exposure (domain B) to short exposure (domain C), achieves
27.28dB PSNR and 0.88 SSIM and GCB performance is 25.28dB and 0.74, re-
spectively. Quantitative results allude to the fact that long exposure captures
more photons and images better represent scene colors and contrast. Intuitively
the problem can be regarded as more ill-posed when mapping in the short to
long direction. We also observe by ablation that training without the supervised
term (Equation 7) resulted in significantly lower performance (∼4dB less), pro-
viding evidence in support of our choice to decompose the data synthesis task
into two separate learning problems and exploit the available paired data via the
intermediate domain mapping. Figure 7 provides example predictions for gen-
erators GCB and GBC . We compare our trained RAW-to-RGB forward model
against state-of-the-art approaches for low-light image and video processing. Fol-
lowing [20], we evaluate the performance on the static videos of the DRV dataset
and examine both the image quality and the temporal stability of our method.

4.3 Output image and video quality evaluation

Image Quality: for consistent comparison with previous work [5], we compare
the fifth frame of our output video with the respective long exposure ground
truth image and evaluate the performance in terms of average PSNR and SSIM
over the 49 DRV test videos. We compare performance with recent methods
SID [6] and SID motion [5] as well as common baselines that combine per-
formant denoising algorithms (VBM4D [31], KPN [33]) with traditional non-
learning based enhancement tools (here using Rawpy1). Results are summarised
in Table 1. Baselines are observed to perform poorly for this challenging task. Our
forward model, trained purely on synthetic data, achieves a PSNR of 21.53dB
and SSIM of 0.70. We attribute this fairly weak performance to a well under-
stood domain shift between synthetic and real data [35, 39]. However, we observe

1 https://pypi.org/project/rawpy/
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Long exp. ground truth Short exp. ground truth Prediction (PSNR 32.9) Error heatmap

Long exp. ground truth Short exp. ground truth Prediction (PSNR 27.93) Error heatmap

Fig. 7: First row: Mapping from domain B (long exposure) to domain C (short
exposure) using generator GBC . Second row: Mapping from domain C (short
exposure) to domain B (long exposure) using generator GCB

Ground Truth SID motion Ours (SIDGAN)

Fig. 8: Comparing the image quality with SID motion [5]. Note the improved
colours in the marked regions

that training the model by adding a small fraction of real data (with a real :
synthetic data ratio of 1 : 45) successfully diminishes this domain gap yielding
28.94dB PSNR and 0.83 SSIM, constituting state-of-the-art performance on the
DRV dataset.
Temporal Consistency: the DRV dataset contains static raw videos, thus tem-
poral stability can be measured by computing temporal PSNR (TPSNR) and
temporal SSIM (TSSIM) between pairs of consecutive frames, in similar fashion
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Fig. 9: The effect of real : synthetic training data ratios using portions of the
DRV dataset. Left: PSNR, right: SSIM

Table 1: Output image quality on the DRV static dataset

Model PSNR↑ SSIM↑
Input+Rawpy 12.94 0.165

VBM4D+Rawpy 14.77 0.315

KPN+Rawpy 18.81 0.540

SID w/o VBM4D 27.32 0.799

SID 27.69 0.803

SID Motion (real only) 28.26 0.815

SIDGAN (synthetic only) 21.53 0.704

SIDGAN (synthetic + real) 28.94 0.830

to [6]. Results are presented in Table 2. Our model offers competitive results
when evaluated under these temporal metrics and we attribute strong perfor-
mance to the extra information provided by our dynamic video synthetic data.
We further evaluate dynamic video temporal stability by introducing synthetic
training data, in a varying ratio with (scarce) real data. Average temporal warp-
ing error [24] is reported in Table 3. Largest improvements are observed when
available real data is scarcest.

4.4 Real training data quantity and ratios

The addition of real image data was shown to help close synthetic training dis-
tribution domain gaps, resulting in quantitative improvements (Section 4.3). We
further investigate the effect of adding real image data quantities in relation to
synthetic data. Subsets of the DRV real dataset comprising 2%, 5%, 10%, 20%
40%, 60% and 80% are randomly sampled and model performance is evaluated
when training solely on these real data subsets. We additionally train models
on a set of 9, 366 synthetic videos, generated by SIDGAN, and then fine-tune
with the aforementioned real data subsets accordingly. All models are trained for
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Table 2: Output video quality on the DRV static dataset

Model TPSNR↑ TSSIM↑
SID [9] w/o VBM4D 33.72 0.939

SID 37.05 0.961

SID Motion (real only) 38.31 0.974

SIDGAN (synthetic + real ) 39.34 0.966

Table 3: Dynamic video quality evaluation with varying real data ratios. Training
the same model using increasing fractions of real data only (SID motion) and
real data and synthetic data (SIDGAN).

Model Ewarp×10−5 ↓
SID Motion (2% real DRV data) 55.9

SID Motion (5% real DRV data) 54.3

SID Motion (20% real DRV data) 35.6

SID Motion (100% real DRV data) 29.3

SIDGAN (2% real DRV data + synthetic) 31.2

SIDGAN (5% real DRV data + synthetic) 32.7

SIDGAN (20% real DRV data + synthetic) 32.2

SIDGAN (100% real DRV data + synthetic) 28.2

1000 epochs using identical hyperparameters. PSNR and SSIM performance is
reported in Figure 9. We observe that the addition of our synthetic data signifi-
cantly boosts performance; increasing PSNR from 17.70 to 22.32, from 21.35 to
23.35 and from 24.04 to 25.19 for the cases of 2%, 5% and 10%, respectively. As
the fraction of real data is increased, the gap in performance reduces indicating
that the addition of our synthetic data again offers largest benefit in scenarios
where real data is scarce.

5 Conclusions

We introduce Seeing In the Dark GAN (SIDGAN), a data synthesis method
addressing the training data bottleneck encountered when learning models for
RAW-to-RGB problems. SIDGAN comprises two CycleGANs in order to lever-
age an intermediate domain mapping. Tasks that involve mapping between do-
mains containing disparate appearance yet also lacking paired samples, can ben-
efit from intermediate domain mappings that possess a paired data relationship
with one of the original domains. We show that this strategy is capable of increas-
ing the strength of the training signal and results in significant improvements
for the investigated low-light RAW-to-RGB problem. Such tools may be widely
applicable for domain mapping instances where data collection of directly paired
samples between the domains of interest proves difficult or impossible.
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