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1 Overview

In this supplementary material, we present the detailed network architecture
and additional ablation study results on loss functions and the number of prop-
agation steps. We also provide additional analysis on the affinity normalization
algorithms (cf., Sec. 6.3 in the main paper), and additional results on the NYU
Depth V2 (NYUv2) [10] and the KITTI Depth Completion (KITTI DC) [11]
datasets.

2 Network Architecture

The proposed non-local spatial propagation network mainly consists of two parts:
(1) an encoder-decoder architecture to predict an initial depth map, confidence,
non-local neighbors, and raw affinities, and (2) a non-local spatial propagation
layer with a confidence-incorporated learnable affinity normalization. Figure A
shows the overview and the detailed network architecture of the proposed algo-
rithm. Our encoder-decoder architecture is designed based on the ResNet34 [5]
together with the encoder-decoder feature connection strategy [9, 4]. Features
extracted from the encoder-decoder network are fed into inference layers which
predict initial depth, confidence, non-local neighbors, and affinities. These infer-
ence results are fed into the non-local spatial propagation layer, and the initial
depth is iteratively refined to generate the final dense depth.

3 Additional Ablation Study Results

In this section, we conduct additional ablation studies on 1) loss functions and 2)
the number of propagation iterations, which are not included in the main paper
due to the limited space. Unless stated, experimental settings are the same as
those of Sec. 6.3 in the main paper.
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Fig. A. Detailed network architecture of the proposed algorithm. Green boxes:
input/output data, blue boxes: encoder layers, orange boxes: decoder layers, purple
boxes: inference layers, and yellow box: non-local spatial propagation layer.

3.1 Loss Functions

In order to compare the performance of the proposed algorithm with different
loss functions, our network is trained with `1, `2, and `1 + `2 loss functions,
as shown in Tabs. 1 and 2. The network trained with `1 loss shows superior
performance compared to the one trained with `2 loss in all metrics. Previous
works on various computer vision applications such as image super-resolution [6]
and depth estimation [1] have demonstrated that the `1 loss favors results with
sharp boundaries compared to the `2 loss. We also presume that the `1 loss favors
a sharp depth output, and it leads to better performance compared to that of
`2 loss.

Besides, the combination of `1 and `2 losses is tested, however, there is no
performance improvement on the NYUv2 dataset [10]. Therefore, we adopt the
`1 loss as our loss function for the training on the NYUv2 dataset [10]. On the
contrary, we have empirically found that the combination of the `1 and `2 losses
shows better performance in RMSE compared to that of the `1 loss alone for
the KITTI DC dataset [11]. Therefore, we adopt the combination of the `1 and
`2 losses as our loss function to train the proposed approach on the KITTI DC
dataset.
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Loss RMSE (m) REL δ1.25 δ1.252 δ1.253

`2 0.096 0.014 99.5 99.9 100.0

`1 0.092 0.012 99.6 99.9 100.0

`1 + `2 0.093 0.012 99.6 99.9 100.0

Table 1. Quantitative evaluation on the NYUv2 dataset [10]. Our network is
trained with different loss functions. Note that the training setup for this table is same
as that of Sec. 6.1. in the main paper (i.e., training on the full dataset).

Loss RMSE (mm) MAE iRMSE iMAE

`2 903.9 240.4 2.9 1.0

`1 898.4 197.4 2.4 0.8

`1 + `2 884.1 225.0 2.6 0.9

Table 2. Quantitative evaluation on the KITTI DC validation set [11]. Our
network is trained with different loss functions.
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Fig. B. Performance comparison with various number of propagation itera-
tions. A quadratic trend line (dotted green line) is shown together.

3.2 Number of the Propagation Iterations

To verify the relationship between the number of propagation iterations and
performance, our network is trained with different number of propagation it-
erations, denoted by Np. Figure B shows the performance with various Np ∈
{15, 18, 21, 24}. The network trained with Np = 18 shows the best performance.
Therefore, we adopt Np = 18 for our network empirically.

4 Additional Analyses on the Affinity Normalization

In order to analyze the proposed Tanh−γ−Abs−Sum∗, we have trained our net-
work on NYUv2 [10] and KITTI DC [11] datasets with various initial values of
γ. For this ablation study on the NYUv2 dataset, we randomly sampled 10K
images from the NYUv2 dataset for training, and evaluate the performance on
the full validation dataset.
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Fig. C. The learned γ values during training with different initial values on
the NYUv2 and KITTI DC datasets . Note that K is set to 8.

Figure C shows the γ values during training with different initial values. Note
that if γ < 1, the normalization is close to the Abs−Sum∗, and if γ = K, the
normalization is same as Tanh−C.

The proposed normalization converges to neither Abs−Sum∗ (i.e., γ > 1)
nor Tanh−C (i.e., γ 6= K) for both of datasets with various initial γ values. In
addition, we can observe that the convergence range of γ value is different for
each dataset, and this supports our assumption that the optimal γ value for the
given task should be determined by the learning process.
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5 Additional Results on the NYUv2 Dataset [10]

(a) RGB (b) Depth (c) S2D [7] (d) CSPN [4] (e) Ours (f) GT

Fig. D. Additional depth completion results on the NYUv2 dataset [10].
Note that sparse depth images are dilated for visualization.

Figure D shows additional depth completion results on the NYUv2 dataset [10].
Compared to the others (Fig. D(c) and (d)), our algorithm generates sharp depth
results near the object boundaries.
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6 Additional Results on the KITTI DC Dataset [11]
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Fig. E. Additional depth completion results on the KITTI DC dataset [11].
(a) RGB, (b) Sparse depth, (c) CSPN [4], (d) DepthNormal [12], (e) DeepLiDAR [8],
(f) FuseNet [2], (g) CSPN++ [3], (h) Ours. Note that sparse depth images are dilated
for visualization.

Figures E and F show additional depth completion results on the KITTI DC
dataset [11]. Results from the proposed algorithm (Figs. E(h) and F(h)) show
better results especially on small or tiny objects compared to those of the others.
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Fig. F. Additional depth completion results on the KITTI DC dataset [11].
(a) RGB, (b) Sparse depth, (c) CSPN [4], (d) DepthNormal [12], (e) DeepLiDAR [8],
(f) FuseNet [2], (g) CSPN++ [3], (h) Ours. Note that sparse depth images are dilated
for visualization.
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